
The Java System Dependence Graph

Neil Walkinshaw, Marc Roper, Murray Wood

Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, UK
E-mail: {nw,Marc.Roper,Murray.Wood}@cis.strath.ac.uk

Abstract

The Program Dependence Graph was introduced by Ot-
tenstein and Ottenstein in 1984. It was suggested to be
a suitable internal program representation for monolithic
programs, for the purpose of carrying out certain software
engineering operations such as slicing and the computation
of program metrics. Since then, Horwitz et al. have intro-
duced the multi-procedural equivalent System Dependence
Graph. Several authors have proposed object-oriented de-
pendence graph construction approaches. Every approach
provides its own benefits, some of which are language spe-
cific. This paper presents a Java System Dependence Graph
which draws on the strengths of a range of earlier works
and adapts them, if necessary, to the Java language. It also
provides guidance on the construction of the graph, identi-
fies potential research topics based on it and shows, in the
appendix, a completed graph with a slice highlighted for a
small, but realistic example.

1. Introduction

Analysing and representing software in terms of its in-
ternal dependencies is important for a variety of software
engineering applications. These include operations such
as slicing and the computation of program metrics. The
program dependence graph represents these dependencies,
where vertices are program elements and edges represent
dependencies between them [1]. There have been sev-
eral approaches to building graphs for different program-
ming paradigms and languages. The Java System De-
pendence Graph (JSysDG) summarises aspects of object-
oriented programming that previous work has focused on
and presents a practical approach to its construction.

Ottenstein and Ottenstein first suggested that depen-
dence graphs could be used for software engineering op-
erations in 1984 [1]. They proposed a graph which was ca-
pable of representing a program consisting of a single block
of sequentially executed code. To enable the application of
these operations to multi-procedural programs, Horwitz et

al. introduced the System Dependence Graph, which rep-
resents every procedure as an individual dependence graph.
The procedure dependence graphs are linked to a central
dependence graph, which represents the main program [2].

There have been several proposed modifications to the
system dependence graph, attempting to enable the repre-
sentation of object-oriented programs. Such approaches
must be able to cope with properties such as polymorphism,
dynamic binding and inheritance. Larsen and Harrold pro-
posed a graph capable of representing these features for
C++ programs [3]. This was modified by Kovács et al. and
Zhao, to enable the representation of Java-specific features
such as interfaces, packages and single inheritance [4, 5].
Liang and Harrold also augmented Larsen and Harrold’s
graph to distinguish data members in parameter objects,
eliminating superfluous dependencies at callsites and hence
increasing the accuracy of graph-based operations [6].

This paper presents a Java-based graph that encapsulates
the benefits offered by the approaches mentioned above. It
presents the graph construction from a practical perspective
and provides an example which demonstrates that the ap-
proach presented is viable. Although dependence analysis
is an established area, the JSysDG enables static analysis to
be carried out on a graph which will produce more accurate
results than other static Java dependence graphs, because it
can represent abstract classes which need not necessarily be
interfaces and it can distinguish data members in parameter
objects.

The next section introduces the JSysDG by presenting
its individual components. Examples of various concepts
which are included in the graph are taken from a single
larger program which is given in the appendix. This is use-
ful because it puts the various individual illustrations into
context. Section three analyses the graph from a more prac-
tical perspective. It identifies the steps needed for the con-
struction of the graph. Section four considers potential re-
search areas that could benefit from the graph and intro-
duces some practical problems that could arise if the rep-
resented program contains features such as threads and ex-
ceptions. Section five provides a conclusion and summary.

2. The JSysDG

The abbreviation ‘JSysDG’ was chosen in order to avert
confusion between this dependence graph construction ap-
proach and Zhao’s JSDG [5]. Both are concerned with
building Java-based dependence graphs, albeit slightly dif-
ferently.

A JSysDG is a multigraph which maps out control and
data dependencies1 between the statements of a Java pro-
gram. Statements are categorised according to whether
they contribute to the structure of a program (i.e. they
are headers representing methods, classes, interfaces and
packages) or the program’s behaviour (i.e. they belong to
a method body). Each category is represented differently
on the graph. When these different graphs are combined,
they provide a graph-based program representation, which
is suitable as a basis for a range of software engineering
applications.

The dependence graph is a complex construct and is in-
tended as an internal program representation, not a visual
one. It is difficult to visualise a graph which is composed of
such a large number of different types of nodes and edges.
This can however be partially facilitated by interpreting the
JSysDG as a layered architecture, where certain vertices on
one layer are visible only to adjacent layers [7].

Depending on the application the dependence graph is
intended for, not all of the nodes and edge types are re-
quired. The complexity of the graph can be reduced de-
pending on the context in which it is applied. For example,
if we intend to slice the dependence graph, any nodes or
edges concerned with Java interfaces can be omitted.

2.1. A Language-specific Representation

Object-oriented representations proposed by Larsen and
Harrold [3] and Liang and Harrold [6] generate the depen-
dence graph from C++. Several of the differences between
C++ and Java require different edges or nodes in the graph.
Its construction relies on the fact that it is possible to per-
form some preliminary control, data and call flow analysis
on a given Java program, in order to build a skeletal ver-
sion of the graph. Given that this framework is established,
other nodes relating to the program structure (e.g. method
and class vertices) are added. The accuracy of any traver-
sal algorithm which operates on the JSysDG (e.g. a slicing
algorithm) depends on the accuracy of the flow analysis per-
formed in the preprocessing stage.

1A control dependence A→c B exists, if the execution of a statement
B relies on the execution of a predicate statement A. A data dependence
A →d B exists, if the execution of a statement B references a variable
which is defined / modified in a statement A.

2.2. Statements

A statement represents the lowest layer in the JSysDG.
It is an atomic construct representing a single expression in
the source code of the program. A statement representing a
call to another method (a callsite) requires a special repre-
sentation and is described in section 2.4.1.

2.3. Method Dependence Graph

The method dependence graph (MDG) represents a sin-
gle method or procedure in a program. It is the next layer
up from the statement layer. MDGs are represented simi-
larly in most OO dependence graph approaches [4, 3, 6, 5].
The method entry vertex is connected to any other vertices
belonging to the method via control dependence edges.

Parameter passing is modelled by introducing actual and
formal vertices. On the calling side, actual-in and actual-
out vertices are tagged to copy each variable to and from
a temporary variable as required. The called method con-
tains formal-in and formal-out vertices, which copy pa-
rameter variables from and to these variables respectively.
Parameter-in edges connect actual-in and formal-in ver-
tices, while parameter-out edges connect formal-out and
actual-out vertices [2].

Further formal vertices are connected to the method en-
try vertex to account for instance variables which may be
referenced or modified during the execution of the method.
All formal vertices are connected to the method entry vertex
and all actual vertices are connected to the callsite via con-
trol dependence edges. The flow of data within a method,
to its actual-in and formal-out vertices and from its actual-
out and formal-in vertices, is indicated by data dependence
edges. The call dependence edge indicates the link between
the callsite and the method being called.

Figure 1 illustrates an example of a simple method which
adds two integers. To put this example into context, see the
call from node C26 to E29 in appendix C (in the lower left
region). The method is represented by a method entry ver-
tex (private int add(int c, int d)), which is connected to
statement vertices (int result = c + d and return result)
and formal-in and formal-out vertices (c=c_in, d=d_in and
result_out=result) via control dependence edges (plain ar-
rows). The callsite (int added=add(a,b)) belongs to an-
other method and is connected to its actual-in and actual-
out vertices (c_in=a, d_in=b and added=result_out) via
control dependence edges. The call dependence edge from
the callsite to the method entry vertex is represented by
a dotted line. The actual-in vertices are connected to the
formal-in vertices via parameter-in edges (dashed lines).
The formal-out vertex is connected to the actual-out vertex
via a parameter-out edge (dashed line). Data dependencies
within the method (e.g. from c=c_in to int result = c + d)

are represented by data dependence edges (dashed lines). A
full legend for all of the examples featured in this paper is
provided in appendix A.

c=c_in d=d_in

d_in=bc_in=a

int result = c + d return result result_out=result

added=result_out

int added=add(a,b)

private int add(int c, int d)

Figure 1. Example of a simple method call

2.4. Class Dependence Graph

The class dependence graph (ClDG) represents the
classes in a program [3]. It is the next layer up from the
MDG layer. For every class, there exists a class entry ver-
tex, which is connected to the method entry vertices of its
methods via class membership edges. These membership
edges can be tagged as either public, protected or package
(default) to indicate their visibility [4]. If one class inherits
from another, they are linked by a class dependence edge.
The class entry vertex is connected to its data members via
data member edges.

Figure 2 shows the ClDG of classes SimpleCalc and
AdvancedCalc (see nodes CE17 and CE46 in appendix
B). Inheritance is indicated by the class dependence edge
which passes between them. Note that although Advanced-
Calc inherits all of the data members and methods belong-
ing to SimpleCalc (apart from its constructors), it only
needs to be linked to its own specific data members and
methods. Inherited data members and methods can simply
be computed by traversing up the class dependence edge
and along the class membership / data member edges of
SimpleCalc [4].

private int add(int c, int d)

public int getA() public int getB()

public int average() private int divide(int c) public int multiply(int c, int d)

public class AdvancedCalc extends SimpleCalc

public int multiply()

public class SimpleCalc implements Calculator

public AdvancedCalc() public AdvancedCalc(int aIn, int bIn)public power()

public SimpleCalc(int aIn, bIn)

public SimpleCalc()

a b

Figure 2. The ClDGs of the SimpleCalc and
AdvancedCalc classes

Object Representation and Polymorphism The
JSysDG represents different instances of a class individ-
ually; this enables dependence graph operations such as

slicing to take individual objects into consideration [6]. A
statement vertex v which references an object is expanded
into a tree depending on the context in which v is used.
The examples (figures 3-6) are taken from the calculator
example given in appendices B and C. The following four
sections illustrate these possible expansions:

1. v is a parameter vertex representing a statically typed2

object: v is expanded into a tree. Figure 3 illustrates
the callsite for computePower(e) (see node C9 in ap-
pendix), given that it can only accept objects of the
type AdvancedCalc.

computePower(e)

a b

AdvancedCalc e

Figure 3. Example of single-typed parameter
object

2. v is a parameter vertex representing a dynamically
typed3 object: v is connected to a child vertex for each
possible object type and expands each child vertex into
a tree containing data members belonging to that ob-
ject. In figure 4, e can either be of types SimpleCalc
or AdvancedCalc (see node C11 in appendix).

a ab

SimpleCalc

e

b

getStats(e)

AdvancedCalc

Figure 4. Example of polymorphic parameter
object

3. v is a callsite vertex and the method being called is de-
fined in a statically typed object: Because the imple-
mentation of the method can be determined statically,

2The object type can be determined statically, without running the pro-
gram

3The object type can only be determined dynamically

the callsite can simply be expanded by adding the
actual-in and actual-out vertices. Note that, although
the method does not have any parameters, we still need
to represent the object data members as actual-in ver-
tices, because they represent the instance variables ref-
erenced by the method. Figure 5 illustrates a call to
power() contained in the statically typed Advanced-
Calc object (see node C16a in appendix).

a b A1_out

AdvancedCalc.power

e.power()

Figure 5. Example of a call to a method in a
single-typed object (A1_out is the actual-out
vertex)

4. v is a callsite vertex and the method being called is de-
fined in a dynamically typed object: v points to a ver-
tex representing the object containing the method be-
ing called. This is further expanded into a tree where
the branches represent the candidate types. These are
further expanded to reveal the actual-in and actual-out
vertices for the (potentially different) method imple-
mentations and linked to the method entry vertices via
call edges. In figure 6, the multiply() implementation
in AdvancedCalc is different to the one in Simple-
Calc (see node S12a in appendix). The Java inter-
preter can only dynamically determine which imple-
mentation to execute.

20

SimpleCalc.multiply

e

206

AdvancedCalc.multiply

6

e.multiply(6,20)

Figure 6. Example of a call to a method in a
polymorphic object

In every case, an object is expanded to reveal its data
type(s). These are further expanded to represent their re-
spective data members. If a data member happens to be

another object, this must further be expanded to reveal its
type(s) etc. This can become problematic if the object is
defined recursively. To address this issue, Liang and Har-
rold employ k-limiting (the tree is only expanded to a level
k) [6].

2.5. Interface Dependence Graph

Interface Calculator

public int average()

d=d_inc=c_in

int getB() int getA()

public int multiply(int c, int d)

private int divide(int c)

private int add(int c, int d)

public int average()

public SimpleCalc(int a, int b)

public SimpleCalc()

public int multiply(int c, int d)

int c int d

SimpleCalc implements Calculator

result_out=result

int

Figure 7. The InDG

The Java interface has been represented by both Kovács
et al. and Zhao [4, 5]. Its role is to specify the signatures
of the methods which must be implemented by any object
implementing the interface. Neither approach considers the
representation of abstract classes which are not interfaces.

The JSysDG deviates from previous interface represen-
tations by treating the interface as a special kind of abstract
class. Because abstract classes can contain method imple-
mentations, the use of callsites to represent abstract meth-
ods as proposed by Zhao [5] becomes unsuitable. Abstract
methods are represented in the JSysDG with method entry
vertices. Both Kovács et al. and Zhao omit parameter-out
vertices from abstract method declarations [4, 5]. To fully
represent a method signature, if a method returns a value
(i.e. is not void), the JSysDG connects the method entry
vertex to a parameter-out vertex.

The interface dependence graph (InDG) consists of an
interface entry vertex which is connected to a set of method
entry vertices representing its abstract methods via abstract
member edges. The method entry vertices are connected
to parameter vertices, which represent their input parame-
ters(These vertices do not need to be tagged to assign an
input value to a temporary location, because the interface
is abstract). Each method entry vertex is connected to the
method entry vertex of the method implementing it by an
implement abstract method edge. If a class implements an
interface, the class is connected to the interface by an imple-
ments edge. If a class C1 extends class C2, and C2 imple-
ments an interface, C1 will automatically implement that

interface as well. C1 does not to need to be connected to
the interface by an implements edge, as this is implicit in
the inheritance hierarchy. Figure 7 illustrates the Calcula-
tor InDG, which is connected to the SimpleCalc class (see
node IE43 in appendix). The multiply(int c, int d) vertex
has been expanded to reveal its formal vertices in order to
illustrate how parameters from the interface are connected
to their implementation counterparts.

Abstract Classes An abstract method contains only the
method signature and leaves its implementation to a sub-
class. If a class contains an abstract method, it must itself
be declared abstract. Abstract classes cannot be instanti-
ated. In C++ the equivalent effect is achieved by includ-
ing a pure virtual method4 in the class. Because interfaces
are themselves abstract, abstract classes are represented in a
similar fashion. The interface entry vertex is replaced with
a class entry vertex. The class entry vertex is connected
to abstract methods via an abstract member edge. Abstract
methods are connected to their implementations via imple-
ment abstract method edges, as they would be in an inter-
face. Non-abstract methods are represented as they would
be in a normal ClDG. If a class entry vertex has at least one
abstract member edge, it is an abstract class.

Absence of Virtual Methods In C++, the inheritance
structure is slightly more complicated than in Java. Meth-
ods which can be overridden and dynamically bound at run-
time must be explicitly marked as ‘virtual’. In Java, it is
simply presumed that any derived class which contains a
method with the same signature as a method in a superclass
overrides all definitions further up the inheritance hierarchy.
Because Liang and Harrold base their dependence graph
on C++, they require a more complex inheritance structure
[6]. Because Java allows only single inheritance and does
not feature virtual methods, the JSysDG can adopt a sim-
pler inheritance structure, where derived classes can simply
reuse base-class method definitions [4] (its simplicity is il-
lustrated in figure 2).

2.6. Package Dependence Graph

A package defines a collection of classes which are con-
ceptually similar or are dedicated to a similar purpose. It is
represented by a package dependence graph (PaDG) [4, 5].
Packages are important in terms of slicing, because they are
needed to accurately compute data visibility. A package
entry vertex represents the package, which is connected to
each class and interface entry vertex belonging to the pack-
age via a package member edge.

4A pure virtual method is a method that is declared as virtual and does
not include a method body, but is initialised as ‘0’.

3. Constructing the Graph

Ultimately, a Java System Dependence Graph (JSysDG)
must satisfy the following properties: It must

• Represent methods, classes, and packages [4, 5]

• Represent abstract methods / classes and interfaces

• Represent individual objects (it must be able to cor-
rectly represent polymorphic parameters calls to poly-
morphic objects) [6]

• Represent single inheritance (class hierarchy) [4]

The pre-processing stage is beyond the scope of this doc-
ument, but some important features are discussed briefly.
The graph construction proceeds as follows:

Pre-processing the Java program Building the JSysDG
requires prior control and data flow analysis. As discussed
in section 2.1, this stage is instrumental in ensuring that the
resulting JSysDG and any operations on it are as accurate
as possible. Chambers et al. propose an approach for accu-
rately analysing data dependencies in Java programs which
can handle exceptions, synchronisation and memory con-
sistency [8]. Tonella et al. propose a context and flow-
insensitive Points-To Analysis (PTA) approach, which can
reduce the size of the initial graph to increase the accuracy
of operations such as slicing [9]. Grove et al. propose an
approach to elicit call-graphs for OO programs [10].

A practical approach to carry out this prior analysis
would be to use the Soot analysis framework, which pro-
vides several packages to analyse the Java byte-code. Soot
operates on the Java byte-code, not the source code. One
line of source code usually constitutes several individual
byte-code instructions, which are mapped to their respec-
tive source code line numbers in the LineNumberTable at-
tribute of a class. The upside of analysing a program at a
byte-code level is that more precise results can be produced,
especially in the case of slicing, where it is usually desirable
to obtain a slice which is as accurate as possible.

1. Construct MDGs

1. (a) Processing Callsites In order to determine how
the methods communicate with each other, each method
must be processed individually. Methods to be processed
are identified by traversing the call graph. Once a callsite
has been identified it can be expanded (ref. 2.4.1). Once
this is done, the call dependence edge is followed to de-
termine the called method, where the appropriate formal-in
and formal-out vertices are connected to its entry vertex. In

keeping with Liang and Harrold’s approach, parameter ver-
tices are added for parameters and global variables in the
callee’s GREF and GMOD5.

A data dependence exists between vertices A and B if
A modifies / defines a variable which is referenced / used
by B. To compute the data dependencies introduced by an
object’s data members, Liang and Harrold only associate
the use of an object with a callsite if the called method is
not a construction. An object definition is associated with
a call vertex if the called method is not a destruction. In
Java, destructors do not exist. Java’s closest equivalent of
the destructor is the finalize() method, hence an object def-
inition is associated with a call vertex if it is not a finalize()
method.

1.(b) Expand Objects In order to expand objects,
Liang and Harrold introduce the notion of an object-flow
subgraph. This is a subgraph in the data dependence graph
of a method, containing only the vertices that reference a
given object. This subgraph is traversed, and each vertex
v is expanded as discussed in section 2.4.1. In the get-
Stats(SimpleCalc e) method given in figure 8, the ver-
tices e, e.getA() and e.getB() belong to the object-flow
subgraph and hence are expanded. [Note that it is necessary
to expand the System.out.println... statement, because it is
composed of two method calls, which must be represented
separately.]

public void getStats(SimpleCalc e)

System.out.println("a: "+e.getA()+"b: "+e.getB())

e.getA() e.getB()

e

Figure 8. Example of an object-flow subgraph
(vertices belonging to the graph are in bold)

1.(c) Build Data Dependencies for Data Members
Once object vertices have been expanded, data dependen-
cies must be established for the individual object data mem-
bers. For a callsite c in a subgraph, the definition set DEF(c)
of data members consists of c’s actual-out vertices. The use
set USE(c) consists of c’s actual-in vertices. If the call state-
ment carries a parameter object, the object’s data members
must be added to the DEF and USE sets. For a parame-

5GMOD(m) is the set of non-local variables which can be modified
within a method m and GREF(m) is the set of non-local variables which
can be referenced [11].

ter object, if the vertex defines the object6, the object’s data
members are added to the DEF set. Similarly, if the vertex
uses the object, the data members are added to the USE set.
Having computed the DEF and USE sets, it is possible to
generate the def-use chains as data dependencies.

2. Construct ClDG It is assumed that the class hierarchy
is calculated as part of the pre-processing stage. For every
class, a class entry vertex is generated, which is connected
to the method entry vertices of methods belonging to that
class via class membership edges. Kovács et al. use this
connection to determine the visibility of the method within
the class [4]. The JSysDG adopts this approach as well, so
that every class membership edge is tagged as either public,
private, or protected. If a class A extends a class B, A is
connected to B via a class dependence edge. By connecting
the classes in this manner, Java’s single inheritance structure
is emphasised. If a class contains an abstract method (i.e.
the class is abstract), it is still represented by a conventional
class entry vertex, but is connected to the abstract method
via an abstract member edge. The abstract method is con-
nected to its implementation in a subclass via an implement
abstract method edge.

3. Construct InDG For every interface, there exists an
interface entry vertex. This is connected to method en-
try vertices representing the abstract methods in the inter-
face. These are each connected to their set of formal-in
vertices. Each method is connected to its respective imple-
mentation’s method entry vertex via an implements abstract
method edge. The formal-in vertices linked to the interface
method entry vertices are connected to their implementation
counterparts via parameter-in edges.

4. Construct PaDG The PaDG is represented by a pack-
age entry vertex, which is connected to its class entry ver-
tices and interface entry vertices via package edges. It is
possible for a program to consist of package hierarchies.
In this case, subpackages are connected to superpackages
via package dependence edges. This is an important feature
for multi-package programs, because it enables the accurate
calculation of the visibility of classes.

4. Operating on the JSysDG

Although this paper focuses on the graph itself, it makes
sense to give the reader an idea of some of its potential
benefits. The main application is slicing, which has been
the focus of the majority of dependence graph based papers
[2, 4, 3, 6, 1, 5]. In addition to slicing, Horwitz and Reps

6An example of this would be i.compareTo(new Integer(5)); where i
is of type Integer

also propose that dependence graphs can be used to estab-
lish differences between two programs (program differenc-
ing) and to integrate changes carried out on one program
into another similar program (program integration) [12].
The combination of data and control dependencies provides
a useful basis for the calculation of program metrics [1]. It
would also be interesting to investigate the usefulness of the
JSysDG with respect to software inspections.

4.1. Slicing

If the JSysDG is to be sliced, it needs an additional
edge called the summary edge. These represent the tran-
sitive flow of dependence across a callsite caused by both
control and data dependencies. Such an edge connects an
actual-in vertex to an actual-out vertex if the value asso-
ciated with the actual-in vertex may affect the value as-
sociated with the actual-out vertex. Figure 10 shows the
same callsite example as figure 1, but adds transitive depen-
dencies from c_in=a to added=result_out and d_in=b to
added=result_out.

c=c_in

int added=add(a,b)

private int add(int c, int d)

d=d_in

d_in=bc_in=a

int result = c + d return result result_out=result

added=result_out

Figure 9. Example of method call with transi-
tive edges between actual-in and actual-out
vertices

The slicing algorithm proposed by Horwitz et al. is split
into two phases. The first phase traverses backwards along
control, call, parameter in and data dependence edges mark-
ing every graph vertex it passes. In the second pass, the al-
gorithm traverses back from each marked vertex along con-
trol, parameter out and data dependence edges [2]. Liang
and Harrold extended this algorithm to enable the slicing
of individual objects [6]. An example of a slice according
to the Horwitz et al. method is marked out in appendix
C (shaded vertices belong to a slice taken from statement
S25).

4.2. Program Metrics

Ottenstein and Ottenstein suggested that the dependence
graph would be a suitable basis for the calculation of pro-
gram metrics. The JSysDG allows individual methods,

classes or packages to be measured. This could be espe-
cially useful as a heuristic to software restructuring. If the
complexity in a given area of the program exceeds a certain
threshold, it could indicate that a refactoring (or other form
of code restructuring) could be necessary. It would be in-
teresting to expand on Weiser’s original investigations into
slicing based metrics [13]. Bieman and Ott propose the use
of program slices to measure functional cohesion [14]. The
JSysDG provides the basic representation for the computa-
tion of these metrics.

4.3. Software Inspections / Program Understanding

Dunsmore et al. state that delocalised software arti-
facts hamper object oriented code inspections [15]. Soft-
ware artifacts become delocalised because object-oriented
paradigm features such as inheritance, polymorphism and
dynamic binding can cause code which is responsible for
the execution of a single task to be dispersed throughout
the program. These dispersed artifacts are all connected
via some form of dependence (or chain of dependencies),
which can be traced on the JSysDG. Slicing could be used to
statically determine possible paths of execution in the pro-
gram, providing the inspector with a reading strategy for the
inspection.

Harman et al. propose a framework for combining slic-
ing and concept assignment [16], to facilitate program un-
derstanding. Further research is required if this approach
is to be made practical for object-oriented systems. The
JSysDG provides a useful basis for investigating the feasi-
bility of extracting Executable Concept Slices (ECSs) for
object-oriented programs.

4.4. Practical Issues

The graph has not been designed to incorporate excep-
tions and threads. Sinha et al. represent exceptions by
adding vertices and edges around the try and catch clauses
of an exception[17]. Hatcliff et al. study the slicing
of multi-threaded programs, but do not specifically relate
their solution to a program dependence graph representa-
tion [18].

5. Conclusions

This dependence graph provides a useful basis for the
representation of Java programs. It enables several useful
software engineering operations to be carried out as queries
/ manipulations on the graph, which offers greater speed and
precision than conventional methods (Horwitz et al. illus-
trate the increase in precision when slicing the SDG as op-
posed to Weiser’s conventional algorithm [2]). It provides

a representation for interfaces and abstract classes and en-
ables objects and object data members to be treated indi-
vidually in any operation (e.g. the program can be sliced
object by object). Now, it is possible to re-interpret the
dependence graph applications as suggested by Ottenstein
and Ottenstein and Horwitz et al. in terms of the OO
paradigm. Several potential research areas concerning the
JSysDG have been proposed. The next logical step in mak-
ing the JSysDG a practical software engineering tool is to
develop a framework which will provide an internal repre-
sentation of a given Java program.

References

[1] K. Ottenstein and L. Ottenstein, “The program depen-
dence graph in a software development environment,”
in Proceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software
Development Environments, pp. 177–184, 1984.

[2] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural
slicing using dependence graphs,” ACM Transactions
on Programming Languages and Systems, vol. 12,
pp. 26–60, January 1990.

[3] L. Larsen and M. Harrold, “Slicing object oriented
software,” in 18th International Conference on Soft-
ware Engineering, pp. 495–505, March 1996.

[4] G. Kovacs, F. Magyar, and T. Gyimothy, “Static slic-
ing of java programs,” Tech. Rep. TR-96-108, Re-
search Group on Artificial Intelligence, Hungarian
Academy of Sciences, Joesf Attila University, 1996.

[5] J. Zhao, “Applying program dependence analysis to
java software,” in Proc. Workshop on Software En-
gineering and Database Systems, (Taiwan), pp. 162–
169, December 1998.

[6] D. Liang and M. Harrold, “Slicing objects using sys-
tem dependence graphs,” International Conference on
Software Maintenance, pp. 358–367, November 1998.

[7] M. Shaw, Pattern Languages of Program Design 2,
ch. Some Patterns for Software Architectures. Addi-
son Wesley, 1996.

[8] C. Chambers, I. Pechtchanski, V. Sarkar, M. Serrano,
and H. Srinivasan, “Dependence analysis for java,” in
Workshop on Compilers for Parallel Computing, (La
Jolla, LA), August 1999.

[9] P. Tonella, G. Antoniol, R. Fuitem, and E. Merlo,
“Flow insensitive C++ pointers and polymorphism
analysis and its application to slicing,” 19th Interna-
tional Conference on Software Engineering, pp. 433–
443, May 1997.

[10] D. Grove, G. DeFouw, J. Dean, and C. Cham-
bers, “Call graph construction in object-oriented lan-
guages,” in OOPSLA ’97 Conference Proceedings,
1997.

[11] J. Banning, “An efficient way to find the side effects of
procedure calls and the aliases of variables,” in Con-
ference Record of the Sixth Annual ACM Symposium
on Principles of Programming Languages, pp. 29–41,
January 1979.

[12] S. Horwitz and T. Reps, “The use of program depen-
dence graphs in software engineering,” in Proceedings
of the 14th International Conference on Software En-
gineering, 1992.

[13] M. Weiser, “Program slicing,” in Proc. 5th Int. Confer-
ence on Software Engineering, (New York), pp. 439–
449, IEEE, 1981.

[14] J. Bieman and L. Ott, “Measuring functional cohe-
sion,” IEEE Transactions on Software Engineering,
vol. 20, pp. 644–658, August 1994.

[15] A. Dunsmore, M. Roper, and M. Wood, “Object-
oriented inspection in the face of delocalisation,” in
Proceedings of the 22nd International Conference on
Software Engineering, (Limerick), 2000.

[16] M. Harman, N. Gold, R. Hierons, and D. Binkley,
“Code extraction algorithms which unify slicing and
concept assignment,” in 9th IEEE Conference on Re-
verse Engineering (WCRE ’02), (Richmond, Virginia,
USA), 2002.

[17] S. Sinha, M. Harrold, and G. Rothermel, “System-
dependence-graph-based slicing of programs with ar-
bitrary interprocedural control flow,” in Proceedings
of the 21st International Conference on Software En-
gineering, May 1999.

[18] J. Hatcliff, J. Corbett, M. Dwyer, S. Sokolowski,
and H. Zheng, “A formal study of slicing for multi-
threaded programs with jvm concurrency primitives,”
Tech. Rep. 99-6, Kansas State University, March
1999.

Appendix A: Legend
class entry vertex / interface entry vertex

method entry vertex / statement vertex / formal or actual parameter in/out vertex

class membership edge

data dependence edge / parameter−in edge / parameter−out edge

data member edge

control dependence

implements edge / implement abstract method edge

call dependence edge

class dependence edge

abstract member edge

transitive dependence

Appendix B: Example Code
CE1 public class Execute{ CE17 public class SimpleCalc implements Calculator{ IE43 interface Calculator{

E2 public static void main(String args[]){ S18 int a,b; E44 int average();

S3 SimpleCalc e; E19 public SimpleCalc(){ E45 int multiply(int c, int d);

S4 if(args.length > 0){ S20 a = 6; }

C5 int a = Integer.parseInt(args[0]); S21 b = 20;

C6 int b = Integer.parseInt(args[1]); } CE46 public class AdvancedCalc extends SimpleCalc{

C7 e = new SimpleCalc(a, b); E22 public SimpleCalc(int aIn, int bIn){ E47 public AdvancedCalc(){

} S23 a = aIn; S48 a = 6;

else C24 b = multiply(a, bIn); S49 b = 20;

{ } }

C8 e = new AdvancedCalc(); E25 public int average(){ E50 public AdvancedCalc(int aIn, int bIn){

C9 computePower(e); C26 int added = add(a,b); S51 a = aIn;

} C27 int divided = divide(added); C52 b = multiply(a, bIn);

S10 System.out.println(e.average()); S28 return divided; }

C11 getStats(e); } E53 protected int multiply(int c, int d){

S12 System.out.println(e.multiply(6,20)); E29 private int add(int c, int d){ S54 int result = c*d;

} S30 int result = c+d; S55 return result

E13 public void getStats(SimpleCalc e){ S31 return result; }

S14 System.out.println(“a: “+ e.getA() + “ b: “ + e.getB()); } E56 public int power(){

} E32 private int divide(int c){ S57 int result=a^b;

E15 public void computePower(AdvancedCalc e){ S33 int result = c/2; S58 return result

S16 System.out.println(e.power()); S34 return result; }

} } }

} E35 protected int multiply(int c, int d){

S36 for(int i=0; i<c; i++){

S37 d=d+d;

}

S38 return d;

}

E39 public int getA(){

S40 return a;

}

E41 public int getB(){

S42 return b;

}

}

Appendix C: Entire JSysDG for Example Code
This page is best viewed in colour (A colour image can be downloaded from:
http://www.cs.strath.ac.uk/~nw/documents.html).

CE1

F15_outF15_in S42

E41

S36

E35

S34S33

E32

S31S30

E29

S28

C27C26

E25

S18(b)

S18(a)

CE17

F13_out

F8_in F9_in

F10_in F11_in F11_out

A10_in A11_in A11_out A12_in

F12_in F12_out

A12_out

IE43

S49S48

E47

F4_in F5_in F4_out F5_out
C52S51

E50

F5_inF4_in F6_in F7_in F4_out F5_out

A8_in A9_in A9_out

C24S23F5_inF4_in F6_in F7_in F4_out F5_out

A8_in A9_in A9_out

A3_outA2_out

F1_in E2

S3

C5 C6 C7

S4

A2_in A3_in A6_in A7_in

C11

A13_out

S10(a)C8
C9

F16_in

E56

F17_in

S57 S58

F17_out

E22

S21S20

E19

F4_in F5_in F4_out F5_out

S38 F9_out

F14_outF14_in S40

E39

F8_in

E53

F9_in

S54 S55

F9_out

AdvancedCalc

a b

AdvancedCalcSimpleCalc

a b a b

e

E44 E45

CE46

F8_in F9_in

e

ba

e

AdvancedCalc

a b a b e

AdvancedCalcSimpleCalc

a b a b

e

ba

E15

A14_out

a b

e

SimpleCalc

S12

S12(a)

e

SimpleCalc.multiply

6 20

AdvancedCalc.multiply

6 20

a b

S16

C16(a)

AdvancedCalc.multiply

S10

C14(a)

E13

S14

C14(b)

A15_in A15_outA14_in A14_out

S37

Vertices marked by the first phase of the slice are shown in blue (darker shade) and those marked by the second phase are
shown in pink (lighter shade). A backwards-slice is demonstrated, taken from vertex S25 (return divided).

