
Design of the CodeBoost Transformation System for
Domain-Specific Optimisation of C++ Programs

Otto Skrove Bagge
Department of Informatics

University of Bergen
otto@ii.uib.no

Karl Trygve Kalleberg
Department of Informatics

University of Bergen
karltk@ii.uib.no

Magne Haveraaen
Department of Informatics

University of Bergen
magne@ii.uib.no

Eelco Visser
Institute of Information and Computing Sciences

Utrecht University
visser@cs.uu.nl

Abstract

The use of a high-level, abstract coding style can greatly
increase developer productivity. For numerical software,
this can result in drastically reduced run-time perfor-
mance. High-level, domain-specific optimisations can
eliminate much of the overhead caused by an abstract
coding style, but current compilers have poor support for
domain-specific optimisation.

In this paper we present CodeBoost, a source-to-source
transformation tool for domain-specific optimisation of
C++ programs. CodeBoost performs parsing, semantic
analysis and pretty-printing, and transformations can be
implemented either in the Stratego program transforma-
tion language, or as user-defined rewrite rules embedded
within the C++ program. CodeBoost has been used with
great success to optimise numerical applications written
in the Sophus high-level coding style.

We discuss the overall design of the CodeBoost trans-
formation framework, and take a closer look at two impor-
tant features of CodeBoost: user-defined rules and totem
annotations. We also show briefly how CodeBoost is used
to optimise Sophus code, resulting in applications that run
twice as fast, or more.

1 Introduction

There is a tension between developing efficient programs,
and efficient development of programs. In the problem
domain of high performance, numerical computation run-
time speed is essential. This has led to a low-level,
efficiency-oriented programming style, resulting in pro-
grams which are difficult to develop and very hard to
maintain. Moving to a more abstract coding style will im-
prove maintainability, but will also have a severe impact
on run-time efficiency. Abstract constructs themselves
typically generate run-time overhead, but the loss in ef-
ficiency is much larger, as current optimising compiler
technology falls short when it sees high-level abstractions.
Thus we do not only suffer an overhead by being more ab-
stract, we also lose the optimisations we otherwise would
benefit from.

A solution to this problem is to transform the abstract
source code into a lower-level, more efficient code. Code-
Boost [2, 11] has been developed as a source-to-source
transformation tool for C++ [14, 21], intended to bridge
the gap between the high-level coding style advocated by
modern software engineering, and the lower-level style
preferred by current compilers. It is developed as part
of the SAGA project, to support the Sophus style of pro-
gramming [13, 17]. Sophus is a C++ library providing
high-level abstractions for implementing partial differen-

1



tial equation solvers.
CodeBoost consists of two components: The transfor-

mation framework and the optimiser. The framework has
the necessary infrastructure to support transformation of
C++ programs, and allows the development of new trans-
formations in the Stratego [23, 24] program transforma-
tion language or as simpler rules specified in a C++-like
syntax. The framework is targeted primarily at supporting
the CodeBoost optimiser, which is a high-level, domain-
specific optimiser for Sophus.

The CodeBoost optimiser gives the user control over
the optimisation process. New optimisations can be added
easily, and optimisations can be applied (and re-applied)
in any order. Because the output is readable C++ code, it
is easy to see the effects of the transformations.

This paper gives and overview of the design of the
CodeBoost framework and the CodeBoost optimiser. The
rest of the paper is organised as follows. First, we intro-
duce our underlying design philosophy. Then, we intro-
duce Sophus, and take a brief look at some of the Sophus-
specific optimisations that have been implemented with
CodeBoost. In Section 4, we discuss the architecture of
the CodeBoost framework, followed by a description of
user-defined rewrite rules (Section 5) and totem annota-
tions (Section 6). In Section 7, we discuss our expe-
rience with transforming C++. Finally, we discuss re-
lated work (Section 8) and offer some concluding remarks
(Section 9).

2 Design Philosophy

CodeBoost is a set of modules written in Stratego to per-
form improvements on C++ code written in the Sophus
style. The dependency on Stratego, Sophus and C++ has
naturally formed much of our work on CodeBoost. The
development of CodeBoost has been an evolutionary pro-
cess, adapting to the complexity of C++, the rapid evo-
lution of Stratego and the changing demands of Sophus.
Our overall design philosophy is as follows.

Implement only what is needed. C++ is a large lan-
guage, and writing a complete and fully compliant imple-
mentation would take far more time than we had available.
It is better to implement only what is needed for the task
at hand, and then, later on, extend as required.

Make incremental changes. When changes are made

in small steps, it is easier to verify that they work as in-
tended. Also, it is motivating to work on a system which
is “alive” and working, instead of programming for long
stretches of time with no end in sight. We believe the mo-
tivation factor is quite important.

Don’t be afraid to make changes. Designing and build-
ing a system often requires knowledge which is only
available when one has already built such a system. Dur-
ing the course of development, several flaws in the origi-
nal CodeBoost design have become apparent, and many
parts of CodeBoost have been rewritten several times.
Some of the changes have been quite intrusive, particu-
larly changes in the internal representation, but still, we
have usually been able to complete them in few days.

Modular design. We have three reasons for choosing a
modular design. First, by separating code that perform
separate task into separate modules that communicate
through a well-defined interface, we can change or even
reimplement one module without affecting the others. For
instance, the overloading resolver can be changed without
affecting other parts of semantic analysis. Secondly, the
order in which optimisations are applied can often be im-
portant. Implementing each transformation as a separate
modules allows us to experiment easily with different or-
derings. Our third reason is motivated by purely practi-
cal concerns: The early versions of the Stratego compiler
were quite slow, and used huge amounts of memory when
compiling even moderately sized modules. With small
modules, we did not have to recompile all of CodeBoost
when making small changes.

Testing. Good automated unit and regression tests en-
sure that a system works as expected, and that undesired
side-effects of changes are easily discovered. It has been
our goal to provide automated tests for all CodeBoost
modules. The currently implemented tests are not as ex-
tensive and complete as we would like them to be, but
they have helped uncover countless mistakes and bugs.

3 Optimising Sophus

Sophus [13, 17] is a C++ library providing high-level ab-
stractions for implementing partial differential equation
(PDE) solvers. This is a field in which runtime perfor-
mance is of great importance. Unfortunately, although a
high-level programming style is beneficial in terms of pro-

2



grammer productivity and program maintainability, it has
a large negative impact on performance. Current com-
pilers have proven unable to sufficiently optimise pro-
grams in this style, partly due to low demand for such
optimisations, and partly because some of the most effec-
tive optimisations go beyond the C++ standard. Building
a domain-specific optimiser for Sophus allows us to ex-
periment with optimisations, and bridge the gap between
the Sophus coding style and current compiler technology.
CodeBoost was originally designed to fill this need, and
optimisation of the Sophus library remains our primary
purpose for developing CodeBoost.

A few of the Sophus design choices relevant for this
paper includes

� An algebraic programming style with the use of
side-effect free expressions and explicit assignments.
This is closer to the notation of the mathematical do-
main. It is also similar to the notation advocated by
the functional programming community.

� The use of user-defined array-like data structures
with numerical operators on them. This allows us
to eliminate the use of explicit loops in the code. So
we would write x = a + b; for arrays x, a and
b, rather than stepping through the elements of the
arrays in an explicit loop when adding them.

The combined use of these techniques gives problems.
The array size may be 0.7MB for small arrays, increasing
to 6.4MB for larger examples. When these are manipu-
lated in large C++ expressions, the compiler will create
many large, temporary variables. It will not be able to
perform the standard loop optimisation and loop merging
tricks it normally does to improve performance.

Further, in conventional numerical programming cer-
tain expressions are considered so important that there ex-
ists special, highly optimised procedures for them. For
example, consider

x = mvmult(m,x) + y;

for array structures matrix m and vectors x and y ,where
mvmult is matrix-vector multiplication (and + is vector
addition as described above). Here the compiler would
generate 2 temporary variables. This assignment state-
ment can be replaced by the optimised procedure call

axby(m,x,y);

which performs the calculation and mutates (changes the
value of) the variable x to contain the result. Mutating
the variable eliminates the need for compiler-generated
temporaries.

So, we see that we need the following activities to trans-
form the abstract program back to a low-level optimisable
program:

Mutification: Gain control over the generation of tem-
porary variables by replacing expressions by mu-
tating procedures. These rules correspond to built-
in C conventions like rewriting an assignment
x = x + a; to a mutifying procedure x += a;,
but extended to user-defined types.

User-defined rules: Allow very domain-specific optimi-
sations to be defined by the user, e.g. replacing an
assignment by axby as sketched above.

Totems: To insert and trace invariants and annotations
in the code. Such annotations, together with user-
defined rules, may allow CodeBoost to, e.g. elimi-
nate a matrix-vector multiplication if it was known
that the matrix was a unit matrix (diagonal matrix
with only ones on the diagonal).

That such transformations are useful can be seen in Ta-
ble 1, where the effect on run-time speed of applying mu-
tification to the isotropic version of the SeisMod seismic
simulation application is tabulated. The mutified version
is nearly twice as fast as the unoptimised version, and
memory use is reduced to 60%.

Small time speedup mem relmem
plain 239.3s 1.0 111504 100%
mutify 121.5s 2.0 67248 60%
Large time speedup mem relmem
plain 7810s 1.0 305424 100%
mutify 4147s 1.8 183136 59%

Table 1: Results for mutification of SeisMod for large and
small data sets. Speedup relative to the plain version; mem
is memory use in kilobytes; relmem is memory usage rel-
ative to the plain version.

3



4 Architecture

The CodeBoost framework consists of a parser, a seman-
tic analyser, a library of transformations, and a pretty-
printer. Figure 1 illustrates the typical usage of the com-
ponents in the framework. The C++ code is first parsed,
passed on to semantic analysis, then on to user-defined
transformations, which can be applied as many times as
necessary, before C++ code is produced by the pretty-
printer. The semantic analysis phase may be bypassed if
the transformations do not require semantic information.

Frontend

The frontend consists of a preprocessor, a parser, and a
postprocessor. The C++ preprocessor is often used for
conditional compilation, in which certain parts of a pro-
gram are omitted or changed based on options given to
the compiler. This is useful when writing programs that
should compile on different systems, and to derive dif-
ferent versions of an application from the same program
text. This is frequently used in Sophus: Based on options,
the preprocessor selects between parallel and sequential
code, selects the size of data structures, and picks classes
that most closely model the problem domain.

We envisage two ways of using CodeBoost: To trans-
form a full compilation unit in one step, with condi-
tional compilation performed, all header files1 included,
and all macros processed; or to transform a single header
file, postponing conditional compilation, macro process-
ing and header file inclusion until compile time. The latter
is particularly useful for Sophus, since the same optimised
source can be used to derive several different versions of
an application.

To support this, CodeBoost has its own preprocessor,
which gives the user control over which parts of the pro-
gram are transformed by CodeBoost. It is possible to de-
lay inclusion of header files, delay macro processing, and
read declarations from files which will not be included in
the transformed output. CodeBoost uses a standard C++

1Except the C and C++ Standard Library: Standard library imple-
mentations typically contain vendor-specific extensions that may not be
fully compatible with the C++ Standard. Besides, CodeBoost itself does
not support all valid C++ constructs, and will likely not be able to pro-
cess the standard library.

preprocessor to remove comments from the input code,
and to process inclusions and macros, when desired.

After preprocessing, OpenC++ [8, 9] is used to parse
the program text. The result of parsing is a concrete syn-
tax tree in ATerm format,2 which is further processed by
the postprocessor into an abstract syntax tree (AST). The
AST is CodeBoost’s preferred internal program represen-
tation. In addition to representing the syntactic structure
of the program, the AST also contains semantic informa-
tion resulting from semantic analysis.

Semantic Analysis

The purpose of semantic analysis is to connect symbols
to declarations, and annotate each symbol with semantic
information. Variables are annotated with their type and
the scope in which they are declared. Functions (in func-
tion calls) are annotated with the full name and signature
of the called function, and type names are qualified fully,
so that the type name unambiguously refers to a single
type. Annotating function calls can be a bit tricky, since
C++ allows overloading; multiple function can be defined
with the same name, as long as their formal argument lists
differ. CodeBoost performs overload resolution, and per-
forms template argument deduction, so it will handle calls
to template functions properly.

Since CodeBoost is supposed to be able to handle in-
complete programs, it will not stop when it encounters an
undeclared symbol. However, later transformation stages
will often rely on semantic information. For example, if
the inliner is to inline a particular function call, it needs
to know which function definition is associated with that
call. Similarly, user-defined rewrite rules (Section 5) per-
form matching based on function signatures. If the sig-
natures are incomplete, rewriting will not happen. This is
not a huge problem, since it only applies to expressions
containing unresolved symbols—calls to the standard li-
brary, for instance. However, when processing uninstanti-
ated templates, which is sometimes useful, type informa-
tion for the template arguments is unavailable. This can
cause CodeBoost to miss some optimisations due to lack

2ATerm (Annotated Term Format) is a format for exchanging struc-
tured data between tools [6]. Stratego uses ATerms as its term repre-
sentation. ATerms are supported in the C, Java and Haskell languages
through the ATerm Library. However, the term format is easy to parse,
so an ATerm reader/writer can be written for other languages as well.

4



C++
source

Frontend
� Preprocessor
� OpenC++
� CST-to-AST

Semantic Analysis
� Local variables
� Name resolution
� Overloading
� Extensions

Transformation
� User-def. rules
� Mutification
� Inlining
� etc.

Pretty-Printing
� AST-to-Box
� Box-to-C++

boosted
C++

source

C++ AST

AST

Annotated
AST

(AST++)

AST++C++

Figure 1: The Transformation Process

of information.

Transformations

In CodeBoost, transformations are implemented as mod-
ules. Each module is a separate program, which reads,
transforms and writes an AST. The modules are con-
nected together with Unix pipes to form a transformation
pipeline. Examples of transformation modules include the
mutification optimisation from Section 3, and the inliner,
which inlines particular function calls in support of other
optimisations.

The CodeBoost framework contains a transformation
library to ease the implementation of transformation mod-
ules. There are strategies for symbol table lookups, type
comparison, matching and conversion, various kinds of
traversal, and simple pretty-printing for error messages,
warnings and debug information. Additionally, Strat-
ego has a comprehensive library of generic, language-
independent strategies which are useful when implement-
ing CodeBoost modules.

The separation of traversals and transformations in
Stratego makes it possible to extract parts of a larger trans-
formation and generalise them. Such transformations can
then be added to the general CodeBoost library and reused
for other purposes.

User-defined rewrite rules are specified within the C++

program text, and can be written without any knowl-
edge of Stratego. CodeBoost will pick up these rules,
and make them available to transformation modules writ-
ten in Stratego. Two modules included in CodeBoost,
simplify and apply-user-rules, allow for appli-
cation of user-defined rules. Such rules can be used to
exploit fundamental equalities in a program, by specify-
ing program- or library-specific optimisations.

Backend

After transformation is complete, the pretty-printer con-
verts the AST back into C++ program text. The output
program is properly indented, and should be fairly read-
able to humans. Alternatively, the result of transformation
can be stored as an AST, and be loaded into CodeBoost
later on. This can be advantageous in a setting where a
C++ header file is used by several other C++ files; instead
of analysing and transforming the same header file sev-
eral times, it can be processed just once. Loaded ASTs
will not be subjected to parsing and semantic analysis,
and later transformation stages will also ignore such pre-
viously processed code.

5



5 User-defined rules

There are two ways to add new transformations to Code-
Boost: writing a new Stratego module, or specifying user-
defined rules. We will not go into detail on specifying
transformations in Stratego, as this is discussed at length
elsewhere [1, 7, 15, 18, 22]. Stratego is useful for imple-
menting complex, generic transformations, whereas user-
defined rules is appropriate for simpler domain-specific
transformations. A typical application of user-defined
rules is domain-specific optimisations where certain com-
binations of function calls can be simplified or replaced
with calls to special-case optimised functions.

Domain-specific optimisation often rely on rewriting
calls to specific functions. This is problematic when spec-
ifying rewrite rules. In a language such as C++, which
allows function overloading, it is not sufficient to sim-
ply specify the name of a function; to uniquely identify a
function, its full signature—including argument types—
must be specified. This is tedious and error-prone, partic-
ularly when working with the abstract syntax in Stratego.

In CodeBoost, we have solved this by allowing rules
to be specified in C++ syntax, within the C++ program
text. Function calls in rule patterns are subjected to nor-
mal overload resolution; thus, the correct signature is au-
tomatically deduced.

A user-defined rule consists of a name, a match pattern,
a replacement pattern and an optional condition. Rules are
contained within a function named rules(); such func-
tions can be placed anywhere in the program, and are re-
moved by CodeBoost after the rules have been extracted.
A typical rule looks like this:

int x;
simplify: x + 0 = x;

where ‘simplify’ is the name, ‘x + 0’ is the match pattern
and ‘x’ is the replacement pattern. Local variables are
treated as meta-variables, and will match anything. Addi-
tionally, list matching is available for use with functions
that accept a variable number of arguments.3

In the above example, the + will resolve to the integer
addition operator, and the rule will match any integer ad-
dition of the form x

�
0, and rewrite to x. For example,

3We will not discuss list matching here; see [1] for more information.

when the rule is applied to (3 + 2) + 0, x will match
(3 + 2), and the result will be (3 + 2).

Conditions are separated from the rest of the rule with
a comma. The condition must succeed for the rule to be
applied. For example, a more advanced version of the
previous example would be

int x, y;
simplify: x + y = x, is_zero(y);

where is zero would use some kind of data flow infor-
mation, such as totems (discussed in Section 6) to deter-
mine if y has a zero value. A number of built-in condition
checks are available; it is also possible to call other user-
defined rules from conditions. In keeping with our design
philosophy, we have only implemented the few built-in
conditions we have needed for optimisations; others can
easily be added with a few lines of Stratego code.

Rules with the same name are collected into rule sets.
Rule sets are callable from Stratego programs, and from
rule conditions. When a rule set is applied, each of its
rules is tried, until one is successfully applied. If no rule
applies successfully, the rule set fails.

It is sometimes useful to write rules which are applied
only to see if they succeed or fail. For example, the fol-
lowing two rules sort addition expressions so that multi-
plication sub-expressions are on the left side:

sort: z + (x * y) = (x * y) + z,
not(is_mult_expr(z));

is_mult_expr: (a * b) = true;

In the rule sort, is mult expr is used to check if
the left-hand side already contains a multiplication ex-
pressions; if so, the rule fails. This is particularly use-
ful in generic rules [1], in which functions (and their
signatures) are matched with meta-variables, thus match-
ing any function, not just a particular function. For ex-
ample, given a rule set is commutative that applies
successfully to commutative functions, we can write a
generic rule that employs commutativity laws, and uses
is commutative in a condition to check for commu-
tativity.

6 Totem annotations

For domain-specific optimisation to work, the optimiser
must have access to domain knowledge. This knowledge

6



can be in the form of executable transformations, written
in Stratego or as user-defined rules. Another option is to
use declared domain knowledge, where the programmer
gives hints to the optimiser by declaring properties of vari-
ables and functions. We have implemented a mechanism
in CodeBoost for tagging language constructs with aux-
iliary information, and propagating these tags throughout
the program. This can be used, for example, to specify
that a matrix is a diagonal matrix; combined with a simple
user-defined rule, this gives us a transformation that auto-
matically selects efficient, specialised versions of matrix
operations.

In our nomenclature, such a tag is called a totem, as
the tag is usually an emblem signifying membership in a
special class of entities (e.g., diagonal matrices).

CodeBoost recognises function calls to CB TAG and
CB IMPORT as special totem directives. A totem is typ-
ically either a switch or some kind of meta information
used by transformations.

Arbitrarily complex meta information stored in a con-
figuration file separate from the source code can be loaded
at boosting time by the CB IMPORT directive. Each ex-
ternal configuration file may contain many named bundles
of meta information, each called a context.

After the contexts are loaded, they may be tagged onto
entities by their name, using the CB TAG directive. Subse-
quent transformations are then free to inspect the various
entities for the presence of relevant meta information.

The content of the meta information is opaque to Code-
Boost; its semantics is known only by the transformations.
An example of useful meta information is layout informa-
tion for matrices, which can be used in partial evaluation
of matrix operations [16].

In some cases, it is reasonable for totems to propagate
throughout the program. In the code fragment

Matrix A, B;
CB_TAG(A, "simplification",

"unit-matrix");
B = A;

we know from mathematics that matrix B inherits the unit-
matrix property from A. For this, we have implemented
some rudimentary strategies for generic totem propaga-
tion that;

� Propagate totems across the assignment operator.

� Drop totems on variables that are potentially modi-
fied (i.e., the variables are assigned to, or passed as
non-const parameters to functions).

This simple approach will only work for a very lim-
ited set of totems. For the more involved totems, separate
totem-propagation strategies that accompany a particular
transformation need to be written.

7 Discussion

Transforming C++

C++ is a large and complex programming language.
It supports many different programming paradigms and
styles, including low-level C-like programming, the alge-
braic style advocated by Sophus, object-orientation, and
generic programming. This flexibility gives a lot of free-
dom to programmers, but makes the implementation of
language processing tools such as compilers and trans-
formation systems extra challenging. The main problems
with C++ are (from an implementor’s perspective):

� The grammar is large, and not context-free. This
makes it difficult to implement a correct parser us-
ing standard tools.

� C++ has a lot of features. This is a problem both
because there are more features to implement, and
because language features have a tendency to interact
in interesting ways.

� The programmer is free to mix high-level and low-
level coding styles. High-level optimisations will
often not work on low-level code, and low-level
features—such as pointer manipulation—can con-
fuse or complicate the analysis needed to support
high-level optimisations.

CodeBoost provides no satisfactory solution to the first
problem. The OpenC++ parser does not correctly resolve
the ambiguities in the C++ grammar, and will give incor-
rect results in certain cases. This has not been a huge
problem so far, because the ambiguous constructs are sel-
dom used in Sophus.

7



We have dealt with the second problem by limiting our-
selves to a manageable subset of C++. Language con-
structs that are used by Sophus, but are irrelevant to op-
timisation, can be left untouched, and some features that
are not needed, can be ignored.

In developing high-level optimisations for Sophus, we
have solved the last problem by placing additional seman-
tic restrictions on the language. For instance, the C++
standard specifies no special semantic relationship be-
tween + and +=, or between construction and assignment.
Sophus, on the other hand, defines such relationships, and
this is part of what allows CodeBoost to perform effective,
high-level optimisations.

8 Related Work

For numerical software the TAMPR program transforma-
tion system [4, 5] has been used with remarkable success.
Its main use has been the specialisation of numerical li-
brary code from generic code, but it has also been used
for optimisation of code.

Several transformation systems for C++ exists.
OpenC++ [8, 9] provides a meta-object protocol for C++.
A meta-object protocol is an object-oriented interface
for specifying language extensions and transformations.
As such, OpenC++ has many of the same capabilities
as CodeBoost, and can be used to implement domain-
specific optimisations, as well as other transformations, in
an object-oriented fashion. However, it does not support
cascading transformations (i.e. applying other transfor-
mations to the output of previous transformations), and
specifying transformations in C++ is cumbersome com-
pared to using a domain-specific transformation language
such as Stratego.

Sage++ [3] is a C++ toolkit for source-to-source trans-
formation of C++ and Fortran. It provides classes for rep-
resenting the various nodes of a program tree, and tools
for data flow analysis and loop transformations. However,
it offers none of the support for easy rewriting and traver-
sal one would expect from a transformation language;
matching and building of terms must be hand-coded in
C++.

ROSE II [10] is a transformation tool for optimising
object-oriented C++ code. Its primary focus has been
on developing optimisations for array classes. Targeted

optimisations include loop fusion, cache-based optimisa-
tions, temporal locality optimisations and the introduction
of performance-gathering options and metrics.

Simplicissimus [19, 20] share many of the same goals
as CodeBoost. It is implemented as a plug-in to a com-
piler (currently GCC, but other compliers may be sup-
ported as well), and supports user-specified rewriting of
expressions. The compiler’s template mechanism is used
for pattern matching, to aid rewriting. Simplicissimus al-
lows some degree of strategic control over the applica-
tion of rules, through its arbiters (deciding which rules
are applied), stages (deciding when they are applied), and
directors (deciding how the program is traversed). The
functionality of Simplicissimus is similar to that of user-
defined rules in CodeBoost.

The Broadway compiler [12] allows library designers
to annotate their libraries with semantic information that
will be used in high-level optimisations. The compiler
is focused on the numerical domain, where for instance
a high-level program may require the solution of a lin-
ear system of equations. There exist many variations of
such equations solvers, and the more that is known about
the properties of the linear system, the more efficient the
solver algorithm. The Broadway compiler tries to auto-
matically select optimal solvers by using annotations from
the solver library to track properties of the data in the
high-level program. The Broadway compiler uses prin-
ciples similarly to our simple totem functionality, but is
more advanced.

9 Conclusion and Future Work

In this paper, we have given a brief overview of the
CodeBoost source-to-source transformation system. The
CodeBoost framework provides the basic infrastructure
needed to apply transformations to C++ programs. Code-
Boost is extensible and can be used for experimentation
with optimisations, as well as other kinds of transforma-
tions. It supports cascading transformations; any number
of transformations can be applied in any order, in one or
multiple passes over the syntax tree, without having to
pretty-print and reparse. CodeBoost also allows C++ pro-
grammers to specify domain- and program-specific trans-
formations through user-defined rewrite rules.

To support high-level C++ optimisations, we have ba-

8



sically had to build a limited C++ compiler frontend. For
a language as complex as C++, this is a large undertaking.
We believe that our design philosophy has helped ensure
our success, particularly in reminding us to keep things
simple. For example, aiming at full C++ standard com-
pliance would be infeasible given our limited resources;
therefore, we have limited ourselves to the parts that are
strictly necessary for Sophus. This does not mean that
CodeBoost is useful only for toy examples; the Sophus
application SeisMod, which we have successfully opti-
mised using CodeBoost, consists of over 14000 lines of
code.

The primary purpose of CodeBoost is to bridge the gap
between the high-level Sophus style, and the coding style
expected by optimising compilers, thus allowing the use
of high-level abstractions with little or no performance
penalty. With the optimisations we have implemented so
far, we have achieved significant speedups, beyond what
normal optimising compilers achieve.

Our most promising development is the user-defined
rules, which will allow easy implementation of future op-
timisations, especially combined with the totem annota-
tion mechanism. Future development efforts will focus
on extending the rule language, making it suitable for the
specification of advanced transformation. Additionally,
we intend to evolve the supporting framework, refactor-
ing as needed, and moving in the direction of standards
compliance. Better C++ support will make CodeBoost
more useful for non-Sophus projects.

CodeBoost is Free Software, and can be freely mod-
ified and extended under the GNU General Public Li-
cense. For more information, see the CodeBoost web
page: http://www.codeboost.org/.

10 Acknowledgements

This investigation has been carried out with the support of
the Research Council of Norway (NFR), and by a grant of
computing resources from NFR’s Supercomputer Com-
mittee. Chr. Michelsen Research and ERASMUS have
provided additional financial support.

References

[1] Otto Skrove Bagge. CodeBoost: A framework for
transforming C++ programs. Master’s thesis, Uni-
versity of Bergen, P.O.Box 7800, N-5020 Bergen,
Norway, March 2003.

[2] Otto Skrove Bagge, Magne Haveraaen, and Eelco
Visser. CodeBoost: A framework for the transfor-
mation of C++ programs. Technical Report UU-
CS-2001-32, Institute of Information and Comput-
ing Sciences, Utrecht University, 2001.

[3] Franois Bodin, Peter Beckman, Dennis Gannon, Ja-
cob Gotwals, Srinivas Narayana, Suresh Srinivas,
and Beata Winnicka. Sage++: An object-oriented
toolkit and class library for building fortran and
C++ restructuring tools. In Proceedings of the Sec-
ond Annual Object-Oriented Numerics Conference
(OONSKI’94), 1994.

[4] James M. Boyle. Abstract programming and pro-
gram transformation—An approach to reusing pro-
grams. In Ted J. Biggerstaff and Alan J. Perlis, ed-
itors, Software Reusability, volume 1, pages 361–
413. ACM Press, 1989.

[5] James M. Boyle, T.J. Harmer, and V.L. Winter. The
TAMPR program transformation system: Simpli-
fying the development of numerical software. In
Erlend Arge, Are Magnus Bruaset, and Hans Pet-
ter Langtangen, editors, Modern Software Tools for
Scientific Computing, pages 353–372. Birkhäuser,
Boston, 1997.

[6] M. G. J. van den Brand, H.A. de Jong, P. Klint, and
P.A. Olivier. Efficient annotated terms. Software,
Practice & Experience, 30(3):259–291, 2000.

[7] Martin Bravenboer and Eelco Visser. Rewrit-
ing strategies for instruction selection. In S. Ti-
son, editor, Rewriting Techniques and Applica-
tions (RTA’02), Lecture Notes in Computer Science,
Copenhagen, Denmark, July 2002. Springer-Verlag.
(To appear).

[8] Shigeru Chiba. A metaobject protocol for C++.
In Proceedings of the ACM Conference on Object-

9



Oriented Programming Systems, Languages, and
Applications, pages 285–299. ACM, October 1995.

[9] Shigeru Chiba. Open C++ programmer’s guide for
version 2. Technical Report SPL-96-024, Xerox
PARC, 1996.

[10] Kei Davis and Dan Quinlan. ROSE II: An opti-
mizing code transformer for C++ object-oriented ar-
ray class libraries. In Third World Multiconference
on Systemics, Cybernetics and Informatics (SCI’99)
and the Fifth International Conference on Informa-
tion Systems Analysis and Synthesis (ISAS’99), Or-
lando, FL, USA, 1999.

[11] T.B. Dinesh, Magne Haveraaen, and Jan Heering.
An algebraic programming style for numerical soft-
ware and its optimization. Scientific Programming,
8(4):247–259, 2000.

[12] Samuel Z. Guyer and Calvin Lin. An annotation
language for optimizing software libraries. In Pro-
ceedings of DSL’99: The Second Conference on
Domain-Specific Languages, Austin, Texas, USA,
1999. The USENIX Association.

[13] Magne Haveraaen, Helmer André Friis, and
Tor Arne Johansen. Formal software engineering for
computational modelling. Nordic Journal of Com-
puting, 6(3):241–270, 1999.

[14] ISO/IEC JTC1 SC 22. ISO/IEC 14882: Program-
ming languages — C++, 1998.

[15] Patricia Johann and Eelco Visser. Fusing logic and
control with local transformations: An example op-
timization. In B. Gramlich and S. Lucas, editors,
Workshop on Reduction Strategies in Rewriting and
Programming (WRS’01), volume 57 of Electronic
Notes in Theoretical Computer Science, Utrecht,
The Netherlands, May 2001. Elsevier Science Pub-
lishers.

[16] Karl Trygve Kalleberg. User-configurable, high-
level transformations with CodeBoost. Master’s the-
sis, University of Bergen, P.O.Box 7800, N-5020
Bergen, Norway, March 2003.

[17] Hans Munthe-Kaas and Magne Haveraaen. Coordi-
nate free numerics — closing the gap between ‘pure’
and ‘applied’ mathematics? Zeitschrift für Ange-
wandte Mathematik und Mechanik, 76, supplement
1:487–488, 1996.

[18] Karina Olmos and Eelco Visser. Strategies for
source-to-source constant progagation. In Bernhard
Gramlich and Salvador Lucas, editors, Electronic
Notes in Theoretical Computer Science, volume 70.
Elsevier Science Publishers, 2002.

[19] Sibylle Schupp, Douglas P. Gregor, David R.
Musser, and Shin-Ming Liu. User-extensible
simplification—type-based optimizer generators. In
Reinhard Wilhelm, editor, International Conference
on Compiler Construction, Lecture Notes in Com-
puter Science, 2001.

[20] Sibylle Schupp, Douglas P. Gregor, David R.
Musser, and Shin-Ming Liu. Semantic and behav-
ioral library transformations. Information and Soft-
ware Technology, 44(13):797–810, October 2002.

[21] Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, Reading, Massachusetts,
USA, third edition, 1997.

[22] Eelco Visser. Scoped dynamic rewrite rules. In
Mark van den Brand and Rakesh Verma, editors,
Rule Based Programming (RULE’01), volume 59/4
of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier Science Publishers, September 2001.

[23] Eelco Visser. Stratego: A language for program
transformation based on rewriting strategies. Sys-
tem description of Stratego 0.5. In A. Middel-
dorp, editor, Rewriting Techniques and Applica-
tions (RTA’01), volume 2051 of Lecture Notes in
Computer Science, pages 357–361. Springer-Verlag,
May 2001.

[24] Eelco Visser, Zine-el-Abidine Benaissa, and An-
drew Tolmach. Building program optimizers with
rewriting strategies. In Proceedings of the third
ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’98), pages 13–26. ACM
Press, September 1998.

10


