
Abstract 
  This paper presents a flexible way in which a deisgn model 

extracted from Java programs can remain unified with the 
source code. Each entity declaration and reference in the Java  
program is assigned a globally unique identifier (UID)  based 
on its declaration scope and file which serves as a key by which 
its original declaration and other references can be found, and 
more importantly, by which information about the entity can be 
stored or retrieved from the design database. The resulting 
uniquely renamed source code makes it convenient and efficient 
to do further business logic and technical analysis that crosses 
the boundary between source code and the design database. 

The UIDs are attached to the entity references in the source 
code using XML markup, so that both the UID and the original 
source text of the declaration or reference are available in the 
renamed source program. While is possible to generate the 
unique names in an ad hoc manner, we show how to generate 
these using a combination of source transformations and design 
database inferences.  This ensures that the notion of UID is 
consistent and well defined. 

1. Introduction
As software comprehension technology matures and comes 

into practice in system transformation and migration tasks, 
attachment to source becomes increasingly important.  While 
embedded AST and lexical coordinate methods serve well in 
attaching analysis results to static source, they fare less well 
when used in the context of source transformation and 
automated reprogramming tasks.  

Unique naming [9] uses a different approach. Unique naming 
provides a unifrom position-independent means of associating 
the declaring and referencing instances of an entity in the source 
code with the corresponding entity in the design database.  
Using unique naming, all instances referring to an entity in both 
source and graph use the same unique name, which serves as a 
kind of key linking the one to the other. 

This representation has two quite distinct advantages - first, 
because analysis artifacts are represented with both source and 
graph representations, the design graph need not be constrained 
to carry source information, and the source need not be 
restructured to match the design representation, making it easier 

to analyze and transform each.  Secondly, because source and 
design are implicitly linked to one another by the entity unique 
names, analysis and transformation of source and analysis and 
transformation of design can each be carried out independently 
without losing the connection to the other.  Tasks more 
appropriate to source can be carried out on source, and tasks 
more appropriate to design can be carried out on the design 
database.  In either case, the changed result of tasks carried out 
on one are automatically attached to the other by the unique 
names of the entities involved.

In order to be effective, unique names must provide entity 
identifiers that are globally unique across entire systems, while 
at the same time easy to derive locally so that source files can be 
uniquely named on a file by file basis.  One way to do this is to 
derive the unique identifier (UID) of each entity from the source 
file and scope context of its defining declaration, in the style of 
internet URL's.  This approach has the advantage that the 
containment relations for the entity are encoded directly in its 
UID, effectively making the containment relationship redundant 
in the design database and allowing for scope-dependent 
analyses and transformations to be done directly in the uniquely 
named source code without reference to the design graph.  

By encoding the UID in source declarations and references 
using markup rather than replacement, we preserve the original 
source text of each reference and declaration in the uniquely 
named source while attaching each to the design database.  
Unique naming using markup has been used for COBOL, RPG 
and PL/I systems in LS/2000 [9] and has been extended to 
complex analysis of maintenance hotspots in these languages 
using HSML [31].  

While unique naming has worked well for analysis and 
transformation of these older procedural languages, legacy 
systems in object-oriented languages such as Java [27] are an 
increasing concern.  In this paper we extend the scope-based 
unique naming of these older languages to handle the more 
complex scope and inheritance rules of modern object-oriented 
languages, and show how object-oriented linking can be 
reflected directly into source using unique name resolution.  We 
introduce a method for resolution of unique names in the 
presence of class instances and inheritance, and extend the 
notion to handle shared object-oriented class libraries.

We use XML [1] tags to as the markup notation to add 
unique naming tags to Java source. XML is already widely used 

Unique Renaming of Java Using Source Transformation

Xinping Guo
James R. Cordy
Thomas R. Dean

School of Computing,  Queen’s University
Kingston, Ontario, Canada  K7L 3N6

{guo,cordy,dean}@cs.queensu.ca



in reverse engineering systems to represent both syntactic 
analysis information and software designs [2, 3, 4, 5, 6, 14]. 
XML tags provide a flexible way to represent many kinds of 
information, such as syntax and semantic analysis information, 
design graphs, source elisions, and so on, which can be built on 
our unique renaming.

2. Unique Identifiers
Java program comprehension and Java design recovery are 

currently hot research topics. The use of name spaces in Java 
programs makes these activities more challenging when working 
with source artifacts.  For example, it is possible that all of the 
following names in a Java program could be the same:

• Class, constructor and field names in a class.
• Two class names in different packages.
• Overloaded method names.
• Local variables in different methods.
• Local / parameter variables and class / instance variables.

One way to distinguish between these entities is by using 
scope rules to give each declared name a unique identifier (UID) 
[9].  Sample source code and generated UIDs are shown in 
Figure 1.  We use this sample throughout the paper to 
demonstrate the process of generating and manipulating UIDs. 

In our schema, the UID of an entity is composed “inside out” 
based on the original name of the entity, along with information 
encoding the entity’s scope and location in the code, in the form:  

“entity_name  enclosing_class_and_interface_names  
package_name  file_name”

Using this schema, in the example of Figure 1 we can see: 

• The global and local variables named x are assigned the 
different UIDs "x Ex bar foo Ex.java" and "x main Ex 
bar foo Ex.java"  respectively,

• The local variables named y in the two methods are 
assigned the different UIDs, "y x Ex bar foo Ex.java" 
and "y main Ex bar foo Ex.java". 

Using this schema, two classes in different packages with 
same name would also have different UIDs because the package 
names are included in the UIDs, and so on. However, in the 
example we see that both the field and the method x have been 
assigned the same UID "x Ex bar foo Ex.java".  The reason is 
that it is not necessary to distinguish these two, because in both 
source code and the design database it is unambiguous which is 
meant in every context.  In source code, field references and 
method references are easily distinguished because method 
declaration and invocation always includes parentheses with 
zero or more arguments.  In the design database, field and 
method entities are contextually distinguished by the database 
schema.  This was a conscious decision in our model.  If 
necessary, method and field UIDs can be distinguished simply 
by adding the word “method” or “field” in the UID strings as 
appropriate.

 
3. The Java Unique Renaming Process

Our unique renaming process involves assigning UIDs to all 
declared entities in the program. UIDs are assigned based on 
declaration context in the source code.  However, references in 
the code to external and library entities must also be annotated. 

1. package foo.bar ;

2. import java.applet .*;

3. import java.awt .*;

4. public class Ex extends Applet {

5.    public static int x = 100;

6.    public static void x (){

7.       int y;

8.       y = x;

9.       x = x * 10;

10.   }    

11.   public void init () {

12.      setLayout (new BorderLayout ());

13.   }    

14.   public boolean action (Event ev, Object arg ) {

15.      System.out.println (x);

16.      return true;

17. }

18.   public static void main (String args []) {

19.      int x = 120;

20.      int y = 100;

21.      x ();

22.      if (y < x)

23 y = x;        

24 Frame f = new Frame ("C");

25.      f.resize (210, 200);

26.      Ex ex = new Ex ();

27.      ex.init ();

28. }

29. }

UID id= “bar foo Ex.java" 

UID id= “Ex bar foo Ex.java“

UID id= “Applet applet java library“

UID id= “x Ex bar foo Ex.java“

UID id= “x Ex bar foo Ex.java" 

UID id= “y x Ex bar foo Ex.java“

UID id= “init Applet applet java library" 

UID id= “setLayoutContainer awt java library" 

UID id= “BorderLayout awt java library" 

UID id= “action Component awt java library" 

UID id= “Event awt java library" 

UID id= “ev action Ex bar foo Ex.java" 

UID id= “Object lang java library" 

UID id= “arg action Ex bar foo Ex.java" 

UID id= “println PrintStream io java library“

UID id= “out System lang java library“

UID id="System lang java library“

UID id= “main Ex bar foo Ex.java“

UID id= “String lang java library“

UID id= “args main Ex bar foo Ex.java“

UID id= “x main Ex bar foo Ex.java“
UID id= “y main Ex bar foo Ex.java“

UID id= “Frame awt java library“

UID id= “f main Ex bar foo Ex.java“

UID id= “resize Component awt java library" 

UID id= “ex main Ex bar foo Ex.java“define

reference

Figure 1.  The use of Unique Identifiers in a Sample Java Program.



In addition, a local class can be declared within a block of Java 
code and a class may contain fields, constructors, methods, 
classes, interfaces or static/instance initializers. And to meet our 
schema, each UID must present the path to the entity layer by 
layer inside-out. These properties of the Java language make 
unique renaming an interesting and challenging task. Our 
technique is described in the following subsections. 

There are eight steps in Java unique renaming process, 
described in detail in the eight following sections. The eight 
steps are as follows:

1. Uniquely rename declarations in each class file.
2. Uniquely rename direct references to declarations in each 

class file.
3. Uniquely rename the Java library interfaces (once for all 

programs).
4. Uniquely rename direct references to external and library 

entities in each class file. 
5. Uniquely rename reference qualifications in each class file.
6. Extract a simple data design model from the renamed 

library and all program class files.
7. Analyze the data model to link all external reference 

unique names to their external target library and class file 
entities.

8. Implement the links in each class file to replace external 
reference  unique names with the unique names they are 
linked to.

When the process is complete, every entity declaration and 
reference in every class file in the program will be globally 
uniquely renamed to refer directly to the UID of the referenced  
entity.

3.1 Step 1: Uniquely Rename Declarations
The goal of this first step is to assign each declared name in 

each class file a UID in the source code. The entities to be 
annotated include package, class, interface, variable, 
constructor, and method names. UIDs are created  layer by layer 
from the inside-out. The Java source code is parsed by our TXL 
program according to a standard Java base grammar [23]. The 
resulting parse tree encodes the scope structure of the program. 
By traversing the parse tree from the bottom up, the scope 
structure of the program is inferred and stored in generated 
UIDs.

Adding file and package names is trivial; however, adding 
other information is tricky, especially for inner classes. The use 
of recursive transformation rules is a good solution for handling 
these cases. Using the source file name, we begin by annotating 
all declarations with XML tags containing partial UIDs of the 
form:

<UID id=“file_name”> declared_name </UID>

We then incrementally add each level of scope information to 
the UIDs in the XML tags one level at a time by processing each 
scope of the program from the outside in.  The final result UID 
encodes the file name, declared name and the names of all 

enclosing scopes in inside-out order:

<UID id=“declared_name   inner_scope_name   …            
       outer_scope_name    file_name”> declared_name </UID>

Figure 2 shows the annotated source code from this first step 
for the sample program in Figure 1.  When we are done, the UID 
for each declared entity represents all of its scope information. 
For example, the UID “y x Ex bar foo Ex.java” means that local 
variable y is located in method x, method x is in class Ex, class 
Ex is in package foo.bar and the source class file name is 
Ex.java.  As shown in Figure 2, UIDs are assigned for all 
declared names, including:

• Package foo.bar.
<UID id="bar foo Ex.java"> foo.bar</UID>

• Class Ex.
<UID id="Ex bar foo Ex.java"> Ex</UID>

• Field x. 
<UID id="x Ex bar foo Ex.java"> x</UID>

• Methods x, init, action and main.
<UID id="init Ex bar foo Ex.java"> init</UID>

• Parameters  ev, arg and args.
<UID id="ev action Ex bar foo Ex.java">ev</UID>

• Local variables y in x(), y in main(),  x, f and ex.  
<UID id="f main Ex bar foo Ex.java"> f</UID>

All declared names inside class Ex contain "… Ex bar foo 
Ex.java"  in their UIDs.  All declared names nested in a method 
contain the method name as well. For example, in the main() 
method, all UIDs of declarations end with "… main Ex bar foo 
Ex.java".   This property makes our UIDs a rich source of 
scoping information which can be exploited to optimize source 
analysis and transformation tasks by avoiding reference to the 
design database to look up structural information such as 
containment relationships.

3.2 Step 2: Uniquely Rename Direct References
Once all declarations have been annotated with their unique 

names as shown in Figure 2, we must annotate the direct 
references to these declared names in each class file.  By direct 
references we mean the unqualified names on the left of 
reference expressions, for example, f in f.resize().  We will 
uniquely rename the qualifications themselves in a later stage of 
the process.

Most references are internal – references to declared names 
in the class file itself (e.g. variables y and f), but others are 
external references to entities in other library or class files (e.g. 
Applet and Frame).  Binding references to declarations must of 
course follow the scope rules of the language, so the correct UID 
for any reference is the UID of the declaration of the entity to 
which the reference refers.  For example, in Figure 1, the x in the 
statement x=x*10 is a reference to the variable x declared in the 
statement public static int x = 100, so the UID for the reference 
is "x Ex bar foo Ex.java".

The steps in renaming of references mirror the steps in the 
scope rules of Java. We begin in this section with the simplest 
case, resolving direct references to already uniquely named 
declarations and annotating each with the UID of the 



declaration. Unique naming of references to libraries and 
external packages is handled in the following sections. 

Finding and naming entity references within their declaration 
scope is not particularly difficult. However, some declarations 
may be masked in part by another declaration of the same name 
[13].  For example in Figure 1, there are two variables named x. 
The scope of the instance field x (UID id=“x Ex bar foo 
Ex.java") is the entire body of class Ex. Therefore inside method 
x (), the reference to x refers to that global variable. However, in 
method main (), there is a local variable x (UID id=“x main Ex 
bar foo Ex.java”) which masks the declaration of the global 
variable, and therefore the reference to x in main () refers to the 
local declaration, i.e. (UID id=“x main Ex bar foo Ex.java"). 

We tag each direct reference with the UID of the declared 
entity it refers to, if any.  If none is found, the reference is 
assumed to be external and is handled in the step four.

When this step is complete, all declarations and their internal 
direct references in each class file have been annotated with 
UIDs as shown for our sample code example in Figure 3. 

While direct references to x, class Ex and local variables x, y, 
f and ex have been uniquely renamed in the source of Figure 3, 
there still remain several unresolved references.  These are of 
two kinds.  First, there are references to external Java libraries:

• Class types: Applet, System, Frame …
• Inherited methods: setLayout(), init() …

Second, there are qualified references:
• Qualifiers: Entities following “.” in qualified names: 

f.resize(), ex.init() …     

We continue by addressing the first issue, references to external 
class files and Java libraries.

3.3 Step 3: Uniquely Rename Java Library Interfaces
In order to accurately uniquely rename external references to 

the library in Java source code, we must first address the 
question of uniquely renaming the Java library files themselves. 
Otherwise we cannot be sure that the UIDs used to refer to 
library entities are consistent across all Java programs in the 
system.  We need only do library unique renaming once – we 
can store the results and use the same unique names to resolve 
external Java library references in all Java programs.   

A difficulty with this approach is the fact that we do not have 
the sources for all of the Java libraries.  As it turns out, this is 
not a serious problem – we can use the javap command to 
disassemble the Java class files of the library to source interfaces 
and rename those instead. The output of javap is an interface 
source file similar to the original library source code but without 
package name and implementation details. A small TXL source 
transformation is used to normalize these library interface files 
by extracting the package name and removing it from the names 
of inner classes and constructors. We then simply use the 
declaration and reference unique renaming transformations of 
Sections 3.1 and 3.2 to implement unique renaming of the 
library. In place of the source class file name, the special file 
name “library” is used in all library UIDs to ensure consistency 
among library files. 

Unique renaming of references in library interface files is 
straightforward because all references in the library interfaces 
extracted by javap are fully qualified, and thus we can simply 
expand them directly. For example, the UID of the reference 
java.awt.Panel.AccessibleAWTPanel is “AccessibleAWTPanel  
Panel  awt  java  library”.

Once renaming of the Java library is done once, it need never 
be done again and can be reused for renaming of all future 
programs.

package<UID id=“bar foo Ex.java">foo.bar</UID> ;
import java.applet.*;
import java.awt.*;
public class <UID id=“Ex bar foo Ex.java">Ex</UID> extends Applet {
public static int <UID id= “x Ex bar foo Ex.java">x</UID> = 100;
public static void<UID id=“x Ex bar foo Ex.java">x</UID> ()  {
int <UID id= “y x Ex bar foo Ex.java">y</UID> ;
y =  x ;
x = x * 10;

}
public void <UID id=“init Ex bar foo Ex.java">init</UID> () {

setLayout( new BorderLayout());
}
public boolean <UID id= “action Ex bar foo Ex.java">action</UID> (Event<UID id= “ev action Ex bar foo Ex.java">ev</UID> ,

Object <UID  id=“arg action Ex bar foo Ex.java">arg</UID> ) {
System.Out.println(x);
return true;

}
public static void <UID id= "main Ex bar foo Ex.java">main</UID> (String 

<UID id=“args main Ex bar foo Ex.java">args</UID> []){
int <UID id= “x main Ex bar foo Ex.java">x</UID> = 120;
int <UID id=“y main Ex bar foo Ex.java">y</UID> = 100;
x() ;

if ( y < x ) 

y = x ;
Frame <UID id= “f main Ex bar foo Ex.java">f</UID> = new Frame("C");
f.resize(210, 200);

Ex <UID id=“ex main Ex bar foo Ex.java">ex</UID> =   new Ex();
ex.init();

}
} Figure 2.  Uniquely Rename Declarations.



3.4 Step 4: Uniquely Rename External Direct 
References  

Once we have the uniquely renamed the libraries, we ready 
to uniquely rename the external references in any Java program.  
Once again, at this stage we only rename direct references – 
those unqualified names on the left of reference expressions, in 
each class file.  Qualifications will be uniquely renamed in the 
next step. The result of these two steps on our sample program is 
shown in Figure 4.

We uniquely rename all references to types (class types and 
interface types) declared in the library. We do this by resolving 
the names used in all unrenamed direct references with the 
declarations in the uniquely renamed libraries created in step 3. 

In the sample program of Figure 4, references to Applet, 
BorderLayout, Event, Object, System, String and Frame have all 
been uniquely renamed as library references.  For example, the 
UID of Applet was found to be “Applet applet java library",  
denoting a reference to the Applet class of the Java library.

Once we have resolved all library references, the only 
remaining unresolved direct references must be to external user 
symbols such as inherited members of other class files. To 
complete the unique renaming of references, we assign each of 
these references a temporary UID as if they were declared in 
current class, for example, the reference to the inherited member 
setLayout() of our sample program is approximated as 
“setLayout Ex bar foo Ex.java”.   Section 3.7 describes our 
strategy for the linking of these temporary UIDs to the actual 
external entities they refer to in other class files.

3.5 Step 5: Uniquely Rename Qualified References  
Once unique names have been assigned to all external 

references, there remain no unresolved direct references in the 

program.  At this point we refine the UIDs for qualified 
references (those using “.”), e.g. System.out.println(), f.resize() 
and ex.init(). Previous steps have already uniquely renamed the 
direct (base) reference of every qualified name. For example,

 

<UID id="System lang java library">System</UID>    
    .out.println ( )

In this step we expand these base references to create UIDs 
for the entire qualified references level by level.  This is actually 
a very simple process.  Since Java does not allow partial 
qualification, the UID for a reference x.y where x has UID “x 
blat bar foo prog.java” is always simply “y x blat bar foo 
prog.java”, that is, y followed by the UID for x.

By applying this algorithm at every level, we get fully 
renamed qualified names.  For example, the uniquely named 
qualified expression System.out.println() shown above becomes:

  <UID id=“println out System lang java library”> 
        <UID id=“out System lang java library”>
               <UID id=“System lang java library”> 
                     System</UID>.out</UID>.println()</UID>

The result of the resolution of qualified names for our sample 
program is shown in Figure 4.  

While this simple qualification naming algorithm works 
correctly for most internal qualified references, note that at this 
stage UIDs for qualified references are really an approximation.  
Firstly, qualified object references have been renamed as if the 
fields and methods were members of the object, when in fact 
they should be renamed to refer to the corresponding class 
member declaration.  Secondly, external references are an 
approximation because we have not yet taken into account 
inheritances and overrides that may be present in the external 
class hierarchies.  

package<UID id= “bar foo Ex.java">foo.bar</UID>  ;
…
public class <UID id= “Ex bar foo Ex.java">Ex</UID>   extends Applet {

public static int <UID id=“x Ex bar foo Ex.java">x</UID> = 100;
public static void<UID id=“x Ex bar foo Ex.java">x</UID> ()  {
int <UID id= “y x Ex bar foo Ex.java">y</UID> ;
<UID id= “y x Ex bar foo Ex.java">y</UID> = <UID id= “x Ex bar foo Ex.java">x</UID> ;
<UID id= “x Ex bar foo Ex.java">x</UID> = <UID id= “x Ex bar foo Ex.java">x</UID> * 10;

}
…
public boolean <UID id=“action Ex bar foo Ex.java ">action</UID> ( Event<UID id=“ev action Ex bar foo Ex.java">ev</UID> ,

Object <UID  id=“arg action Ex bar foo Ex.java">arg</UID> ) {

System.Out.println( <UID id= “x Ex bar foo Ex.java">x</UID>  );
return true;

}

public static void <UID id= "main Ex bar foo Ex.java">main</UID> ( String
<UID id=“args main Ex bar foo Ex.java">args</UID> [] ) {
int <UID id= “x main Ex bar foo Ex.java">x</UID> = 120;
int <UID id= “y main Ex bar foo Ex.java">y</UID> = 100;
<UID id=“x Ex bar foo Ex.java">x()</UID> ;

if ( <UID id=“y main Ex bar foo Ex.java">y</UID>  < <UID id=“x main Ex bar foo Ex.java">x</UID> )
<UID id="y main Ex bar foo Ex.java">y</UID> = <UID id= “x main Ex bar foo Ex.java">x</UID> ;

Frame <UID id= “f main Ex bar foo Ex.java">f</UID> = new Frame("C");
<UID id=“f main Ex bar foo Ex.java">f</UID> . resize(210, 200);
<UID id=“Ex bar foo Ex.java">Ex</UID>  <UID id= “ex main Ex bar foo Ex.java">ex</UID>  = 

new <UID id="Ex bar foo Ex.java">Ex</UID> ();

<UID id= “ex main Ex bar foo Ex.java">ex</UID>  . init();
}

} Figure 3.  Uniquely Rename Direct References.



For example, the UID “println out System lang java library" 
should really refer to “println PrintStream io java library”.  In 
the next two sections, we address both these issues by 
implementing a link analysis of the entire renamed data model 
of all program class files and the library together.

3.6  Step 6: Extract the Data Design Model from 
Uniquely Renamed Source Files

At this point in the unique renaming process we have 
assigned unique names to every declaration and reference in all 
of the class files of the Java program. In the class files, only 
those references to apparently external, inherited entities have 
been assigned the correct UIDs. Other references (i.e. qualified 
and inherited members) are represented by internal approximate 
UIDs. The problem now is to link these approximate local UIDs 
to the real UID of the entity to which they refer.  In order to do 
this, we use a static data design model to imitate the actions of a 
Java run-time linker.

 We begin by extracting a database of data design facts from 
each of the uniquely renamed source files in the program. This 
database can be useful in many design analysis tasks, but in 
particular, we can use it to resolve the actual entity targets of our 
approximate external UIDs in section 3.7.

We use the design recovery technique described by 
Schneider et al [29] to infer and gather data design facts from 
our uniquely renamed source and library files.  The method uses 
TXL rules to search for patterns in the source and annotate the 
source with design facts [8]. The output facts can be in the any 
format, for example Prolog, TA or RSF.  

The following sections describe the facts inferred by our data 
design recovery for use in linking.  

3.6.1. Accessibility Facts. Access control is the mechanism in 
Java that prevents the users of a package or class from 

depending on unnecessary details of the implementation of that 
package or class [13]. The access modifiers public, protected 
and private are used to specify access control, with default 
access defined by the Java language specification. We extract 
access facts for all classes, interfaces, fields, constructors and 
methods.  For our example sample program, we get:

public ("Ex bar foo Ex.java")
public ("x Ex bar foo Ex.java")
public ("init Ex bar foo Ex.java")

3.6.2. Entity Facts. We extract entity facts from the renamed 
library files. These describe the defined packages, classes and 
interfaces in the library files. Example facts from the Java 
library are:

package ("applet java library")
class ("Applet applet java library")
class ("AccessibleApplet Applet applet java library")
package ("applet java library")
interface ("AppletContext applet java library")

3.6.3 Type Structure Facts. These describe the type 
relationships between entities including inheritance, abstraction, 
members, inner types and static members. We derive the 
following facts:  

• hasFieldType – Represents the types of declared fields, e.g.,
hasFieldType ("x Ex bar foo Ex.java", int)

• hasMethodType – Represents the types of declared methods, 
e.g., hasMethodType ("x Ex bar foo Ex.java", void)

• hasMemberForClass – Represents the member relationship, 
e.g., hasMemberForClass ("Ex bar foo Ex.java", 
                                          "x Ex bar foo Ex.java")

package<UID id=“bar foo Ex.java">foo.bar</UID>  ;
…
public class <UID id=“Ex bar foo Ex.java">Ex</UID>  extends <UID id=“Applet applet java library">Applet</UID> {
…
public void <UID id= “init Ex bar foo Ex.java">init</UID> () {

<UID id=“setLayout Ex bar foo Ex.java">setLayout( new <UID id= “BorderLayout awt java library">BorderLayout</UID> 

() ) </UID> ;
}

public boolean <UID id= “action Ex bar foo Ex.java">action</UID> (
<UID id=“Event awt java library">Event</UID>     <UID id=“ev action Ex bar foo Ex.java">ev</UID> ,

<UID id=“Object lang java library">Object</UID>    <UID  id=“arg action Ex bar foo Ex.java">arg</UID> ) {
<UID id=“println out System lang java library">   <UID id=“out System lang java library">  

<UID id="System lang java library">System</UID>  . Out</UID>

. println( <UID id= “x Ex bar foo Ex.java">x</UID>  )</UID>;

return true;
}

public static void <UID id= "main Ex bar foo Ex.java">main</UID> ( <UID id= “String lang java library">String</UID>

<UID id=“args main Ex bar foo Ex.java">args</UID> [] ) {
…

<UID id= “Frame awt java library">Frame</UID>   <UID id= “f main Ex bar foo Ex.java">f</UID> = 
new <UID id="Frame awt java library">Frame</UID> ("C");

<UID id= “resize f main Ex bar foo Ex.java">   <UID id=“ f main Ex bar foo Ex.java">f</UID> . resize(210, 200)</UID>;

<UID id= “Ex bar foo Ex.java">Ex</UID>    <UID id=“ex main Ex bar foo Ex.java">ex</UID>  =   

new <UID id="Ex bar foo Ex.java">Ex</UID> ();
<UID id= “init ex main Ex bar foo Ex.java ">  <UID id= “ex main Ex bar foo Ex.java">ex</UID>  . init()</UID>;

}
} Figure 4.  Uniquely Rename External and Qualified References.



• hasInnerType – Represents the inner class relationship of 
classes and interfaces.

• hasSuperType – Represents the extends relationship, e.g.,
     hasSuperType ("Ex bar foo Ex.java",
                                    "Applet applet java library")

• hasImplement – Represents  the  implements relationship.
• static – Represents the static property, e.g.,

static ("x Ex bar foo Ex.java")        

3.6.4. Method Facts. Parameter, local variable and type facts 
are extracted at the level of methods and constructors. These 
facts encode not only implementation detail but also 
relationships with other classes and interfaces. 

• paramVar – Method has parameter, e.g.,
paramVar ("action Ex bar foo Ex.java",

                   "ev action Ex bar foo Ex.java")
• localVar – Method has local variable, e.g.,

    localVar ("x Ex bar foo Ex.java",
         "y x Ex bar foo Ex.java")

• hasVarType – Method references  type, e.g., 
hasVarType ("action Ex bar foo Ex.java",

     "Event awt java library")
• funRef – Method references method, e.g.,,

     funRef ("init Ex bar foo Ex.java",
            "setLayout Ex bar foo Ex.java")

• varRef – Method references variable.   
• typeRef – Method references type, including class instance 

creation expressions and casting conversions.  E.g.,
typeRef ("init Ex bar foo Ex.java", 

"BorderLayout awt java library")
• genRef – Method contains undifferentiated references, e.g.,

 genRef ("action Ex bar foo Ex.java", 
     "out System lang java library")

• varType  - Variable has type, e.g.,  
     varType ("ev action Ex bar foo Ex.java",

 "Event awt java library")

The facts funRef, varRef, typeRef and genRef are used to 
denote the as yet unknown entities linking to external entities or 
the library. They might be inherited  members or they might 
come from qualified references. They will be resolved to their 
correct UIDs  in the next section. So far, from source code we 
have inferred that each funRef refers to an external method, each 
varRef refers to an external field, and so on. But genRef facts are 
ambiguous, meaning that the correct semantics for the reference 
has yet to be determined – we do not know if the entity referred 
to is a class type, package, field or method.

Figures 5 and 6 show examples of the data design facts 
extracted from the library and class files of our sample example 
program.

3.7 Step 7: Deriving Link Relationships. 
Based on the data design model facts recovered from the 

source and library files in Section 3.6 (Figure 5, Figure 6), we 

can derive the final linking relationships between object and 
external entity references and defined entities in the library or 
other source files of the program. Once we have determined 
these links, we can replace the temporary approximate UIDs we 
generated for these references in Section 3.5 with the UIDs of 
their actual target entities. The link relationships are derived by 
encoding Java linking rules as inference rules in a relational 
system such as Prolog or Grok [24].  Grok is a Tarski relational 
algebra calculator which has been used in manipulating graphs 
for large scale software systems to assist in program 
visualization and understanding [10]. 

The derived links relating the external reference UIDs in our 
sample program to the UIDs of the actual external class file and 
library entities are shown in Table 1. In the following 
subsections we explain how these links are derived using Grok.
  
3.7.1. Linking Through Inherited and Overridden Methods. 
Some external fields and methods are inherited from 
superclasses. In the current class, those entities can be used as 
references which refer to the ones defined in superclasses. For 
example, setLayout() is an inherited method from 
java.awt.Container with the inheritance relationship:

java.lang.Object
|
+-- java.awt.Component
       |
       +--java.awt.Container
            |
            +--java.awt.Panel
                 |
                 +--java.applet.Applet
                      |
                      +--foo.bar.Ex

Input to our Grok scripts includes all the data design facts 
design recovered from all program class files and the library. 
We begin by identifying all the temporary references that need 
to be linked.  These include both the qualified object references 
and the qualified external references in all of the renamed class 
files. The result of this analysis is stored in the relationship 
needlink, which documents all of the temporary UIDs for which 
we need to resolve a target entity. 

We compute the needlink relationship using Grok to find 
those tuples in funRef, typeRef, varRef and genRef for which 
there is no directly defined entity in any program class file or 
library file. So for our sample example, the inferred needlinks 
are: 

needlink "init Ex bar foo Ex.java" 
              "setLayout Ex bar foo Ex.java"
needlink "action Ex bar foo Ex.java"
               "println out System lang java library"
needlink "main Ex bar foo Ex.java"
               "resize f main Ex bar foo Ex.java"
needlink "main Ex bar foo Ex.java" 
               "init ex main Ex bar foo Ex.java"

We now have all the information we need to actually resolve 
the needed links.  First, we use Grok to explore the class 
hierarchy to resolve references to inherited (super class) 
methods and fields.  We encode the results of this analysis as the 



superLink relationship.  For example, for our sample example 
program we infer:

superLink  “setLayout Ex bar foo Ex.java”
                 “setLayout Container awt java library”

Next we use Grok to explore the class hierarchy to resolve 
overridden methods.  In our sample example, the overridden 
methods init()  and act ion()  are originally defined in 
java.applet.Applet and java.awt.Component.  We encode the 
results of this analysis in the overriddenMethod relationship.  
For example, for our sample program we infer:

  overriddenMethod  “init Ex bar foo Ex.java”  
                    “init Applet applet java library”
  overriddenMethod  “action Ex bar foo Ex.java”
                    “action Component awt java library”

  
3.7.2. Linking Through Object Instances of Classes.  The 
only remaining unresolved links needed are qualified object 
references referring to the members of the object’s class or 
superclasses.  To resolve these references, we use Grok once 
again to explore the object’s class hierarchy beginning with the 
class of the object itself and looking upward until the member 
referred  to is found.  We encode the results of this analysis in 
the classLink relationship.  In the case of our sample example, 
we infer the links:

classLink  “println out System lang java library”  
                   “println PrintStream io java library”
classLink  “init ex main Ex bar foo Ex.java” 
                   “init Ex bar foo Ex.java”
classLink  “resize f main Ex bar foo Ex.java” 
                   “resize Component awt java library”

3.8 Step 8: Push Links into Uniquely Renamed Source. 
The final step in our unique renaming involves replacing the 

temporary UIDs used for object and external qualified names in 
the uniquely renamed source with the UIDs of the corresponding 
actual external entities inferred by the linking process. This is 
done using a final TXL source transformation that uses the 
inferred link facts of the previous section to replace each linked 
UID instance in the source with the UID that it is really linked 

to. In the case of our example sample program, we come up with 
the final uniquely renamed Java source code of Figure 7. The 
size of the final annotated source code is only about five times 
larger than the original, even though it contains many times 
more information.

4. Related Work

The unique renaming paradigm and UID schema on which 
our work is based was originally designed by Schneider [29] for 
design recovery and analysis of programs written in the Turing 
programming language. LS/2000 [9] is a TXL-based process 
that used the same paradigm in design recovery techniques to 
analyze source code for Year 2000 risks.  It guided source 
transformations that were able to automatically migrate over 
99% of the year 2000 risks in over three billion lines of 
production IT source written in COBOL, PL/I and RPG.  The 
use of UIDS to link between source code and design databases 
was further explored through the HSML [31] language. The 
main contribution of this paper to the LS/2000 work is the 
extension of the unique naming concept to object oriented 
language constructs present in Java and not in COBOL, PL/I or 
RPG. The work in this paper also addresses the more flexible 
relationship possible between Java source entities that are also 
not present in the languages supported by LS/2000.

Cox and Clarke [11] developed Jupiter repository system. 
Maia is a data model that is encoded using XML like markup. 
Tags are used to mark entities such as blocks,  declarations, and 
control flow. Source tokens are numbered sequentially and the 
markup tokens are assigned fractional token positions based 
these source token numbers.  Links between tokens are done 
using attributes that give the source token positions.  So a 
delcaration is annotated up with markup tokens that give the 
source token positions of the use of the entity while references 
to tokens are annotated with markup that gives the declaration of 
the entity. The approach has the flexibility that the tags may be 
stored in the source code or separately in a design database.  The 
disadvantage of using token numbers in the references is that the 
markup is more sensitive to changes in the code.  Our unique 
identifier approach will survive transformations to the code.

Middle level models such as the Dagstuhl Middle Model 

hasSuperType ("System lang java library", "Object lang java library")
hasMemberForClass ("System lang java library", 

"out System lang java library")
hasFieldType ("out System lang java library", 

"PrintStream io java library")
hasSuperType ("Panel awt java library", "Container awt java library")
hasSuperType ("Applet applet java library", "Panel awt java library")
hasMemberForClass ("Applet applet java library", 

"init Applet applet java library")
hasMethodType ("init Applet applet java library", void)
hasSuperType ("Container awt java library", "Component awt java library")
hasMethodType ("setLayout Container awt java library", void)
hasMemberForClass ("Container awt java library", 

"setLayout Container awt java library")
hasMethodType ("action Component awt java library", boolean)
hasMemberForClass ("Component awt java library", 

"action Component awt java library")

Figure 5. A Subset of the Facts for the Java Library.

hasSuperType ("Ex bar foo Ex.java", "Applet applet java library")
hasFieldType ("x Ex bar foo Ex.java", int)
hasMethodType ("init Ex bar foo Ex.java", void)
hasMethodType ("action Ex bar foo Ex.java", boolean)
hasMemberForClass ("Ex bar foo Ex.java", "x Ex bar foo Ex.java")
hasMemberForClass ("Ex bar foo Ex.java", "init Ex bar foo Ex.java")
hasMemberForClass ("Ex bar foo Ex.java", "action Ex bar foo Ex.java")
paramVar ("action Ex bar foo Ex.java", "ev action Ex bar foo Ex.java")
localVar ("main Ex bar foo Ex.java", "x main Ex bar foo Ex.java")
hasVarType ("x Ex bar foo Ex.java", int)
funRef ("init Ex bar foo Ex.java", "setLayout Ex bar foo Ex.java")
funRef ("action Ex bar foo Ex.java", "println out System lang java library")
funRef ("main Ex bar foo Ex.java", "init ex main Ex bar foo Ex.java")
genRef ("action Ex bar foo Ex.java", "System lang java library")
genRef ("action Ex bar foo Ex.java", "out System lang java library")
typeRef ("main Ex bar foo Ex.java", "Frame awt java library")
varType ("ev action Ex bar foo Ex.java", "Event awt java library")
varType ("arg action Ex bar foo Ex.java", "Object lang java library"

Figure 6. A Subset of the Facts for the Sample Program.



(DMM) [30] encode the source position of entities in the model.  
In DMM, model objects are associated with source objects via 
the defines and/or the declares relation. The source objects in the 
design database have an identity of thier own and are linked to 
the source code by attributes defining the start and end position 
as line and column numbers. Datrix [32,33], an abstract syntax 
graph approach, also stores the source code locations directly in 
the model as line and column attributes.  Both of the DMM and 
Datrix approaches share the disadvantage of Maia. One could 
argue that the ASG based models do not need the link to the 
source code other than for reporting purposes, since they are 
source code complete.  Any transformations could be done 
entirely in the design database. However, the the fixed schema 
(i.e. fixed grammar) of the design database limits some 
techniques that can be used to simplify transformations [34].

There are many papers that explore how to represent source 
code information for different languages in XML format.  Power 
and Malloy[2] modify the GNU bison parser generator to 
generate parse trees in XML format for C, Objective C, C++, 
Java and FORTRAN.  Another program analysis tool, XMLizer 
[3], also outputs XML format to represent program structure for 
Java, PL/IX and Pascal.  In both cases the XML is used to 
represent the parse tree, and does not contain any attributes 
linking the use of an identifier to its delcaration.  Power and 
Malloy absorb all of the source text into tags and attributes. 
XMLizer has the ability to represent partial parse trees.  For 
example, a statement non-terminal may mark text for an entire 
statement with no parse reprentation embedded in the statement. 
When fully parsed, most text is absorbed into XML tags and 
attributes, although constant and identifiers remain as marked up 

package <UID id= “bar foo Ex.java ">foo.bar </UID> ;
import java.applet .*;
import java.awt .*;

public class <UID id=“Ex bar foo Ex.java ">Ex</UID> extends <UID id=“Applet applet java library"> Applet </UID> {
public static int <UID id= “x Ex bar foo Ex.java ">x</UID> = 100;
public static void <UID id=“x Ex bar foo Ex.java ">x</UID> ()  {
int <UID id=“y x Ex bar foo Ex.java ">y</UID> ;
<UID id= “y x Ex bar foo Ex.java ">y</UID> = <UID id= “x Ex bar foo Ex.java ">x</UID> ;
<UID id= “x Ex bar foo Ex.java ">x</UID> = <UID id=“x Ex bar foo Ex.java ">x</UID> * 10;

}
public void <UID id=“init Applet applet java library"> init </UID> () {

<UID id= “setLayout Container awt java library"> setLayout ( new <UID id=“BorderLayout awt java library"> BorderLayout </UID> () )</UID> ;

}
public boolean <UID id=“action Component awt java library"> action </UID> ( 

<UID id=“Event awt java library"> Event </UID> <UID id=“ev action Ex bar foo Ex.java ">ev</UID> ,
<UID id= “Object lang java library"> Object </UID> <UID  id= “arg action Ex bar foo Ex.java ">arg</UID> ) {

<UID id=“println PrintStream io java library">   <UID id= “out System lang java library">   <UID id="System lang java library"> System </UID>
. Out</UID> . println ( <UID id= “x Ex bar foo Ex.java ">x</UID>  )</UID> ;
return true;

}
public static void <UID id= "main Ex bar foo Ex.java ">main </UID> ( <UID id=“String lang java library"> String </UID>

<UID id=“args main Ex bar foo Ex.java ">args </UID> [] ) {
int <UID id= “x main Ex bar foo Ex.java ">x</UID> = 120;
int <UID id= “y main Ex bar foo Ex.java ">y</UID> = 100;
<UID id=“x Ex bar foo Ex.java ">x() </UID> ;
if ( <UID id=“y main Ex bar foo Ex.java ">y</UID> < <UID id=“x main Ex bar foo Ex.java ">x</UID> ) 

<UID id="y main Ex bar foo Ex.java ">y</UID> = <UID id=“x main Ex bar foo Ex.java ">x</UID> ;
<UID id=“Frame awt java library"> Frame </UID> <UID id=“f main Ex bar foo Ex.java ">f</UID> = 
new <UID id="Frame awt java library"> Frame </UID> ("C");

<UID id=“resize Component awt java library">   <UID id= “f main Ex bar foo Ex.java ">f</UID> . resize(210, 200 )</UID> ;

<UID id=“Ex bar foo Ex.java ">Ex</UID>    <UID id= “ex main Ex bar foo Ex.java ">ex</UID> =   new <UID id="Ex bar foo Ex.java ">Ex</UID> ();
<UID id=“init Applet applet java library">  <UID id= “ex main Ex bar foo Ex.java ">ex</UID> . init() </UID> ;

}
}

Figure 7.  Final Linked Renamed Java Source Code.

"println PrintStream io java library"
"init Ex bar foo Ex.java"
"resize Component awt java library"

"println out System lang java library"
"init ex main Ex bar foo Ex.java"
"resize f main Ex bar foo Ex.java"

"setLayout Container awt java library"
"init Applet java library"
"action Component awt java library"

"setLayout Ex bar foo Ex.java"
"init Ex bar foo Ex.java"
"action Ex bar foo Ex.java"

Member invocations 
from class instances

Inherited members and 
overridden methods

Linked UIDOriginal UID

Table 1.  Derived Links for External Reference UIDs



text.  JavaML [14] uses a similar representation as Power and 
Malloy, but includes a unique identifier in each attribute.  This 
attribute links variables and methods within a file.  Methods 
between files are not attributed.

There are many other tools for source analysis of Java.  Sun's 
JavaCheck [15] can analyze the use of library APIs for 
compatibility.  SHriMP [16, 17, 18], Chava [19], GUPRO [20, 
21] and the Software Bookshelf [22] are tools that can extract 
and visualize information from Java programs. 

5. Conclusions and Future Work
We have described a unique renaming system for Java 

programs that accurately resolves relationships between program 
entities in source using unique names (UIDs).  Each declared 
name and reference is annotated with its unique name in the 
source using XML markup.  The UIDs serve as keys uniquely 
identifying each program entity in both the source and the 
design database.  They form a kind of bridge between the two 
which allows for independent processing of both source and 
design without losing the connections between the two.  

Our unique renaming is implemented using a sequence of 
source transformations written in the TXL language. Data 
design recovery from the initial renamed source yields a set of 
base facts used as input to a Grok script to infer links between 
external references and the appropriate external entities.  
Derived links are reflected back into the renamed source using a 
final source transformation, resulting in a fully linked uniquely 
named source representation of the program suitable for 
complex program comprehension, analysis, visualization and 
transformation tasks.

Renamed Java programs contain far more information than 
their original source. Both declarations and references are 
clearly marked with the globally unique UID of the entities they 
refer to, freeing further analysis from worrying about 
ambiguities. Renamed code can be easily parsed at different 
levels (light, middle or heavy weight) as either Java source or an 
XML document.  Because unique naming is represented entirely 
as XML markup of original source text, output of subsequent 
analysis or transformation tasks can easily include or exclude 
UIDs in their results. Unique renaming can be easily integrated 
to other reverse engineering tools. For example, very little 
modification of our data design facts would allow them as input 
to Rigi [28] or Moonen’s code smell detection process  [12].

The unique renaming described in this paper has thus far 
been used for only one actual application, a system to assist in 
Java library version migrations. Using unique renaming of 
different versions of the AWT library and source programs 
using it, an accurate analysis of AWT version dependencies and 
migration path was easily derived. The technique is completely 
generic and can be used for any other library version migration.

In future work, we may consider adding resolution to 
distinguish overloaded methods with different UIDs.  Also, thus 
far our method is based entirely on static analysis. For some 
applications it would be more useful if information from 
dynamic analysis were added as well. For example, Java reverse 
engineering projects based on Java bytecode [25, 26] could 
provide more facts to enrich the data model.    

We believe that unique renaming is a very basic and 
important step in Java design recovery and analysis. For 
example, renamed Java code already has the class dependency 
information necessary to derive UML or other representations of 
the program design. We hope to explore and exploit the 
properties of uniquely renamed code to make more effective use 
of existing analysis tools and techniques in the coming years.        

References.
[1] World Wide Web Consortium.  Extensible Markup 
Language (XML).  http://www.w3.org/xml/
[2] J. F. Power and B. A. Malloy. Program annotation in XML: 
a parse-tree based approach. 9th Working Conference on 
Reverse Engineering (WCRE 02), pp. 190-198, Oct. 2002.
[3] G. McArthur, J. Mylopoulos, and S. K. K. Ng. An Extensible 
Tool for Source Code Representation Using XML. 9th Working 
Conference on Reverse Engineering (WCRE 02), pp.199-208, 
Oct. 2002.
[4] A. Asencio, S. Cardman, D. Harris, and E. Laderman. 
Relating Expectations to Automatically Recovered Design 
Patterns. 9th Working Conference on Reverse Engineering 
(WCRE 02), pp. 87-96, Oct. 2002.
[5] Claudio Riva and Yaojin Yang. Generation of Architectural 
Documentation using XML. 9th Working Conference on 
Reverse Engineering (WCRE 02), pp. 161-169, Oct. 2002.
[6]  E. Mamas, K. Kontogiannis. Towards Portable Source Code 
Representations Using XML. 7th Working Conference on 
Reverse Engineering (WCRE 00), pp. 172-182, Nov. 2000.
[7] TXL Project, The TXL Programming Language, Version 
10.2. http://www.txl.ca/docs/TXL102LangRef.pdf, Apr. 2002.
[8] J.R. Cordy, T.R. Dean, A.J. Malton and K.A. Schneider. 
Source Transformation in Software Engineering using the TXL 
Transformation System. Special Issue on Source Code Analysis 
and Manipulation, Journal of Information and Software 
Technology, Oct. 2002.
[9] T.R. Dean, J.R. Cordy, K.A. Schneider and A.J. Malton. 
Experience Using Design Recovery Techniques to Transform 
Legacy Systems, IEEE International Conference on Software 
Maintenance( ICSM 2001), pp. 622-631, Nov. 2001.
[10] R.C. Holt. Structural Manipulations of Software 
Architecture Using Tarski Relational Algebra. 5th Working 
Conference on Reverse Engineering (WCRE 98), pp. 210-219, 
Oct. 1998.
[11] A. Cox and C. Clarke. Representing and Accessing 
Extracted Information. IEEE International Conference on 
Software Maintenance( ICSM 2001), pp. 12-21, Nov. 2001
[12] E. van Emden and L. Moonen. Java Quality Assurance by 
Detecting Code Smells. 9th Working Conference on Reverse 
Engineering (WCRE 02), pp. 97-106, Oct. 2002. 
[13] J. Gosling, B. Joy, G. Steele and G. Bracha. Sun 
Microsystems Inc. The Java Language Specification (2nd 
edition). Addison Wesley, 2000. 
[14] G.J. Badros. JavaML: A Markup Language for Java Source 
Code.  9th International World Wide Web Conference, pp. 159-



177, May 2002. 
[15] Sun Microsystems Inc. JavaCheck - Platform Compatibility 
Insurance for your Applications and Applets.  
http://java.sun.com/products/personaljava/javacheck.html.
[16] M.-A. D. Storey, H. A. Müller and K. Wong.  Manipulating 
and Documenting Software Structures.  Series on Software 
Engineering and Knowledge Engineering, Vol. 7 Software 
Visualization, pp. 244-263, Nov. 1996.
[17] J. Michaud, M.-A. Storey and H. Muller. Integrating 
Information Sources for Visualizing Java Programs.  IEEE 
International Conference on Software Maintenance( ICSM 
2001), pp. 250-259, Nov. 2001.
[18] University of Victoria. SHriMP Views. 
http://shrimp.cs.uvic.ca/.
[19] J. Korn. Chava: Reverse Engineering and Tracking of Java 
Applets.  6th Working Conference on Reverse Engineering 
(WCRE 99), pp. 314-325, Oct. 1999.
[20] C. Lange, H. M. Sneed and A. Winter. Comparing graph-
based program comprehension tools to relational database-based 
tools. 9th International Workshop on Program Comprehension 
(IWPC 01), pages 209-218, May 2001.
[21] GUPRO - Generic Understanding of PROgrams. 
http://www.uni-koblenz.de/~ist/gupro.en.html.
[22] J.!Finnigan, R.C.!Holt, I.!Kalas, S.!Kerr, K.!Kontogiannis, 
H.A. Müller, J.!Mylopoulos, S.G.!Perelgut, M.!Stanley, 
K.!Wong. The Software Bookshelf. IBM Systems Journal 36(4), 
pp.564-593, Nov.1997
[23] TXL Project, The TXL Grammar Collection. 
http://www.txl.ca/nresources.html.
[24] R.C. Holt. Introduction to the Grok Language. 
http://plg.uwaterloo.ca/~holt/papers/grok-intro.html.
[25] L. A. Barowski and J. H. Cross II. Extraction and Use of 
Class Dependency Information for Java.  9th Working 
Conference on Reverse Engineering (WCRE 02), pp. 309-315, 
Oct. 2002. 
[26] D. Rayside, S.  Kerr and K.  Kontogiannis. Change and 
adaptive maintenance detection in Java software systems.  5th 
Working Conference on Reverse Engineering (WCRE 98), pp. 
10-19, Oct. 1998.
[27] Sun Microsystems Inc. The Java Language: An Overview.  
http://java.sun.com/docs/overviews/java/java-overview-1.html.
[28] M.-A. D. Storey, K. Wong, and H. A. Mller. Rigi: A 
visualization environment for reverse engineering. 19th 
International Conference on Software Engineering (ICSE '97), 
pp. 606--607, May 1997.
[29] J.R. Cordy and K.A. Schneider, Architectural Design 
Recovery Using Source Transformation, 1995 Conference on 
Computer Aided Software Engineering (CASE `95) Workshop 
on Software Architecture, Toronto, July 1995.
[30] T.C. Lethbridge et al., The Dagstuhl Middle Model version 
0.005,!http://scgwiki.iam.unibe.ch:8080/Exchange/uploads/2/D
MMDescriptionV0005.pdf
[31] J.R. Cordy, K.A. Schneider, T.R. Dean and A.J. Malton.  

HSML: Design Directed Source Code Hot Spots. 9th 
International Workshop on Program Comprehension ( IWPC 
2001), pp. 145-154, May 2001.
[32] Bell Canada.  DATRIX™ Abstract Semantic Graph 
Refernece Manual Version 1.4.  Bell Canada, Inc., Montreal, 
May 2000.
[33] T.R. Dean,  A.J. Malton and R.C. Holt.  Union Schemas as 
a Basis for a C++ Extractor.  8th Working Conference on 
Reverse Engineering (WCRE 2001), pp. 59-67, Oct. 2001.
[34] T.R. Dean, J.R. Cordy, A.J. Malton and K.A. Schneider.  
Grammar Programming in TXL.  IEEE 2nd International 
Workshop on Source Code Analysis and Manipulation (SCAM 
2002), pp. 93-102, Oct. 2002.


