
Barrier Slicing and Chopping

Jens Krinke
Universiẗat Passau
Passau, Germany

Abstract

One of the critiques on program slicing is that slices pre-
sented to the user are hard to understand. This is partly
due to bad user interfaces, but mainly related to the prob-
lem that slicing ‘dumps’ the results onto the user without
any explanation. This work will present an approach that
can be used to ‘filter’ slices. This approach basically intro-
duces ‘barriers’ which are not allowed to be passed during
slice computation. An earlier filtering approach is chopping
which is also extended to obey such a barrier. The barrier
variants of slicing and chopping provide filtering possibili-
ties for smaller slices and better comprehensibility.

1. Introduction

Program slicing answers the question “Which statements
may affect the computation at a different statement?”. At
first sight, an answer to that question should be a valuable
help to programmers. After Weiser’s first publication [20]
on slicing in 1979, almost 25 years have passed and various
approaches to compute slices have evolved. Usually, inven-
tions in computer science are adopted widely after around
10 years. Why are slicing techniques not easily available
yet? William Griswold gave a talk at PASTE 2001 [8] on
that topic: Making Slicing Practical: The Final Mile. He
pointed out why slicing is still not widely used today. One
of the main problems is that slicing ‘as-it-stands’ is inad-
equate to essential software-engineering needs. Usually,
slices are hard to understand. This is partly due to bad user
interfaces, but mainly related to the problem that slicing
‘dumps’ the results onto the user without any explanation.
Griswold stated the need for “slice explainers” that answer
the question why a statement is included in the slice, as well
as the need for “filtering”. This work will present such a
“filtering” approach to slicing.

This approach basically introduces ‘barriers’ which are
not allowed to be passed during slice computation. Espe-
cially for chopping, barriers can be used to focus a chop
onto interesting program parts.

The next two sections will present slicing and chopping
in detail. Section four will introduce barrier slicing and
chopping together with an example. This work is closed
with a discussion of related work and conclusions.

2. Slicing

A slice extracts those statements from a program that po-
tentially have an influence onto a specific statement of inter-
est which is the slicing criterion. Originally, slicing was de-
fined by Weiser in 1979; he presented an approach to com-
pute slices based on iterative data flow analysis [20, 21].
The other main approach to slicing uses reachability analy-
sis in program dependence graphs (PDGs) [4]. Program de-
pendence graphs mainly consist of nodes representing the
statements of a program and control and data dependence
edges:

• Control dependence between two statement nodes ex-
ists if one statement controls the execution of the other
(e.g. through if- or while-statements).

• Data dependence between two statement nodes exists
if a definition of a variable at one statement might
reach the usage of the same variable at another state-
ment.

The extension of the PDG forinterprocedural programs
introduces more nodes and edges: For every procedure a
procedure dependence graphis constructed, which is basi-
cally a PDG withformal-inand-out nodes for every formal
parameter of the procedure. A procedure call is represented
by acall node andactual-inand-out nodes for each actual
parameter. The call node is connected to the entry node by a
call edge, theactual-innodes are connected to their match-
ing formal-in nodes viaparameter-inedges and theactual-
outnodes are connected to their matchingformal-outnodes
via parameter-outedges. Such a graph is calledInterproce-
dural Program Dependence Graph (IPDG). TheSystem De-
pendence Graph (SDG)is an IPDG, wheresummary edges
between actual-in and actual-out have been added repre-
senting transitive dependence due to calls [9].

1



To slice programs with procedures, it is not enough to
perform a reachability analysis on IPDGs or SDGs. The re-
sulting slices are not accurate as thecalling contextis not
preserved: The algorithm may traverse a parameter-in edge
coming from a call site into a procedure, may traverse some
edges there and finally a parameter-out edge going to a dif-
ferent call site. The sequence of traversed edges (the path)
is an unrealizable path: It is impossible for an execution
that a called procedure does not return to its call site. We
consider an interprocedural slice to bepreciseif all nodes
included in the slice are reachable from the criterion by a
realizablepath.

Definition 1 (Slice in an IPDG)
The (backward) sliceS(n) of an IPDGG = (N,E) at node
n ∈ N consists of all nodes on whichn (transitively) de-
pends via an interprocedural realizable path:

S(n) = {m ∈ N | m →?

R n}

Here,m →?

R n denotes that there exists an interprocedural
realizable path fromm to n.

We can extend the slice criterion to allow a set of nodes
C ⊆ N instead one single node:

S(C) = {m ∈ N | m →?

R n ∧ n ∈ C }

These definitions cannot be used in an algorithm directly
because it is impractical to check paths whether they are
interprocedural realizable. Accurate slices can be calculated
with a modified algorithm on SDGs:

The benefit of SDGs is the presence ofsummaryedges
that represent transitive dependence due to calls. Summary
edges cam be used to identify actual-out nodes that are
reachable from actual-in nodes by an interprocedural real-
izable path through the called procedure without analyzing
it. The idea of the slicing algorithm using summary edges
[9, 15] is first to slice from the criterion only ascending into
calling procedures, and then to slice from all visited nodes
only descending into called procedures. We refer the reader
to [11] for a presentation of the algorithms.

3. Chopping

Slicing identifies statements in a program which may in-
fluence a given statement (the slicing criterion), but it can-
not answer the question why a specific statement is part of
a slice. A more focused approach can help: Jackson and
Rollins [10] introducedChoppingwhich reveals the state-
ments involved in a transitive dependence from one specific
statement (the source criterion) to another (the target crite-
rion). A chop for a chopping criterion(s, t) is the set of
nodes that are part of an influence of the (source) nodes
onto the (target) nodet. This is basically the set of nodes
which are lying on a path froms to t in the PDG.

Definition 2 (Chop)
ThechopC(s, t) of an IPDGG = (N,E) from the source
criterions ∈ N to the target criteriont ∈ N consists of all
nodes on which nodet (transitively) depends via an inter-
procedural realizable path from nodes to nodet:

C(s, t) = {n ∈ N | p ∈ s →?

R t
∧ p = 〈n1, . . . , nl〉
∧ ∃i : n = ni}

Here,p ∈ s →?

R t denotes that pathp is an interprocedural
realizable path froms to t.

Again, we can extend the chopping criteria to allow sets
of nodes: The chopC(S, T ) of an IPDG from the source
criterion nodesS to the target criterion nodesT consists of
all nodes on which a node ofT (transitively) depends via
an interprocedural realizable path from a node ofS ⊆ N to
the node inT ⊆ N :

C(S, T ) = {n ∈ N | p ∈ s →?

R t
∧ s ∈ S ∧ t ∈ T
∧ p = 〈n1, . . . , nl〉
∧ ∃i : n = ni}

Jackson and Rollins restricteds andt to be in the same
procedure and only traversed control dependence, data de-
pendence and summary edges but not parameter or call
edges. The resulting chop is called atruncated same-level
chopCTS; “truncated” because nodes of called procedures
are not included. In [16] Reps and Rosay presented more
variants of precise chopping. Anon-truncatedsame-level
chopCNS is like the truncated chop but includes the nodes
of called procedures. They also present truncated and non-
truncatednon-same-levelchopsCTN andCNN (which they
call interprocedural), where the nodes of the chopping cri-
terion are allowed to be in different procedures. Again, the
algorithms are explained in [11].

4 Barrier Slicing and Chopping

The presented slicing and chopping techniques compute
very fixed results where the user has no influence. How-
ever, during slicing and chopping a user might want to give
additional restrictions or additional knowledge to the com-
putation:

1. A user might know that a certain data dependence can-
not happen. Because the underlying data flow analysis
is a conservative approximation and the pointer anal-
ysis is imprecise, it might be clear to the user that a
dependence found by the analysis cannot happen in
reality. For example, the analysis assumes a depen-
dence between a definitiona[i]=... and a usage
...=a[j] of an array, but the user discovers thati

2



andj never have the same value. If such a dependence
is removed from the dependence graph, the computed
slice might be smaller.

2. A user might want to exclude specific parts of the pro-
gram which are of no interest for his purposes. For
example, he might know that certain statement blocks
are not executed during runs of interest; or he might
want to ignore error handling or recovery code, when
he is only interested in normal execution.

3. During debugging, a slice might contain parts of the
analyzed program that are known (or assumed) to be
bug-free. These parts should be removed from the slice
to make the slice more focused.

Both points have been tackled independently: For example,
the removal of dependences from the dependence graph by
the user has been applied in Steindl’s slicer [18, 19]. The
removal of parts from a slice has been presented by Lyle
and Weiser [13] and is calleddicing.

The following approach integrates both into a new kind
of slicing, calledbarrier slicing, where nodes (or edges)
in the dependence graph are declared to be abarrier that
transitive dependence is not allowed to pass.

Definition 3 (Barrier Slice)
Thebarrier sliceS#(C,B) of an IPDGG = (N,E) for the
slicing criterionC ⊆ N with the barrier set of nodesB ⊆
N consists of all nodes on which a noden ∈ C (transitively)
depends via an interprocedural realizable path that does not
pass a node ofB:

S#(C,B) = {m ∈ N | p ∈ m →?

R n ∧ n ∈ C
∧ p = 〈n1, . . . , nl〉
∧ ∀1 < i ≤ l : ni /∈ B}

The barrier may also be defined by a set of edges; the pre-
vious definition is adapted accordingly.

From barrier slicing it is only a small step to barrier
chopping:

Definition 4 (Barrier Chop)
The barrier chopC#(S, T, B) of an IPDGG = (N,E)
from the source criterionS ⊆ N to the target criterion
T ⊆ N with the barrier set of nodesB consists of all nodes
on which a node ofT (transitively) depends via an interpro-
cedural realizable path from a node ofS to the node inT
that does not pass a node ofB ⊆ N :

C#(S, T, B) = {n ∈ N | p ∈ s →?

R t ∧ s ∈ S ∧ t ∈ T
∧ p = 〈n1, . . . , nl〉
∧ ∃i : n = ni

∧ ∀1 < j < l : nj /∈ B}

The barrier may also be defined by a set of edges; the pre-
vious definition is adapted accordingly.

Algorithm 1 Computation of Blocked Summary Edges

Input: G = (N,E) the given SDG
B ⊂ N the given barrier

Output: A setS of blocked summary edges

Initialization
S = ∅, W = ∅
Block all reachable summary edges
foreachn ∈ B do

Let P be the procedure containingn
Let SP be the set of summary edges for calls toP
S = S ∪ SP

W = W ∪ {(n, n) | n is a formal-out node ofP}
repeat

S0 = S
foreachx ⇀ y ∈ S do

Let P be the procedure containingx
Let SP be the set of summary edges for calls toP
S = S ∪ SP

W = W ∪ {(n, n) | n is a formal-out node ofP}
until S0 = S

Unblock some summary edges
P = W
while W 6= ∅ worklist is not emptydo

W = W/{(n, m)} remove one element from the worklist
if n is a formal-in nodethen

foreachn′ pi→ n which is a parameter-in edgedo
foreachm

po→ m′ which is a parameter-out-edgedo
if n′ su→ m′ ∈ S then

S = S − {n′ su→ m′} unblock summary edge
foreach (m′, x) ∈ P ∧ (n′, x) /∈ P do

P = P ∪ {(n′, x)}
W = W ∪ {(n′, x)}

else

foreachn′ dd,cd→ n do
if n′ /∈ B ∧ (n′,m) /∈ P then

P = P ∪ {(n′,m)}
W = W ∪ {(n′,m)}

foreachn′ su→ n do
if n′ /∈ B ∧ n′ su→ n /∈ S ∧ (n′,m) /∈ P then

P = P ∪ {(n′,m)}
W = W ∪ {(n′,m)}

return S the set of blocked summary edges

3



Again, the forward/backward, truncated/non-truncated,
same-level/non-same-level variants can be defined, but are
not presented here.

The computation of barrier slices and chops cause a mi-
nor problem: The additional constraint of the barrier de-
stroys the usability of summary edges as they do not obey
the barrier. Even when summary edges would comply with
the barrier, the advantage of summary edges is lost: They
can no longer be computed once and used for different slices
and chops because they have to be computed for each bar-
rier slice and chop individually. However, the original al-
gorithm can be adapted to compute summary edges which
obey the barrier: The new version (algorithm 1) is based
on blocking and unblocking summary edges. First, all sum-
mary edges stemming from calls that might call a proce-
dure with a node from the barrier at some time are blocked.
This set is a very conservative approximation and the sec-
ond step unblocks summary edges where a barrier-free path
exists between actual-in and -out nodes. The first phase re-
places the initialization phase of the original algorithm and
the second phase does not generate new summary edges, but
unblocks them. Only the version where the barrier consists
of nodes is shown.

This algorithm is cheaper than the complete recompu-
tation of summary edges, because it only propagates node
pairs to find barrier-free paths between actual-in/-out nodes
if a summary edge and therefore a (not necessarily barrier-
free path) exists.

Example 1:Consider the example in figure 1: If a slice for
u_kg in line 33 is computed, almost the complete program
is in the slice: Just lines 11 and 12 are omitted. One might
be interested why the variablep_cd is in the slice and has
an influence onu_kg . Therefore a chop is computed: The
source criterion are all statements containing variablep_cd
and the target criterion isu_kg in line 33. The computed
chop is shown in figure 2. In that chop, line 19 looks sus-
picious, where the variableu_kg is defined, using vari-
ablekal_kg . Another chop from all statements containing
variablekal_kg to the same target consists only of lines
14, 19, 26, 28 and 33 (figure 3). A closer look reveals that
statements 26 and 28 “transmit” the influence fromp_cd
on u_kg . To check that no other statement is responsible,
a barrier chop is computed: The source are the statements
with p_cd again, the target criterion is stillu_kg in line
33, and the barrier is line 26 and 28. The computed chop is
empty and reveals that lines 26 and 28 are the “hot spots”.

4.1 Core Chop

A specialized version of a barrier chop is acore chop
where the barrier consists of the source and target criterion
nodes.

1 #define TRUE 1
2 #define CTRL2 0
3 #define PB 0
4 #define PA 1
5
6 void main()
7 {
8 int p_ab[2] = {0, 1 };
9 int p_cd[1] = {0};

10 char e_puf[8];
11 int u;
12 int idx;
13 float u_kg;
14 float kal_kg = 1.0;
15
16 while(TRUE) {
17 if ((p_ab[CTRL2] & 0x10)==0) {
18 u = ((p_ab[PB] & 0x0f) << 8)

+ (unsigned int)p_ab[PA];
19 u_kg = (float) u * kal_kg;
20 }
21 if ((p_cd[CTRL2] & 0x01) != 0) {
22 for (idx=0;idx<7;idx++) {
23 e_puf[idx] = (char)p_cd[PA];
24 if ((p_cd[CTRL2] & 0x10) != 0) {
25 if (e_puf[idx] == ’+’)
26 kal_kg *= 1.01;
27 else if (e_puf[idx] == ’-’)
28 kal_kg *= 0.99;
29 }
30 }
31 e_puf[idx] = ’\0’;
32 }
33 printf("Artikel: %7.7s\n %6.2f kg ",

e_puf,u_kg);
34 }
35 }

Figure 1. An example

Definition 5 (Core Chop)
A core chopC◦(S, T ) is defined as:

C◦(S, T ) = C#(S, T, S ∪ T )

It is well suited for chops with large source and target crite-
rion sets: Only the statements connecting the source to the
target are part of the chop. Here is important that a barrier
chop allows barrier nodes to be included in the criteria. In
that case, the criterion nodes are only start or end nodes of
the path and are not allowed elsewhere.

4.2 Self Chop

When slices or chops are computed for large criterion
sets, it is sometimes important to know which parts of the
criterion set influence themselves and which statements are
part of such an influence. After identifying such statements,
they can specially be handled during following analyses.
They can be computed simply by aself chop, where a set
is both source and target criterion:

4



1 #define TRUE 1
2 #define CTRL2 0
3 #define PB 0
4 #define PA 1
5
6 void main()
7 {
8 int p_ab[2] = {0, 1 };
9 int p_cd[1] = {0};

10 char e_puf[8];
11 int u;
12 int idx;
13 float u_kg;
14 float kal_kg = 1.0;
15
16 while(TRUE) {
17 if ((p_ab[CTRL2] & 0x10)==0) {
18 u = ((p_ab[PB] & 0x0f) << 8)

+ (unsigned int)p_ab[PA];
19 u_kg = (float) u * kal_kg;
20 }
21 if ((p_cd[CTRL2] & 0x01) != 0) {
22 for (idx=0;idx<7;idx++) {
23 e_puf[idx] = (char)p_cd[PA];
24 if ((p_cd[CTRL2] & 0x10) != 0) {
25 if (e_puf[idx] == ’+’)
26 kal_kg *= 1.01;
27 else if (e_puf[idx] == ’-’)
28 kal_kg *= 0.99;
29 }
30 }
31 e_puf[idx] = ’\0’;
32 }
33 printf("Artikel: %7.7s\n %6.2f kg ",

e_puf,u_kg);
34 }
35 }

Figure 2. A chop for the example in figure 1

Definition 6 (Self Chop)
A self chopC1(S) is defined as:

C1(S) = C(S, S)

It computes the strongly connected components of the SDG
which contain nodes of the criterion. These components can
be of special interest to the user, or they are used to make
core chops even stronger:

Definition 7 (Strong Core Chop)
A strong core chopC•(S, T ) is defined as:

C•(S, T ) = C#(S ∪ C1(S),
T ∪ C1(T ),
S ∪ T ∪ C1(S) ∪ C1(T ))

It only contains statements that connect the source criterion
to the target criterion, none of the resulting statements will
have an influence on the source criterion, and the target cri-
terion will have no impact on the resulting statements.

1 #define TRUE 1
2 #define CTRL2 0
3 #define PB 0
4 #define PA 1
5
6 void main()
7 {
8 int p_ab[2] = {0, 1 };
9 int p_cd[1] = {0};

10 char e_puf[8];
11 int u;
12 int idx;
13 float u_kg;
14 float kal_kg = 1.0;
15
16 while(TRUE) {
17 if ((p_ab[CTRL2] & 0x10)==0) {
18 u = ((p_ab[PB] & 0x0f) << 8)

+ (unsigned int)p_ab[PA];
19 u_kg = (float) u * kal_kg;
20 }
21 if ((p_cd[CTRL2] & 0x01) != 0) {
22 for (idx=0;idx<7;idx++) {
23 e_puf[idx] = (char)p_cd[PA];
24 if ((p_cd[CTRL2] & 0x10) != 0) {
25 if (e_puf[idx] == ’+’)
26 kal_kg *= 1.01;
27 else if (e_puf[idx] == ’-’)
28 kal_kg *= 0.99;
29 }
30 }
31 e_puf[idx] = ’\0’;
32 }
33 printf("Artikel: %7.7s\n %6.2f kg ",

e_puf,u_kg);
34 }
35 }

Figure 3. Another chop for the example

Thus, the strong core chop only contains the most im-
portant nodes of the influence between the source and target
criterion.

5. Related Work

Chopping as presented here has been introduced by Jack-
son and Rollins [10], extended by Reps and Rosay [16] and
implemented in CodeSurfer [1]. An evaluation of various
slicing and chopping algorithms has been done in [11].

A decomposition slice[7, 6, 5] is basically a slice for
a variable at all statements writing that variable. The de-
composition slice is used to form a graph using the partial
ordering induced by proper subset inclusion of the decom-
position slices for all variables.

Beck and Eichmann [2] use slicing to isolate statements
of a module that influence an exported behavior. Their work
usesinterface dependence graphsandinterface slicing.

Steindl [18, 19] has developed a slicer for Oberon where

5



the user can choose certain dependences to be removed
from the dependence graph.

Set operations on slices produce various variants: Chop-
ping uses intersection of a backward and a forward slice.
The intersection of two forward or two backward slices is
called abackbone slice. Dicing [13] is the subtraction of
two slices. However, set operations on slices need special
attention because the union of two slices may not produce a
valid slice [3].

Orso et al [14] presents a slicing algorithm which aug-
ments edges with types and restricts reachability onto a set
of types, creating slices restricted to these types. Their algo-
rithm needs to compute the summary edges specific to each
slice (similar to algorithm 1). However, it only works for
programs without recursion.

6. Conclusions

The presented variants of barrier slicing and chopping
provide a filtering approach to reduce the size of slices and
chops. The example showed the helpfulness of this ap-
proach. Now we are integrating these slicing and chopping
algorithms into our VALSOFT slicing system [12]. We are
confident that the usefulness of our approach will be shown
in following experiments.

The size reduction of chops is especially important for
the generation of path conditions [17]. Path conditions give
necessary conditions under which a transitive dependence
between the source and target (criterion) node exists. These
conditions give the answer to “Why is this statement in the
slice?”. When barrier or core chops are used instead of tra-
ditional chops during path condition generation, only the
important parts will be represented in the path condition,
making it smaller and thus, more comprehensible.

Acknowledgments. Thomas Zimmermann implemented
earlier versions of the presented algorithms. Silvia Breu
and Maximilian Sẗorzer provided valuable comments.

References

[1] P. Anderson and T. Teitelbaum. Software inspection using
codesurfer. InWorkshop on Inspection in Software Engi-
neering (CAV 2001), 2001.

[2] J. Beck and D. Eichmann. Program and interface slicing
for reverse engineering. InIEEE/ACM15th Conference on
Software Engineering (ICSE’93), pages 509–518, 1993.

[3] A. De Lucia, M. Harman, R. Hierons, and J. Krinke. Unions
of slices are not slices. In7th European Conference on Soft-
ware Maintenance and Reengineering, 2003.

[4] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization.ACM Trans.
Prog. Lang. Syst., 9(3):319–349, July 1987.

[5] K. Gallagher and L. O’Brien. Reducing visualization com-
plexity using decomposition slices. InSoftware Visualiza-
tion Workshop, pages 113–118, 1997.

[6] K. B. Gallagher. Visual impact analysis. InProceedings
of the International Conference on Software Maintenance,
pages 52–58, 1996.

[7] K. B. Gallagher and J. R. Lyle. Using program slicing in
software maintenance.IEEE Transactions on Software En-
gineering, 17(8):751–761, 1991.

[8] W. G. Griswold. Making slicing practical: The final mile,
2001. Invited Talk, PASTE’01.

[9] S. B. Horwitz, T. W. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs.ACM Trans. Prog. Lang.
Syst., 12(1):26–60, Jan. 1990.

[10] D. Jackson and E. J. Rollins. A new model of program de-
pendences for reverse engineering. InProceedings of the
second ACM SIGSOFT Symposium on Foundations of Soft-
ware Engineering, pages 2–10, 1994.

[11] J. Krinke. Evaluating context-sensitive slicing and chop-
ping. InInternational Conference on Software Maintenance,
pages 22–31, 2002.

[12] J. Krinke and G. Snelting. Validation of measurement soft-
ware as an application of slicing and constraint solving.
Information and Software Technology, 40(11-12):661–675,
Dec. 1998.

[13] J. R. Lyle and M. Weiser. Automatic program bug location
by program slicing. In2 International Conference on Com-
puters and Applications, pages 877–882, 1987.

[14] A. Orso, S. Sinha, and M. J. Harrold. Incremental slicing
based on data-dependences types. InInternational Confer-
ence on Software Maintenance, 2001.

[15] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up
slicing. In Proceedings of the ACM SIGSOFT ’94 Sympo-
sium on the Foundations of Software Engineering, pages 11–
20, 1994.

[16] T. Reps and G. Rosay. Precise interprocedural chopping. In
Proceedings of the 3rd ACM Symposium on the Foundations
of Software Engineering, pages 41–52, 1995.

[17] T. Robschink and G. Snelting. Efficient path conditions in
dependence graphs. InProceedings of the 24th Interna-
tional Conference of Software Engineering (ICSE), pages
478–488, 2002.

[18] C. Steindl. Intermodular slicing of object-oriented pro-
grams. InInternational Conference on Compiler Construc-
tion, volume 1383 ofLNCS, pages 264–278. Springer, 1998.

[19] C. Steindl. Benefits of a data flow-aware programming en-
vironment. InWorkshop on Program Analysis for Software
Tools and Engineering (PASTE’99), 1999.

[20] M. Weiser. Program slices: formal, psychological, and
practical investigations of an automatic program abstrac-
tion method. PhD thesis, University of Michigan, Ann Ar-
bor, 1979.

[21] M. Weiser. Program slicing. IEEE Trans. Softw. Eng.,
10(4):352–357, July 1984.

6


