
 
 

Software De-Pipelining Technique 
 
 

     Bogong Su 1                 Jian  Wang 2                       Erh-Wen Hu 1                  Joseph Manzano 1 
sub@wpunj.edu     jiwang@nortelnetworks.com       hue@wpunj.edu               Josbry21@cs.com 

 
1 Dept. of Computer Science, The William Paterson University of New Jersey,  USA 

2 Wireless Speech and Data Processing, Nortel Networks, Montreal, Canada 

 
 

Abstract 
Software pipelining is a loop optimization 

technique used to speed up loop execution. It is widely 
implemented in optimizing compilers for VLIW and 
superscalar processors that supports instruction level 
parallelism. Software de-pipelining is the reverse of 
software pipelining; it restores the assembly code of a 
software-pipelined loop back to its semantically 
equivalent sequential form. Due to the non-sequential 
nature of the often optimized assembly code, it is very 
difficult to gain insight into the meaning of the code. 
Consequently, the task of de-pipelining the code of a 
software-pipelined loop is very complex and 
challenging. We present in this paper our de-pipelining 
algorithm with a formal description, proof, and a set of 
working examples. Experiments with loops taken from 
some practical DSP programs are conducted on popular 
VLIW digital signal processors to verify the algorithm. 
Some applications of software de-pipelining are 
discussed. 
 
1. Introduction  
 

Because of the practical importance of porting low-
level code from one processor to another, decompilation 
has been studied for many years [1,3,5,9,14,20]. Yet 
few of these studies have dealt with source machine that 
supports instruction level parallelism or ILP [2]. De-
compiling optimized code is difficult because the de-
compiler must de-optimize the low-level code of the 
source machine [14]. It is even more so when the source 
machine supports ILP and the source code has been 
optimized by software pipelining. 

Software pipelining [6,11,15,21] is a loop 
optimization technique used to speed up loop execution. 
It is widely implemented in optimizing compilers for 
VLIW and superscalar processors [8,13] such as IA-64, 
Texas Instruments' C6X and StarCore’s SC140 DSP 
that support instruction level parallelism.  

Software de-pipelining (de-pipelining hereafter) [16] 
is the reverse of software pipelining; it restores the 
assembly code of a software-pipelined loop back to its 
semantically equivalent sequential form. 

The motivation for our study of de-pipelining is as 
follows. First, due to the transformation of the original 
sequential code, especially when the source machine has 
large branch delay and/or when it uses sophisticated 
optimization techniques such as prelude and postlude 
collapsing [7], the code of a software-pipelined loop is 
very difficult to comprehend, analyze, and debug. As an 
example, Figure 1.1 shows the assembly code segment 
of a software-pipelined loop optimized with both 
prelude and postlude collapsing for Texas Instruments' 
C62 (TIC62 hereafter) processor. The “||” symbol in the 
code segment means that the instruction in the current 
line is executed in parallel with the instruction in the 
previous line, and the set of instructions executed in 
parallel is referred to as an instruction group in this 
paper. Because TIC62 has long branch delay (6 clock 
cycles) and its compiler performs prelude and postlude 
collapsing on the software-pipelined loop in order to 
reduce code size, the instructions in the code segment 
have been so transformed that it is very difficult 
comprehend the meaning of the code and to determine if 
this code segment is a software-pipelined loop, let alone 
to identify the body, the prelude and the postlude of the 
software-pipelined loop. 
 

  MVK 57, A1  
  [A1] SUB A1,1,A1  
  ||  ZERO A7  
  ||  ZERO B7  
  [A1] SUB A1,1,A1  
  ||  [A1] B    LOOP   
  ||  ZERO A6  
  ||  ZERO B6  
  [A1] SUB A1,1,A1  
  ||  [A1] B    LOOP   
  ||  ZERO A2  
  ||  ZERO B2  
  [A1] SUB A1,1,A1  
  ||  [A1] B    LOOP   
  [A1] SUB A1,1,A1  
  ||  [A1] B    LOOP   
  [A1] SUB A1,1,A1  
  ||  [A1] B    LOOP   
LOOP: LDW *A4++,A2  
  ||  LDW *B4++,B2  
  ||  [A1] SUB A1,1,A1  
  ||  [A1] B    LOOP  
  ||  MPY A2,B2,A6  
  ||  MPYH A2,B2,B6 
  ||  ADD A6,A7,A7  
  ||  ADD B6,B7,B7  
  ADD A7,B7,A4     

Figure 1.1   An assembly code segment of TIC62 
      



Second, code conversion between digital signal 
processors or DSPs is of practical importance. Yet it is 
often very difficult to port code from a VLIW DSP to 
other processors, even in cases where the new target 
processor are in the same series, largely due to the 
complexity introduced by software-pipelined loops in 
source machine code. Third, although a software-
pipelined loop is more efficient in terms of execution 
time, it is often inefficient in terms of memory usage. 
For memory critical applications, it may be necessary to 
de-pipeline a software-pipelined loop. 

We first investigated the de-pipelining technique in 
2003 [16]. Since then we have extended our studies by 
taking into considerations of prelude and postlude 
collapsing recovery. We have also developed new 
algorithms to construct data dependence graph or DDG 
and to compute the loop count. In section 2, we provide 
a formal description and proof of our de-pipelining 
procedure. We provide in section 3 the detailed de-
pipelining algorithm and in section 4 a working example. 
Section 5 shows our experimental results. In the 
concluding section 6, we introduce some applications of 
de-pipelining. A summary discussion is given in section 
7.  

 
2.  Formal description and proof of de-

pipelining  
 

Before formally describing the software de-
pipelining problem, we define loop’s data dependence 
graph (LDDG) and loop schedule.  

 
Definition 1: The data dependence between the 
instructions in a loop program can be represented by a 
doubly weighted data dependence graph, G(O,E,d,t), 
which is called the Loop Data Dependence Graph or 
LDDG. In the expression, O is the set of the instructions 
in the loop; E is the set of dependence edges; d is 
dependence distance; and t is the delay. Both d and t are 
nonnegative integers and each (d,t) pair is associated 
with an edge. For example, for an edge e(op1,op2) that 
specifies the relationship between instructions op1 and 
op2,  op2 can be issued for execution only t(e) cycles 
after the start of the instruction  op1 of the d(e)th 
previous iteration. A data dependence is called a loop-
independent dependence if its dependence distance is 0. 
A data dependence is called a loop-carried dependence 
if its dependence distance is greater than 0. 

As an example, Figure 2.1(b) is the LDDG of the 
loop shown in Figure 2.1(a), where all delays are 
assumed to be a single cycle. The data dependence edge 
from instruction 4 to instruction 2 is a loop-carried 
dependence because its dependence distance is one. All 
other dependence edges are loop-independent 

dependence edges because their dependence distances 
are zero. 
 
Definition 2: For a given loop and its LDDG(O,E,d,t), a 
loop schedule σ is a mapping from O x N to N, where N 
is the set of nonnegative integers. σ(op,i) denotes the 
cycle number in which the instance of instruction  op of 
the ith iteration is issued for execution. σ  is a valid loop 
schedule if and only if the following three constraints  
are satisfied: 
1. Resource constraint: in each cycle, there is no 

hardware resource conflict. 
2. Data dependence constraint: for any edge e(op1, 

op2) and for any j > 0,   
σ(op1, j) + t(e) <= σ(op2, j + d(e)); 

3. Cycle constraint: σ must be expressible in the form 
of a loop, that is, there is an integer II, for any 
instruction  op in the loop and for any integer j > 1, 
σ(op, j) = σ(op, j-1) + II*(j-1), where σ(op, 1) 
denotes the cycle number at which the instance of 
an op of the first iteration is issued for execution.  II 
is called the initiation interval. 

 
for (i=1;i<100;i++) 
{ 

1. t1=a[i] 
2. t2=b[i-1] 
3. t3=t1+t2 
4. b[i]=t3 
5. t5=t3*2 
6. c[i]=t5 

} 
 
Figure 2.1 (a)    A loop 

 
                (0,1)     
                                    (0,1) 
 
        (1,1)             (0,1)     (0,1) 
 
   
                                 (0,1) 
  
     
             

Figure 2.1 (b)  LDDG 
  

Definition 3  The task of software pipelining is to find a 
valid loop schedule with minimum initiation interval II.  
A software-pipelined loop consists of three parts – the 
prelude, pipelined loop body, and the postlude. The 
pipelining depth is defined as the number of iterations 
from which the instructions are overlapped in the 
pipelined loop body. 
 

1 (1) 
 2 (1)                prelude 
 3 (1) 
 4 (1) 1 (2) 
  2          software-pipelined 
 5 3                  loop body 
 6 4 1              (repeat 97 times) 
 

  5 (98) 2 (99) 
  6 (98) 3 (99) 
   4 (99)            postlude 
   5 (99) 
   6 (99)  
 

Figure 2.2    Software-pipelined Loop 

6

12 

3 

4 
5



Figure 2.2 is the software-pipelined loop of Figure 
2.1(a). In the figure, op(n) represents the instruction 
instance of op from the nth iteration. Here we have 
assumed that the processor has three memory load/store 
units, one addition unit, and one multiplication unit. It is 
noted that all the three constraints in Definition 2 are 
satisfied and the initiation interval of this pipelined loop 
is three cycles.  
 
Definition 4: Given a loop and its LDDG(O,E,d,t), the  
task of de-pipelining is to find a valid loop schedule dp 
that satisfies the following two conditions: 
1. For any instruction  op and any integer j > 0, 
  dp(op, j) + t(op) <= dp(op, j+1), and 
1. For any two instructions, op1 and op2, and any 

integer j >  0,  
dp(op1, j) + t(op1) <=  dp(op2, j+1). 
 

In general, in a software-pipelined loop, 
instructions from different iterations are overlapped for 
execution. On the other hand, in a de-pipelined loop, 
instructions from different iterations must not overlap 
for execution and the loop-carried dependence is 
automatically satisfied. 

Figure 2.3(a) is the de-pipelined loop directly 
derived from the software-pipelined loop shown in 
Figure 2.2. It is unnecessary that the de-pipelined loop 
be exactly the same as the original loop (Figure 2.1(a)) 
although they must be semantically equivalent.  

 
for (i=1;i<100;i++) 
{ 

1. t1=a[i] 
2. t2=b[i-1] 
3. t3=t1+t2 
4. t5=t3*2 
5. c[i]=t5 
6. b[i]=t3 

} 
Figure 2.3(a) 

  A de-pipelined loop 

 
                  (1)           (1) 
                     
                                      
    (1)            (1)     
 
   
                                           (1) 
  
                               
 
Figure 2.3 (b)  LBDDG 

 

 

 

Definition 5: Given a loop and its LDDG(O,E,d,t), we 
define the loop body DDG or LBDDG(O, E0, t), where 
E0 is a subset of E that contains only all loop-
independent edges. Each edge of E0 is only associated 
with one non-negative integer t which denotes the delay. 
      Figure 2.3(b) is the LBDDG of the loop shown in 
Figure 2.1(a). LBDDG is similar to LDDG except that in 
LBDDG, only loop-independent edges are included.  

Now the question is, given a software-pipelined 
loop, how to generate the original loop’s LBDDG? 
 
Theorem 1:  Given the body of a software-pipelined 
loop and its prelude, the LBDDG can be constructed by 
scanning the prelude and the pipelined loop body if the 
prelude is neither compacted nor collapsed.  

     In practice, the prelude is sometimes compacted or 
collapsed for the purpose of reducing code size. It is 
noted that if the prelude is either compacted or 
collapsed, it may not satisfy the cycle constraint of a 
valid loop schedule as discussed in Definition 2. The 
cycle constraint is a pre-condition that must be satisfied 
in order to correctly construct the LBDDG. For this 
reason, we have developed an algorithm to recover a 
collapsed prelude, which is discussed in section 3. We 
now prove Theorem 1 below. 
 
Proof: We now present an algorithm to construct the 
LBDDG, then prove that the LBDDG thus obtained is 
the LBDDG of the original loop. 
Algorithm: 
1  Denote the prelude and the pipelined loop body as a 

sequence of  VLIW instructions, L1, L2,..., Lk,  
where L1 is the first VLIW instruction in the 
prelude and Lk is the last VLIW instruction in the 
pipelined loop body.  

2  Set DDG = empty. 
3  For i = 1 to k; find Li’, where Li' = Li - {those 

instructions which have been selected in DDG}; 
identify all read-write data dependences among the 
instructions in Li';  find out all write-read, read-
write and write-write data dependencies from 
DDG's instructions on the instructions of Li'; add all 
the instructions of Li' to DDG; update DDG; 

4  The DDG built in step 3 is the LBDDG; return; 
 

L1: 1 (1) 
L2: 2 (1)    
L3: 3 (1) 
L4: 4 (1)    || 1 (2) 
L5: 2 (2)           
L6: 5 (1)    || 3 (2)                  
L7: 6 (1)    || 4 (2)     || 1 (3)  

 
Figure 2.4(a)   The prelude and  
software-pipelined loop body 

 
Proof: 
1 Because the prelude is neither compacted nor 

collapsed, the software-pipelined loop satisfies the 
cycle constraint; 

2  From the cycle constraint, σ(op, i) < σ(op, i+1) 
because II >= 1; 

3  Therefore, the selected instructions of the DDG  
built in step 3 of the algorithm come from the first 
iteration of the software-pipelined loop. 

4  Because all the instructions come from the same 
iteration, the data dependence edges built in step 3 
of the algorithm only cover all the loop-
independent dependence edges of the original 
sequential loop.    

6

12 
3 

4 5



Using the software-pipelined loop shown in Figure 
2.2 as an example, Figure 2.4 illustrates how the 
LBDDG algorithm works. First, we find out the VLIW 
sequence of the prelude and the pipelined loop body, as 
shown in Figure 2.4(a). We then follow the algorithm to 
construct the LBDDG, which is shown in Figure 2.4(b). 
 

L1 
                 
               

L2 
 

     
      

L5 
 

                (1)     
                                      (1)
      
       (1)               
   
 
   

L3 
 
                (1)     
                                      (1)
      
        
   
   

L6 
 

                (1)     
                                      (1)
      
       (1)              (1) 
   
 
   

L4 
 
 
                (1)     
                                      (1)
      
       (1)               
   
 
   

L7 
 

                (1)     
                                      (1)
      

       (1)              (1) 
   
 
  (1) 

  
  

 
 

Figure 2.4(b)   Construction of LBDDG 
 

Theorem 2: Given a loop and its LBDDG(O,E0,t), a 
loop schedule σ is valid if the following conditions are 
satisfied: 
1. The two conditions specified in Definition 4. 
2. The resource constraints and the cycle constraints 

specified in Definition 2. 
3. For each edge e of E0, e(op1, op2),  

σ(op1, j) + t(op1) <=  σ(op2, j). 
The proof is straightforward because the loop-

carried dependences are automatically satisfied if the 
two conditions of Definition 4 are satisfied. 

Given a software-pipelined loop, Theorem 2 
provides the basis to generate the de-pipelined loop.  
That is, we can apply any list scheduling algorithm to 
schedule the loop under the constraints of hardware 
resource and the LBDDG. 
 
3. De-pipelining Algorithms  

 
De-Pipelining (as shown in Figure 3.1)  

Input:  A given segment of assembly code that 
includes software-pipelined loop. 
Output: A sequential loop which is semantically 
equivalent to the given software-pipelined loop 
Algorithm: 
1. Loop detection. Call detect_loop function to find 

the software-pipelined loop body from the given 
segment of assembly code.  

2. Software-pipelined loop checking. Call check_spl 
function to determine whether the given loop is 
software-pipelined. 

3. Live variable analysis. Call analyze_var function 
to obtain all last_instructions from a given loop 
body  

4. Identify prelude and postlude. Call find_prepost 
function to find the scopes of prelude and postlude 
of a software-pipelined-loop in the given segment 
of the assembly code. 

5. Prelude recovery.  Call prelude_recovery function 
to recover the prelude if the prelude has been 
collapsed.  

6. Postlude recovery. Call postlude_recovery 
function to recover the postlude if the prelude has 
been collapsed. 

7. Build LBDDG. Call build_LBDDG function to 
build the LBDDG of the software-pipelined loop 

8. Scheduling. Call scheduling function to convert 
LBDDG to a sequential code. 

9. Loop count calculation. Call calculate_lcount 
function to compute the loop count of the 
sequential code of the software-pipelined loop.  

 
The detect_loop function:  
Input:  The given segment of assembly code  
Output: The loop body within the given segment of the 
assembly code. 
Algorithm:  

If the loop's start and end are not specified do the 
following steps. 

1. Find loop entry: if there is a backward branch 
instruction, then the target of this branch instruction 
is the loop entry point. 

       If there are forward branch instructions within the 
pre-header area, which includes all the instructions 
from the loop entry point spanning upward a 
distance equal to the latency of the branch 
instruction. 

then: the length of the loop body equals  the distance 
between the nearest forward branch and loop 
entry point plus the distance between the 
backward branch and loop entry. 

else: the length of the loop body equals the distance 
between the backward branch and loop entry 
point plus the latency of  branch instruction 
minus 1.  

1
2 

3

4

6

12 
3

4 5

1 2 

3 

4 

1
2 

3

4 5

1 2 

3 

1 2 

1 



 
       Assembly source code 
         
 
   Internal representation 

 
 

 

       Control flow graph 
 
  
 
 
 
 
 
      
last_instructions 
 
 
 
 

  
     LBDDG of loop body 

 
 

     
  

      
 

Sequential loop code 
 

Figure 3.1    Framework of De-pipelining  
 

 
The check_spl function: 
Input:  The output from detect_loop function -- the 
detected loop body in the given segment of the 
assembly code  
Output: A logical value determining whether the loop 
body is software-pipelined. 
Algorithm: 

In the given loop body, for any pair of instructions 
opi and opj, assume opi writes to a variable (register) 
which is to be read by opj and opi is located not 
earlier than opi in the loop body, if latency of opi is 
greater than the distance from opi to opi, then this 
loop is software-pipelined because opi and opi 
cannot be in the same iteration. 
 

The analyze_var function: 
Input:  the software-pipelined loop area of the 
assembly code segment. 
Output: all last_instructions. 
Definition: all instructions belong to following two 
categories are defined as last_instructions. 
1. The registers written by those instructions are live 

variables (they will be used after loop exit).  
2. All memory store instructions.  

Algorithm: 
Perform a bottom-up search of the loop for all 
last_instructions. 

 
The find_prepost function: 
Input: The software-pipelined loop body and its DDG. 
Output: The prelude and the postlude of software-
pipelined loop. 
Algorithm: 
1. Starting from loop entry, search upward until 

reaching the top boundary of the software-pipelined 
loop (top boundary could be a branch instruction 
other than forwarding branch instruction to the loop 
entry or the top of a function code) to find all 
instruction groups that contain those instructions 
existing in loop body. The highest instruction group 
is the upper boundary of the prelude. 

2. The lower boundary of the postlude is obtained in a 
similar manner [19]. 
 

The pre_recov function:   
Input:  The software-pipelined loop body and its 
prelude and postlude.  
Output: The recovered prelude, if the given prelude has 
been collapsed.  

Parser 

Control flow analysis 

Data flow analysis 

Loop  detection

Scheduling 

Software-pipelined loop checking

Loop count calculation

Prelude collapsing recovery

Live variables analysis

Build LBDDG

Find prelude & postlude part

Postlude collapsing recovery



Algorithm: 
1. Assume I1,I2,...Ik are VLIW instructions (including 

NOPs) in the prelude, i.e., prelude = {I1,I2,...Ik}. If 
the prelude is fully collapsed, then k=0.  

2. Unroll the pipelined loop once, denote the 
instruction group sequence of unrolled loop body as 
L1,L2,...,Lm.  

3. For i = 1 to m, check every instruction  op in Li. 
The op is  a "collapsed instruction" if it can neither 
cause an exception nor modify any part of the 
machine state that is "live-in" to its successors (i.e. 
read within its successors before being written).  

4. If no "collapsed instruction" is found in step 3, go 
to step 5; else, define LL = {L1,L2,...,Lm} - {all 
"collapsed instructions"}; update  prelude = prelude 
+ LL, go to step 2.  

5. In the prelude, delete the dead instructions and the 
branches caused by "prelude collapsing" if any, and 
adjust the loop count. 

 
The post_recov function: 
Input:  The software-pipelined loop body and its 
prelude and postlude.  
Output: The recovered postlude, if the given postlude 
has been collapsed.  
Algorithm: Similar to pre_recov function [19]. 
 
The build_LBDDG function: 
Input: The software-pipelined loop body and its 
recovered prelude. 
Output: The LBDDG of a sequential loop, which is 
semantic equivalent to the given software- pipelined 
loop. 
Pre-conditions:  
1. The loop has been software-pipelined and the 

prelude is not compacted and/or collapsed. 
2. The prelude and the pipelined loop body have been 

identified.  
Algorithm: 
1. Denote the prelude and the pipelined loop body as a 

sequence of instruction groups, L1, L2, L3, ..., Lk, 
where L1 is the first instruction group in the prelude 
and Lk is the last instruction group in the body of 
the software-pipelined loop. 

2. Set DDG = empty;  
3. For i = 1 to k, obtain Li' = Li - {those instructions 

that have been  selected in DDG}; identify all read-
write data dependences among the instructions in 
Li' and all write-read, read-write, and write-write 
data dependencies  of the instruction in the DDG on 
the instructions in Li'; add all the instructions of Li' 
to DDG;  update DDG;  

4. The DDG built in step 3 is the LBDDG of a 
sequential loop that is semantically equivalent to 
the given software-pipelined loop; return;  

 
The scheduling function: 
Input: The body of a software-pipelined loop and its 
LBDDG 
Output: A sequential loop that is semantically 
equivalent to the given software-pipelined loop  
Algorithm: 
1. From last_instructions using list scheduling, 

arrange the partial order list of the critical path of 
LBDDG in a bottom-up manner. The latencies of 
the instructions must be satisfied; insert NOPs as 
necessary.  

2. Delete all conditional instructions of instructions in 
loop body except the loop count 
increment/decrement instructions and the branch 
instruction that branches to the loop entry point. 

3. Insert the rest of instructions in the non-critical 
paths to the scheduled critical path.  

4. Delete all instructions in the prelude and the 
postlude, which are the same as that in the loop 
body. 

 
The calculate_lcount function: 
Input: A software-pipelined loop body, its LBDDG 
and last_instructions. 
Output:  The loop count of the semantically sequential 
loop 
Definitions: 

Npost:  the number of bottom_last_instruction’s 
copies  in postlude, where the  
bottom_last_instruction is the 
last_instruction at the bottom of the critical 
path of LBDDG 

Nsub: the number of SUB instructions for 
decreasing loop counter in prelude. 

Nbr: the number of branch instructions to the 
entry of the loop body in the prelude. 

LCini: the initial value of loop count in assembly 
code. 

LCsq: the loop count value in sequential code 
LCadj: the value of the loop count after prelude 

and/or postlude collapsing recovery 
Gsb: the gap between branch instruction and loop 

count decrement instruction in the loop body; 
Gsb =0 if the branch instruction is located not 
later than the loop count decrement 
instruction in the loop body; otherwise Gsb = 
1.  

Algorithm: 
Use the following formula to calculate LCsq: 
               LCsq = LCadj - Nsub + Nbr + 1 - Gsb + Npost 

 
 



               MVK 57, A1    
 ZERO A7 ZERO B7 [A1] SUB A1,1,A1  

 ZERO A6 ZERO B6 [A1] SUB A1,1,A1 [A1] B  LOOP   
 ZERO A2 ZERO B2 [A1] SUB A1,1,A1 [A1] B  LOOP    
   [A1] SUB A1,1,A1 [A1] B  LOOP       
   [A1] SUB A1,1,A1 [A1] B  LOOP          
   [A1] SUB A1,1,A1 [A1] B  LOOP      
LOOP:  LDW *A4++,A2 LDW *B4++,B2 MPY A2,B2,A6 MPYH A2,B2,B6 ADD A6,A7,A7 ADD B6,B7,B7 [A1] SUB A1,1,A1 [A1] B  LOOP      
 ADD A7,B7,A4     
 

 Figure 4.1(a)  An assembly code segment of TIC62 
      
      MVK 57, A1    

 ZERO A7 ZERO B7 [A1] SUB A1,1,A1  
 ZERO A6 ZERO B6 [A1] SUB A1,1,A1 [A1] B  LOOP   
 ZERO A2 ZERO B2 [A1] SUB A1,1,A1 [A1] B  LOOP    
   [A1] SUB A1,1,A1 [A1] B  LOOP       Prelude   
   [A1] SUB A1,1,A1 [A1] B  LOOP       area   
   [A1] SUB A1,1,A1 [A1] B  LOOP      
LOOP:  LDW *A4++,A2 LDW *B4++,B2 MPY A2,B2,A6 MPYH A2,B2,B6 ADD A6,A7,A7 ADD B6,B7,B7 [A1] SUB A1,1,A1 [A1] B  LOOP     Loop body 
 ADD A7,B7,A4     
 

 Figure 4.1(b)  After detect_loop & check_spl  
 

      ZERO A7 ZERO B7 MVK 50, A1    
 LDW *A4++,A2 LDW *B4++,B2          
 LDW *A4++,A2 LDW *B4++,B2      [A1] SUB A1,1,A1  
 LDW *A4++,A2 LDW *B4++,B2      [A1] SUB A1,1,A1 [A1] B    LOOP  
 LDW *A4++,A2 LDW *B4++,B2      [A1] SUB A1,1,A1 [A1] B    LOOP      Prelude 
 LDW *A4++,A2 LDW *B4++,B2      [A1] SUB A1,1,A1 [A1] B    LOOP     
 LDW *A4++,A2 LDW *B4++,B2 MPY A2,B2,A6 MPYH A2,B2,B6   [A1] SUB A1,1,A1 [A1] B    LOOP  
 LDW *A4++,A2 LDW *B4++,B2 MPY A2,B2,A6 MPYH A2,B2,B6     [A1] SUB A1,1,A1 [A1] B    LOOP 
LOOP: LDW *A4++,A2 LDW *B4++,B2 MPY A2,B2,A6 MPYH A2,B2,B6 ADD A6,A7,A7 ADD B6,B7,B7 [A1] SUB A1,1,A1 [A1] B    LOOP    Loop body  
     ADD A7,B7,A4    
          

Figure 4.1(c)  After pre_recov  
 
      ZERO A7 ZERO B7 MVK 43, A1 
 LDW *A4++,A2 LDW *B4++,B2      
 LDW *A4++,A2 LDW *B4++,B2      [A1] SUB A1,1,A1  
 LDW *A4++,A2 LDW *B4++,B2      [A1] SUB A1,1,A1 [A1] B  LOOP  
 LDW *A4++,A2 LDW *B4++,B2      [A1] SUB A1,1,A1 [A1] B  LOOP       Prelude 
 LDW *A4++,A2 LDW *B4++,B2      [A1] SUB A1,1,A1 [A1] B  LOOP  
 LDW *A4++,A2 LDW *B4++,B2 MPY A2,B2,A6 MPYH A2,B2,B6   [A1] SUB A1,1,A1 [A1] B  LOOP  
 LDW *A4++,A2 LDW *B4++,B2 MPY A2,B2,A6 MPYH A2,B2,B6   [A1] SUB A1,1,A1 [A1] B  LOOP 
LOOP: LDW *A4++,A2 LDW *B4++,B2 MPY A2,B2,A6 MPYH A2,B2,B6 ADD A6,A7,A7 ADD B6,B7,B7 [A1] SUB A1,1,A1 [A1] B  LOOP    Loop body 

   MPY A2,B2,A6 MPYH A2,B2,B6 ADD A6,A7,A7 ADD B6,B7,B7   
   MPY A2,B2,A6 MPYH A2,B2,B6 ADD A6,A7,A7 ADD B6,B7,B7   
   MPY A2,B2,A6 MPYH A2,B2,B6 ADD A6,A7,A7 ADD B6,B7,B7   
   MPY A2,B2,A6 MPYH A2,B2,B6 ADD A6,A7,A7 ADD B6,B7,B7   
   MPY A2,B2,A6 MPYH A2,B2,B6 ADD A6,A7,A7 ADD B6,B7,B7                                 Postlude 
      ADD A6,A7,A7 ADD B6,B7,B7   
      ADD A6,A7,A7 ADD B6,B7,B7   
 
      ADD A7,B7,A4   
 

Figure 4.1(d)  After post_recov  
    

LDW *A4++,A2   LDW *B4++,B2              
           
LDW *A4++,A2 LDW *B4++,B2       [A1] SUB A1,1,A1    
               
LDW *A4++,A2 LDW *B4++,B2       [A1] SUB A1,1,A1 [A1] B    LOOP   
               
LDW *A4++,A2 LDW *B4++,B2       [A1] SUB A1,1,A1 [A1] B    LOOP  
               
LDW *A4++,A2 LDW *B4++,B2       [A1] SUB A1,1,A1 [A1] B    LOOP  
               
LDW *A4++,A2 LDW *B4++,B2 MPY A2,B2,A6  MPYH A2,B2,B6    [A1] SUB A1,1,A1 [A1] B    LOOP  
               
LDW *A4++,A2 LDW *B4++,B2          MPY A2,B2,A6     MPYH A2,B2,B6   [A1] SUB A1,1,A1 [A1] B    LOOP 
            
LDW *A4++,A2 LDW *B4++,B2          MPY A2,B2,A6 MPYH A2,B2,B6 ADD A6,A7,A7  ADD B6,B7,B7  [A1] SUB A1,1,A1 [A1] B    LOOP  
                   
              
               

Figure 4.1(e)   LBDDG  
 

Figure 4.1 Procedures of the Working Example 
 



 
4. Working example  
 
     We have taken a code segment of TIC62 shown in 
Figure 1.1 as a working example to demonstrate our de-
pipelining technique. The reasons we chose TIC62 are 
as follows: (1) TIC62 can execute up to eight 
instructions in parallel. (2) It has a large branch delay. 
(3) Its compiler uses the sophisticated software 
pipelining and the prelude and postlude collapsing 
techniques. All these features make software-pipelined 
loops more complicated.  To de-pipeline the software-
pipelined loop, we first apply the detect_loop function 
and identify the instruction labeled with “LOOP” as the 
loop entry point because it is the target of a backward 
branch instruction. To explicitly express the instructions 
that are executed in parallel, we use a new format for 
the code segment shown in Figure 4.1(a). The initial 
value of loop count is 57, which is set by MVK 57, A1 
instruction. By using the check_spl function, we find 
out that this loop is software-pipelined, because both the 
latencies of LDW *A4++,A2 and MPY A2,B2,A6 
instructions are larger than 1, and these two instructions 
along with other instructions are within the same cycle. 
The length of the software-pipelined loop body is one, 
as shown in Figure 4.1(b). 

We then apply the pre_recov function to obtain 
Figure 4.1(c). Based on Figure 4.1(c), we build the 
LBDDG topdown from the beginning of the prelude by 
using build_LBDDG function. Instructions ADD 
A6,A7,A7 and ADD B6,B7,B7 are the 
bottom_last_instructions. After applying post_recov 
function, we obtain Figure 4.1(d), which shows the 
prelude and the postlude of the software-pipelined loop. 
The value of the loop count after prelude and postlude 
collapsing recovery becomes 43, which is set by MVK 
43,A1. Both bottom_last_instructions have seven copies 
in the postlude. There are six SUB A1,1,A1 instructions 
for loop count decreasing and five branch instructions in 
the prelude.  
 

 
           MVK 50, A1  
       ZERO A7  
       ZERO B7  
 LOOP: LDW *A4++,A2 
  LDW *B4++,B2 
  LDW *A4++,A2 
  LDW *B4++,B2 
   NOP  
  [A1] B    LOOP  
  MPY A2,B2,A6 
  [A1] SUB A1,1,A1 
  MPYH A2,B2,B6 
  ADD A6,A7,A7 
  ADD B6,B7,B7 
   ADD A7,B7,A4 

   
Figure 4.2    Sequential code 

 

     Finally we apply the scheduling and 
calculate_lcount algorithms to obtain the sequential 
code with loop count value 50, which is set by MVK 50, 
A1, as shown in Figure 4.2. The sequential code thus 
obtained is semantically equivalent to the code segment 
in Figure 4.1(a) and the original software pipelined code 
segment in Figure 1.1. By using a simulator we confirm 
that this is indeed the case. 
 
5.  Experiment  
 

We have conducted experiment on 20 different 
segments of assembly code belonging in different 
applications  for  TIC62 and 6 different assembly code 
segments for SC140. These code segments have 
different loop lengths and various characteristics of their 
preludes and the postludes. The TIC62 assembly code 
segments are generated by either the compiler, or the 
linear assembler. First, we convert these assembly code 
segments to sequential code by using de-pipelining 
technique manually. We then use the simulators to run 
both the original assembly code and the converted 
sequential code. All computation results show that the 
two sets of results are identical thus confirming the 
validity of our de-pipelining algorithm. Table 5.1 
summarizes the characteristics of the software-pipelined 
loops and the de-pipelining results of these 26 code 
segments. 
 
6.  Applications 
 
6.1 Assembly Code Conversion between two VLIW 

DSP Processors 
 

Assembly code conversion for DSP has been 
studied for many years; we have tackled the code 
conversion from the VLIW source machine. In 2003, we 
successfully applied our de-pipelining technique on 
code conversion of software-pipelined loop between 
two VLIW DSP processors [17]. Our conversion 
involves the following steps: (1) Using de-pipelining 
technique to convert the source assembly code of a 
software-pipelined loop to a semantically equivalent 
sequential loop; (2) Converting the sequential   loop to a   
machine-independent   high- level intermediate code; (3) 
Converting the machine-independent intermediate code 
to machine-dependent intermediate code of the target 
machine; (4) Feed the intermediate code of the target 
machine to the backend of the compiler of the target 
machine to obtain the optimized assembly code of the 
target DSP processor. To facilitate the verification of 
the correctness of our approach and to evaluate the 
performance of the converted code, we have chosen 
those  DSP  kernel  programs  whose  C  source  code  is 



available. The C source code is compiled to directly 
produce the source assembly code for comparison 
purpose. To verify the validity of the converted code, 
we have used simulators to compare the results of 
various steps in the conversion process. In our 
experiment, the source and target machines are TIC62 
and Star*core SC140. Seven DSP kernel programs have 
been used for the experiments.  

The results in Table 6.1 show that the converted 
assembly code of target DSP processor have 
comparable performance to the assembly code directly 
generated by compiling the source code with the 
optimizing compiler of the target machine. 
 

 
Table 5.1     Experiment Results 

 
Software-

pipelined loop After pre/postlude recovery De-pipelining 
result DSP Program Characteristics Body 

length LCini LCadj Nsub Nbr Npost Gsb Body 
length LCsq 

Dot Product_12 Normal  1 43 43 6 5 7 0 14 50 
Dot Product_22 No postlude 1 50 43 6 5 7 0 14 50 

Dot Product_32 Sub & branch in prelude only,   
no postlude 1 57 43 6 5 7 0 14 50 

Dot Product_42 Branch in prelude only, no postlude 1 51 43 6 5 7 0 14 50 
Dot Product_51 Normal  2 50 50 7 2 4 0 14 50 
FIR1 No postlude 3 30 28 0 1 2 0 15 32 
FIRnorld2 No postlude 2 16 11 3 2 5 0 15 16 
IIR2 No postlude 4 100 97 1 1 3 1 13 100 
Codebook2 No postlude 2 32 29 3 2 3 0 9 32 
Vec_mply1 Normal  3 75 72 3 1 4 0 16 75 
Latsynth1 Normal  5 200 197 2 1 4 1 25 200 
Weighted       
Vector Sum2 No postlude 2 49 46 3 2 4 0 16 50 

Add_test1 No postlude 2 5 4 3 2 1 0 6 6 
Loop_test_11 Branch in prelude only, no postlude 2 49 47 1 2 1 0 6 50 
Loop_test_21 Branch in prelude only, no postlude 2 100 99 3 2 1 0 7 100 
Loop_test_31 Branch in prelude only, no postlude 3 100 99 2 1 1 0 7 100 
Loop_test_41 Branch in prelude only, no postlude 5 50 49 1 1 1 1 11 50 
Loop_test_81 No prelude & postlude 9 20 18 -1 0 1 1 21 20 
Loop_test_121 No prelude & postlude 23 25 23 -1 0 1 1 27 25 

TI 
C62 

Loop_test_161 No prelude & postlude 17 50 48 -1 0 1 1 35 50 
FIR1 Normal  1 49 49 0 0 1 0 4 50 
FIRnorld1 Normal  2 15 15 0 0 1 0 11 16 
Vec_mpy1 Normal 4 149 149 0 0 1 0 10 150 
Loop_test_21 Normal 2 9 9 0 0 1 0 6 10 
Loop_test_81  Normal 7 24 24 0 0 1 0 12 25 

SC 
140 

Loop_test_121 Normal 11 24 24 0 0 1 0 16 25 
 
Note: 1 generated by compiler,  2 generated by linear assembler 
 
 

Table 6.1    Execution Times Comparison 
(in clock cycles) 

 

Program 
TIC62 

assembly 
code 

Converted 
SC140 

assembly code 

Compiler 
generated SC140 

assembly code 
Dot product 74 56 53 
FIR 12522 23303 38903 
IIR 1217 1004 602 
Vec_mpy 257 378 602 
WVS 1070 204 154 
Latsynth 570 1294 1194 
Codebook 122 358 615 
 

 
6.2 Providing Wider Trade-Off Space Between 

Cycle Count and  Code-Size for DSP 
Applications 

 
     Even software pipelining can significantly reduce 
runtime, it expands code size due to the introduction of 
prelude and postlude. The size of prelude and postlude 
grows in proportion to the number of overlapped 
iterations, which can be large in VLIW DSP processors 
with many function units. However today’s software 
development often requires an optimum balance 
between code size and cycle count, which in turn 
requires a much wider tradeoff space. Based on our de-



pipelining technique we proposed a code-size-constraint 
software pipelining approach [18,19], and demonstrated 
that the tradeoff space between execution time and 
memory space can be widened to provide more 
flexibility for software developers.  
 
7. Conclusion 
 

We present our de-pipelining technique and 
experimental results. Our approach can be a very useful 
tool for DSP users to gain insight into the meaning of 
otherwise very complex software-pipelined code. 
Furthermore de-pipelining technique can be used to the 
compatibility issue of VLIW computers. Although  this 
key problem can be solved by using dynamic 
rescheduling [4], however it cannot solve software-
pipelined code. By using our de-pipelining technique we 
can convert the software-pipelined code of source 
VLIW processor to sequential code at certain level, then 
feed into the compiler of other target DSP processor to 
complete the assembly code conversion.  

We are working with more sophistic algorithm to 
release the restriction (in Theorem 1) of de-pipelining 
technique. Even our current work is more DSP-oriented, 
we believe that our de-pipelining technique can be 
extended to general purpose VLIW and superscalar 
architecture easily. We will study the application of de-
pipelining on code verification. 

 
Acknowledgement 
 

Su and Manzano would like to thank the Center for 
Research, College of Science and Health, William 
Paterson University, for research support in the summer 
of 2002. Su and Hu would like to thank the ART awards 
of William Paterson University 

 
References 
 
[1] C. Cifuentes. and M. Emmerik., UQBT Adaptable 
Binary Transaction at Low Cost, Computer, March, 
2000 
[2] C. Cifuentes and N. Ramsey, A Transformational 
Approach to Binary Translation of Delayed Branches 
with Applications to SPARC and PA-RISC Instructions 
sets, SMLI TR-2002-104, 2002 
[3] C. Cifuentes, M. Emmerik, N. Ramsey, and B. 
Lewis, Experience in the Design, Implementation and 
Use of a Retargetable Static Binary Translation 
Framework, SMLI TR-2002-105, 2002 

[4] T. Conte and S. Sathaye, Optimization of VLIW 
Compatibility Systems Employing Dynamic 
Rescheduling, Journal of Parallel Programming, vol.35, 
no.2, 1997 
[5] Decompilation process, www.program-
transformation.org/transform/decompilationprocess, 
2002 
[6] J. Fisher and R. Rau, "Instruction-Level Parallel 
Processing", Science,  vol.253, 1991. 
[7] E. Granston etc., Controlling Code Size of Software-
Pipelined Loops On the TMS320C6000VLIW DSP 
Architecture, Proc. of MICRO-34, 2001 
[8] J. Hennessy & D. Patterson, Computer Architecture, 
A quantitative Approach, Morgan Kaufmann, 2003 
[9] A. Johnstone, E. Scott, and T. Womack, Reverse 
Compilation of Digital Signal Processor Assembler 
Source to ANSI-C, Proc. of ICMS99, 1999 
[10] Kumbhare R. Optimizing DSP Applications on 
TMS320C6x, Proc. of ISPC'03, 2003 
[11] M. Lam, Software Pipelining: An effective 
Scheduling Technique for VLIW Machines, Proc. of 
SIGPLAN 88 Conferenece on Programming Language 
Design and Implementation, 1988 
[12] Llosa J. and Freudenberger S., Reduced Code Size 
Modulo Scheduling in the Absence of Hardware 
Support, Proc. of MICRO-35, 2002.  
[13] S. Muchnick, Advanced Compiler Design & 
Implementation, Academic Press, 1997 
[14] REC – Reverse Engineering Compiler, 
www.backerstreet.com/rec/rec.htm, 2000 
[15] B. Su, S. Ding, and J. Xia, "URPR - An Extension 
of URCR for Software Pipelining", Proc. of MICRO-19, 
Oct. 1986,  
[16] B. Su, J. Wang, E. Hu, and J. Manzano, De-
Pipeline a Software-Pipelined Loop, Proc. of ICASSP03, 
2003 
[17] B. Su, J. Wang, E. Hu, and J. Manzano, Assembly 
Code Conversion of Software-pipelined Loop between 
two VLIW DSP Processors, Proc. of the International 
Signal Processing Conference (ISPC03), 2003  
[18] B. Su, J. Wang, E. Hu, and J. Manzano, Code Size-
Constraint Loop Optimization for DSP Applications, 
submitted to EUSIPCO2004, 2004  
[19] B. Su, J. Wang, E. Hu, and J. Manzano,, Software 
De-pipelining Technique, Technical Report, WPU, 2004 
[20] E. Visser, A survey of Rewriting Strategies in 
Program Transformation Systems, Electronic Notes in 
Theoretical Computer Science, 57(2001), 2001 
[21] J. Wang, C. Eisenbeis, B. Su and M. Jourdan, 
Decomposed Software Pipelining: A New Perspective 
and A New Approach. International Journal on Parallel 
Processing, Vol.22, No.3, 1994 

 


