
 1

Program Restructuring Through Clustering Technique

Xia Xu Chung-Horng Lung Marzia Zaman Anand Srinivasan
Dept. of Systems and Computer Eng Cistel Technology EION Inc.
Carleton University, Ottawa, Canada Ottawa, Canada Ottawa, Canada

Abstract

Program restructuring is a key method to improve the
quality of ill-structured programs and therefore to
increase the understandability and reduce the
maintenance cost. It is a challenging task and much
research is still ongoing. This paper presents an
approach to program restructuring at the functional level
based on the clustering technique with cohesion as the
major concern. Clustering has been widely used to group
related entities together. The approach focuses on
automated support for identifying ill-structured or low
cohesive functions and providing heuristic advice in both
development and evolution phases. A new similarity
measure is defined and intensively studied. The approach
is used to restructure real industrial programs. The
empirical observations show that the heuristic advice
provided by the approach can help software designers
make better decision of why and how to restructure a
program. Specific source code level software metrics are
presented to demonstrate the value of the approach.

1. Introduction

In software lifecycle, the software evolution usually

accounts for more than 60% of total software costs [37].
Müller, et al., indicate that 50-90% of software evolution
work focuses on program comprehension or understanding
[29]. An ill-structured program usually contains functions
involving multiple activities, which makes the program
difficult to understand. In real-world software
development, software products are usually driven by tight
schedules. Hence software designers often emphasize
more on the functional perspective than the non-functional
quality attributes. It is difficult to maintain good design
quality during the whole development process. Even
though a software product is well designed, over time the
code will be modified in response to the changing needs of
customers and technologies. Its original structure
gradually fades and degrades. The program becomes
difficult to understand and change, and therefore it is often
costly to maintain.

Program restructuring is an important option in software

evolution to improve deteriorated structure and to keep
software maintenance cost under control. It is also used in
software development to turn a poorly designed program
into a well-designed one [3]. The early days of
restructuring efforts focused on making a program’s
control flow easier to follow. This category is quite mature
[3]. But for the functional structure, one challenge of
restructuring is how to group meaningfully related code
segments together inside of a large or poorly structured
function to form small or cohesive functions, because it is
not uncommon that unrelated fragments and functionally
cohesive code segments are interleaved in practice.

Previous research on program restructuring at the
function level primarily uses program slicing and
input/output dependence techniques to restructure modules
with cohesion as the main criterion [17-21]. Conceptually,
their works are similar. The methods presented in [17-19]
use data and control dependence information between
input and output variables to measure cohesion and make
restructuring decision. These methods, however, do not
reflect the code fragments that are not directly related to
the output variables. The tuck transformation presented by
Lakhotia and Deprez [20,21] complements those methods
in [17-19] by computing pairwise cohesion. The method
considers data and control dependence between all
variables, but its process is complicated and difficult to be
used in industry. In addition, if a function has only one
output variable, there is only one slice and therefore the
function reaches the greatest cohesion.

In practice, especially in telecommunication program, it
is common that some code fragments, such as error
handling routines, may be not related to output variables.
In such case, the slices of output variables cannot reflect
the code fragment related to error handling. In addition, it
is also common that in a large function there is only one
output variable (a global variable), but the function
involves multiple activities. Therefore, previous
approaches have some limitations.

Cohesion, as an important measure in restructuring, is to
measure how tightly related between elements in a
component. The goal of clustering is to group similar or
related elements together. It is possible to use clustering
analysis to measure the strength of relationship between
elements in the component. Previous articles of software
clustering demonstrate research potential in software

 2

clustering field [38] and conclude that clustering methods
may be a very good starting point for the remodularization
of software [39]. But previous research on software
clustering field is mainly concerned with software
remodularization at the architecture level and has not been
used in program restructuring at code level.

This paper presents an approach for program
restructuring with the clustering technique at the
functional level. It focuses on the automated support for
identifying low cohesive function and helps make
restructuring decision, instead of automated restructuring
process. The purpose is to help software engineers identify
ill-structured functions and give them heuristic advice. In
detail, this paper discusses how to select entities and how
to select attributes that are important to distinguis h two
different entities from the functional cohesion point of
view. A new resemblance coefficient as a similarity
measure is defined. Extensive experiments on the weight
of different attributes are conducted. Three agglomerative
hierarchical algorithms: single linkage algorithm (SLINK),
complete linkage algorithm (CLINK) and unweighted
pair-group method using arithmetic averages (UPGMA),
are chosen in this paper. The comparison among them is
made with case studies.

The structure of the rest of this paper is as follows.
Section 2 reviews the related works in both program
restructuring and software clustering areas. Section 3
proposes an approach for program restructuring with
clustering technique and discusses the issues involved in
the approach. Section 4 gives an extensive study on
similarity measure by weighting attributes differently.
Section 5 is a case study on an industrial program.
Empirical observations are also summarized. Section 6
presents conclusions and future works.

2. Related Works

The closely related works on program restructuring at
the function level use the program slicing and input/output
dependence techniques with cohesion as a criterion [17-
21]. Their ideas are similar, but they use different cohesion
measures and different restructuring processes.

Kim and Kwon [19] present a method of restructuring
an ill-structured module, which applies program slicing to
extract processing blocks and identify multi-function
module. The method uses module strength as a criterion to
decide how to restructure program. The processing blocks
refer to tightly coupled sub-modules, similar to the data
slices in [6], in which a slice is a group of data tokens that
contribute to a particular output variable in terms of data
and control dependence. Based on code implementation,
module strength is defined in terms of the level of sharing
between processing blocks.

Kang and Beiman [17,18] introduce a method to
restructure modules during the design or maintenance

phase. The authors define input/output dependence graph
(IODG) of a module, similar to the variable dependence
graph (VDG) in [23], to model the data dependence and
control dependence relationship between input and output
components of a module. They also define association-
based design-level cohesion (DLC) measure, and slice-
based DLC and functional cohesion (FC) measures.
Cohesion measures presented in these papers only
consider dependence information between input and
output components and do not reflect code fragments that
are not related to the output components.

Lakhotia and Deprez [20,21] use tuck transformation to
restructure program by breaking large functions into small
functions. Tuck includes three transformations: wedge,
split and fold. A wedge is a subset of statements in a slice,
which contains related computations. After a wedge is
formed, it is split from the rest of the code and folded into
a new function. The paper uses rule-based approach
proposed in [23] to compute pairwise cohesion between
variables in the function as a criterion of restructuring. The
empirical study in the paper [20] shows that the approach
has some limitations for industrial applications.

Research on software clustering has also been done at
design or architectural level. Tzerpos and Holt [38] present
a survey and research potential of clustering approaches to
software engineering, where they indicate that classic
clustering techniques can be used in software context and
there is research potential in software clustering field.
Wiggerts [39] provides a general overview of clustering
techniques and their applications to system re -
modularization, where the benefit from the general theory
of clustering analysis is highlighted. Lakhotia [22] gives a
survey on subsystem classification techniques and
provides a unified framework for entity description and
clustering methods to facilitate comparison between
various subsystem classification techniques.

Previous software clustering approaches concentrate on
software system modularization or remodularization at the
architectural or design level. They follow software
engineering principle to obtain high intra -module cohesion
or low inter-module coupling, or both. The entities are
functions or files. Their similarity measures are either
based on relationships between entities [16,24,25,27,
28,30], or based on shared features [1,2,35], with or
without giving weights to the relationships or features.
Researchers use different information to measure the
similarity based on different points of view.

The clustering algorithms used in previous works fall
into three categories: hierarchical algorithms [1,2,16,24,
25,35], optimization algorithms [26-28], and graph
theoretic algorithms [10,30]. The hierarchical algorithms
are used the most. In hierarchical algorithms, the survey in
[22] shows that most researchers prefer SLINK algorithm,
but CLINK algorithm is suggested by [1] based on their

 3

experiments. It seems that different algorithms are suitable
for the different applications.

Clustering analysis in software engineering is a
sophisticated research domain. It is researchers’ job to
decide how to choose entities and entity’s attributes, how
to measure and compute similarity, and which algorithm to
use for a particular clustering problem.

3. An Approach to Program Restructuring

with Clustering Technique

This section presents an approach for program
restructuring with the clustering technique at the function
level and discusses key issues of clustering technique.

3.1 Program restructuring approach

The program restructuring approach proposed in this
paper is supported by a suite of tools. The objective of
program restructuring is to improve the structure or
internal strength of a function. Cohesion is used as the
main criterion. The approach is based on clustering
analysis for the entities and their attributes extracted from
source code. The existing structure of a program with
quantitative measure is shown in a clustering tree after
clustering analysis. The approach provides information
about existing structure of a function, quantitative
structure measure, and heuristic advice for improving
existing code. It can be used to help software engineers
make a decision - why and how to restructure an existing
program. Figure 1 shows the approach for program
restructuring with clustering technique. Currently, the
study is conducted for C programs; however, the technique
can be applied to other languages as well.

Data Collection
 & Processing

Parsing

Data refining

Data matrix

Source code

Clustering

Similarity
measure

Constructing
Clusters

 Visualization

 & Analysis

Clustering tree

Analyzing
clustering tree

Restructuring

Decomposing

Composing

Figure 1. An approach of program restructuring

The approach has four key phases as shown in Figure 1.
Phase one is data collection and processing. In this phase,
the Parser tool parses source code automatically and
generates raw data of entity-attribute matrix. The raw data
may contain some “noises” (unwanted data) and therefore
data refining is used to remove those noises. The entity-
attribute matrix generated after data refining is the input
data for the next phase – clustering.

Phase two is clustering. The most important and
fundamental step in clustering analysis is similarity
measure. When entities and their attributes are defined, a
metric called resemblance coefficient is adopted to
measure the similarity between entities, which is discussed
in section 3.4. After resemblance coefficient has been
defined, clusters can be constructed using a certain
clustering algorithm. Currently, the approach supports
three agglomerative hierarchical algorithms: SLINK,
CLINK and UPGMA. The Clustering tool performs this
phase automatically.

Phase three is visualization and analysis. After the
clustering phase, the result is dis played as a clustering tree.
It shows the existing structure of a function. Closely
related entities are grouped into a cluster. The degree of
relatedness of two entities in a cluster is represented by a
resemblance coefficient, which is also shown in the tree.
By examining the tree, ill-structured code fragments can
be identified, which are candidates for restructuring.
Clustering tree provides heuristic advice on how to
restructure a function. But software engineers must
participate in making the final decision based on their
experience, insights, and the restructuring objectives.

Phase four is the actual restructuring of a program.
Identified low cohesive functions will be decomposed into
several code fragments and some of them are composed
into new functions. This phase is processed manually.

3.2 Entities

To apply clustering to programs, we need to identify
entities. There are two types of statements, executable and
non-executable statements. Non-executable statements,
such as comments and declarations, have no real effect on
the functionality provided by the function. So they are not
selected as entities. Executable statements include
assignment statements, predicate statements, iteration
statements, function call statements, end statement and so
on. In the restructuring approach, an entity is an
executable statement that is related to a functional activity
and can be described by its attributes (attributes are
discussed in the next section). Entities are further divided
into control entities and non-control entities. A control
entity refers to an entity that is either a predicate statement
(such as if or switch statement) or iteration statement (such
as for or while statement). If an entity is not a control
entity, it is a non-control entity. Each entity is represented
by a number, which is corresponding to the line number of
a statement in the source code.

3.3 Attributes

An attribute is a feature of an entity. An entity may have
many attributes. Different properties of an entity can be
described by different attributes. But selected attributes
must contribute to the understanding of predefined
objective criterion.

 4

A statement consists of variables, constants, operators,
key words, brackets, function names (in function call
statements) and semicolon (for C programs). In the context
of cohesion, a statement is evaluated to see if it is related
to a functional activity. Different variables and function
names may be related to different functional activities and
therefore are used as attributes. Constants, operators and
key words are not chosen as attributes.

Based on data dependence and control dependence
relationship, variables are divided into data variables and
control variables, which are described in the following:

Data variable. A data variable refers to the variable that
is directly used in a statement. Data variables as a type of
attribute in a function reveal the data dependence
relationship of the entities. Data variables include local
variables, global variables, and parameters passed to the
function. They can also be divided into two types of
variables: variables with a primitive type and variables
with a composite type or a user defined type. A composite
variable, such as an array, a linked list, or a user defined
data structure (struct), is treated as one variable. In
addition, a function name in a function call statement is
also treated as a data variable.

Loop counter variable. A loop counter variable is
another kind of data variable and is used to count the
number of times that a loop is repeated. Because the
restructuring focuses on static functional structure, no
matter how many times a loop is repeated, the loop body is
treated to have the same relatedness to one or more
functional activities. In addition, the loop counter is
usually associated with a composite variable, e.g., an
index variable used in an array. Therefore, the loop
counter variable is not counted as an attribute of an entity.

Control variable. In order to reveal control dependence,
control variables are postulated as a type of attribute in the
restructuring approach. A control variable is one that is
artificially added to an entity in a control block. It is a
logical variable used to describe control dependence
relationship between entities. Entities with the same
control variable mean that they belong to the same control
block, e.g., if or while, in the source code.

Therefore, in the restructuring approach, data variables
(excluding loop counter variables) and control variables
are chosen as attributes to describe entities. They are also
called data attributes and control attributes, respectively.
Each attribute is measured on qualitative scale as binary
representation. Thus each attribute has two states, either
presence or absence, which are described below.

0 – absence state of a control or data attribute
1 – presence state of a control attribute
2 – presence state of a data attribute

In addition, the data attributes in control entities are
treated as control attributes. Between any two entities,
there are six different types of matches described below.

• 1-1 match: a control attribute is present in both

entities.
• 2-2 match: a data attribute is present in both entities in

case neither of them is a control entity.
• 0-0 match: an attribute is absent in both entities.
• 1-0 or 0-1 match (mismatch): a control attribute is

present in one entity but absent in the other.
• 2-0 or 0-2 match (mismatch): a data attribute is

present in one entity but absent in the other.
• 2-1 or 1-2 match: a data attribute is present in both

entities in case one of them is a control entity and the
other is a non-control entity.

3.4 Similarity measure

Similarity measure is used to evaluate cohesion and is
represented with a resemblance coefficient. It has two
features: Attributes and Matches.

Attributes. Generally, the more attributes two entities
share, the closer they are related and the more similar they
are. There are two types of attributes: data attributes and
control attributes. From the cohesion point of view, these
two types of attributes contribute to different degree of
cohesion because they describe different dependence
relationship between entities. Lakhotia [23] indicates that
two variables which have data dependence relationship
have higher cohesive than two variables that have control
dependence relationship. Therefore data attributes and
control attributes should be weighted differently.

Data attributes have different types, namely a local
variable, a global variable, a parameter passed to the
function or a function name in a function call statement. It
is important to understand if we need to treat these
different types of data attributes differently. In addition, a
data attribute may appear in a non-control entity or a
control entity. Hence it is also important to understand if a
data attribute is measured equally when it describes
different types of entities. We analyze the different types
of data attributes as follows:

Variable scope: A global variable can be referenced by
multiple functions in a program. It may be related to many
different functional activities. A local variable is
referenced inside a function and it is only related to the
functional activities provided by the particular function.
But at the function level, from the functional activity point
of view, there is no difference between a global variable
and a local variable. In a low cohesive function, a global
variable may be referenced by several different activities.
But a local variable or a parameter passed to the function
may also have the same situation. Hence, a global variable
and a local variable in a function play the same important
role on function cohesion and therefore are treated equally.

Function call: A function name in a function call
statement is treated as a data variable. In this restructuring
approach, a function call statement is treated as a non-
control entity. Different functions usually perform
different tasks or activities. A function name is used to

 5

distinguish different function calls corresponding to
different functionality. So a function name in a function
call is measured in the same way as a local variable.

Data attributes in control entities: A control entity is
different from a non-control entity in that it has an indirect
contribution to a functional activity. When a variable or a
data attribute appears in a control entity, it has no direct
relatedness to an activity. But when a data attribute is used
in a non-control entity it is directly related to an activity.
Therefore, data attributes in control statements or entities
should be treated differently from those in non-control
entities. In the proposed approach, data attributes used in
control entities are simply treated as control attributes.

Therefore, all data attributes in data entities are
considered to have equal importance to functional
cohesion, thus having the same weight. As the data
attributes in control entities are treated as control
attributes, the problem of the weighting attributes boils
down to the problem of the weighting between control
attributes and data attributes. We believe that data
attributes should be weighted more than control attributes,
since a data attribute affects a functional activity directly
while a control attribute affects indirectly.

Matches . Now, the problem is to determine the weights
for matches that play different roles on similarity measure.

0-0 match: An 0-0 match means that an attribute is not
used in either of the two entities. In an entity-attribute
matrix, there are usually many attributes that are used in a
function. But for each individual entity, it is only related to
a few attributes and most of them are valued with 0. There
are many 0-0 matches in the matrix. Lung et al. [24]
address that counting 0-0 matches will generate distortion
and result in dissimilarity. The study presented in [1] also
shows that better results are obtained without considering
0-0 matches. In the program restructuring, the similarity of
two entities is not affected by adding unrelated attributes
to the function. Therefore, 0-0 matches are ignored.

1-2 / 2-1 match: This kind of match occurs between one
control entity and one non-control entity when they share a
common data attribute. When these two entities are in the
same control block, they share a common control attribute
and there is a 1-1 match that counts the control
dependence. Thus there is no need to use 1-2 / 2-1 matches
to describe control dependence again. When these two
entities are not in the same control block, they do not have
control dependence. So 1-2 / 2-1 matches are also ignored.

1-1 match and 2-2 match. 1-1 matches and 2-2 matches
mean that two entities share common attributes, which
have a positive contribution to the similarity measure. A 1-
1 match indicates that two entities have a control
dependence relationship, or two control entities share a
common data variable. It reflects the control structure of a
function. A 2-2 match shows that two entities have a data
dependence. Because data dependence contributes more to

cohesion than that of control dependence, a 2-2 match
should have more weight than that of a 1-1 match.

1-0 / 0-1 match and 2-0 / 0-2 match. A 1-0 / 0-1 match
is a mismatch on a control attribute and shows the
dissimilarity on control dependence or control structure. A
2-0 / 0-2 match is a mismatch on a data attribute and
describes the dissimilarity on data dependence. Both
contribute to the dissimilarity between entities. If matches
on common data attributes (2-2 matches) play more
important role on similarities between entities than
matches on common control attributes (1-1 matches), then
mismatches on data attributes (2-0 / 0-2 matches), should
also have more importance on dissimilarity than
mismatches on control attributes (1-0 / 0-1 matches).
Hence, 2-0 / 0-2 matches should be weighted more than 1-
0 / 0-1 matches.

In summary, 0-0 matches and 1-2 / 2-1 matches are
ignored; 2-2 matches have more contribution to the
similarity than that of 1-1 matches; and 2-0 / 0-2 matches
have more contribution to the dissimilarity than 1-0 / 0-1
matches. The matches on data attributes are more
important than on control attributes. The weighting of
matches is consistent with the weighting of attributes.

Resemblance Coefficient. Based on discussion
mentioned above, a new resemblance coefficient between
two entities is defined as follows.

ccddccdd

ccdd

bwbwawaw
awaw

coeff
+++

+
= (1)

where: coeff - resemblance coefficient

da - number of 2-2 matches between two entities

ca - number of 1-1 matches between two entities

db - number of 2-0 and 0-2 matches between two
entities

cb - number of 1-0 and 0-1 matches between two entities

dw - weight of data attributes

cw - weight of control attributes
0>> cd ww .

Here, the weight of an attribute represents its importance
comparing to other attributes. Attributes in the same type
are weighted the same and the weight of data attributes is
heavier than control attributes. If there is no common
attribute shared by two entities, they are unrelated
and 0=coeff . If all attributes used to describe two entities
are shared by them, 0=db and 0=cb , then they achieve
the maximum similarity with 1=coeff . The value of the
resemblance coefficient is between 0 and 1.

4. Experiments on Similarity Measure

Resemblance coefficient has been defined, but how to
decide the weights is still unsolved. Previous research did

 6

not give systematic study on this issue. Dhama [12] uses
heuristic estimate to give data parameters twice weight as
much as control parameters. Schwanke [35] estimates the
significance of a feature by Shannon information content,
which gives rarely-used identifiers higher weights than
frequently-used identifiers. In this paper, the weights of
attributes are considered as positive integer and decided
through extensive experiments.

Different weight ratios are used in the resemblance
coefficient to analyze 30 functions appeared in papers [5,
6,19,20], student assignments, and real industrial
programs. The size of each function ranges from 8 lines to
55 lines (not including comments and white spaces). The
experiments start with weight ratio of 2:1, that is, in
equation (1), 2=dw and 1=cw .

Throughout the experiments, all three clustering
algorithms: SLINK, CLINK and UPGMA are used.
CLINK tends to form large number of compact clusters
and only gives good results for small examples. SLINK
and UPGMA give similar results throughout the
experiments. The results shown in this section are
generated by UPGMA algorithm.

Weight ratio of 2:1 . The weight ratio of 2:1 works well
for most of selected examples. But it does not work well
when it is used to analyze an example with communication
cohesion in [5]. The example code is shown in Figure2,
the entity-attribute input matrix is shown in Table1 and
Figure 3 illustrates the clustering result.

Figure 2. Sample code 1: Sum and Prod [5]

Table 1. Entity-attribute matrix of sample code 1

in Figure 2
Attribute

Data attribute Control
attribute

Entity

n arr sum prod avg for
4 0 0 2 0 0 0
5 0 0 0 2 0 0
6 1 0 0 0 0 1
7 0 2 2 0 0 1
8 0 2 0 2 0 1

10 2 0 2 0 2 0

Figure 3 shows that entities (7,8) are grouped together,

and entities (4,10) are grouped together. But in fact,
entities (4,7) are related to the same functional activity –
computation of sum. Entity 10 uses the result of sum to

compute average avg. Entities (5,8) contribute to the same
activity – computation of product prod. The tree does not
reveal the real functional structure in this example.

Figure 3. Clustering tree with 2:1 weight ratio
for sample code 1 in Figure 2

The resemblance coefficients between those entities

give the explanation of the result.

40.0
1)12()12(

12
)7,4(=

+×+×
×

=coeff .

40.0
1)12()12(

12
)8,5(=

+×+×
×

=coeff .

43.0
)22(1)12(

1)12(
)8,7(=

×++×
+×

=coeff .

Because)7,4()8,7(coeffcoeff > and)8,5()8,7(coeffcoeff > ,

the algorithm groups entities (7,8) together instead of
entities (4,7) and entities (5,8) together, respectively.
Although data attributes are weighted twice as much as
control attributes, it seems that control attributes still play
a little bit more role on similarity measure than they
should and more weight should be added to data attributes.

Weight ratio of 3:1. The weight ratio of 3:1 is used in
sample code 1 in Figure 2 and the result is shown in
Figure 4. The clustering tree illustrates two clusters: C1
and C2. Cluster C1 has three entities (4,7,10), which are
related to the computation of sum and avg. Cluster C2
consists of two entities (5,8), which are related to the
computation of product prod. Entity 6 is a control entity
that is shared by two computation activities. The tree
shows the real functional structure.

Figure 4. Clustering tree with 3:1 weight ratio
 for sample code 1 in Figure 2

With 3:1 weight ratio, the clustering result of sample
code 2 is totally different from the result with 2:1 weight

1 procedure sum_and_prod(n: integer; arr: int_array;
 var sum, prod: integer; var avg: float);
2 var i: integer;
3 begin
4 sum := 0;
5 prod := 0;
6 for i:=1 to n do begin
7 sum := sum + arr[i];
8 prod := prod + arr[i];
9 end;
10 avg := sum/n;
11 end;

R
es

em
bl

an
ce

co

ef
fic

ie
nt

Entities

Entities

R
es

em
bl

an
ce

co

ef
fic

ie
nt

C1 C2

 7

ratio. Now the resemblance coefficients of entity pairs
(4,7), (5,8) and (7,8) are as follows.

43.0
1)13()13(

13
)7,4(=

+×+×
×

=coeff .

43.0
1)13()13(

13
)8,5(=

+×+×
×

=coeff .

30.0
)23(1)13(

1)13(
)8,7(=

×++×
+×

=coeff .

Here,)8,7()7,4(coeffcoeff > and)8,7()8,5(coeffcoeff > , so

entities (4,7) and (5,8) are grouped together, respectively.
Sample code 2 in Figure 5 is an example from an

industrial program. It is the implementation of processing
token body based on token type in a C code parser
program. The main functional activity is to process token
body with unreserved token type, which is implemented in
the source code from line 27 to line 57.

Figure 6 shows the clustering result with weight ratio of
3:1. The cluster C1 is related to the activity of processing
body with unreserved token type, which should be
involved by entities between 27 to 54 as mentioned above,
entity 26 is grouped with entities (18,20) because they
share the same control attribute token_type. But entities 16
and 19 interleave the cluster C1. Entity 16 merges with
this cluster by sharing a common data attribute token with
entities (30,38,43,45). Entity 19 joins to cluster C1 by
sharing a common data attribute cntl_flag with entities
(32,36,40,50). This shows that data attributes with 3:1
weight ratio may play a little bit more role on similarity
measure than they should. In the experiment, different
weight ratios between 2:1 and 3:1 have been tested. Those
ratios are 9:4, 7:3, 5:2, and 8:3.

Weight ratios of 9:4 and 7:3 . When weight ratio of 9:4
or 7:3 is used to sample code 1 in Figure 2, both of them
generate similar clustering tree as the one with weight
ratio of 2:1 shown in Figure 3. So both 9:4 and 7:3 weight
ratios do not work well for the sample code 1.

Weight ratios of 5:2 and 8:3 . When weight ratio of 5:2
or 8:3 is used to sample code 1 shown in Figure 2, both of
them generate similar clustering tree as the one with
weight ratio of 3:1 shown in Figure 4. So both 5:2 and 8:3
weight ratios work well for sample code 1. When these
two ratios are used to the sample code 2 in Figure 5, they
generate very close results. Figure 7 shows the clustering
tree generated from 8:3 weight ratio for the sample code 2.

Figure 7 shows that cluster C1 contains exact entities
that are related to the activity of processing token body
with unreserved token type. Entities 16 and19, which are
inside the cluster in Figure 6 with the weight ratio of 3:1,
are now outside the cluster. This is because the weight of
data attributes is reduced. The relationship between entity
16 and entities (30,38,43,45) by sharing a common data
attribute token becomes weaker and entity 16 is separated
from cluster C1. The same reason is for entity 19. The tree
reveals the real functional structure of the samp le code 2.

Both 8:3 and 5:2 ratios work well in this example. These
two weight ratios also give expected results for all selected
examples in the experiment.

Figure 5. Sample code 2: Process Body

Figure 6. Clustering tree with 3:1 weight ratio
 for sample code 2 in Figure 5

R
es

em
bl

an
ce

co

ef
fic

ie
nt

Entities
C1

1 process_body (char[] token, int *token_type, int *cntl_flag,
 int *strcpy_flag, int equal_flag, int line_no)
2 {
3 int position;
4 int check_type_process_reserved ();
5 int search_local_list ();
6 int search_decl_keywords ();
7 int search_decl_user ();
8
 //...
16 *token_type = check_type_process_reserved (token);
17
18 if (*token_type == CNTL_KEY)
19 *cntl_flag = TRUE;
20 else if (*token_type == LIBRARY_FUNC) {
21 if (strcmp (token, "strcpy") == 0)
22 *strcpy_flag = TRUE;
23 else
24 ; /* to avoid ambiguity of nested if */
25 }
26 else if (*token_type == IDENTIFIER) {
27 if (! search_decl_keywords (token) &&

 ! search_decl_user (token)){
28 //...
30 position = search_local_list (token);
31 if (position != -1) {
32 update_local_list (position, *cntl_flag, line_no);
 //...
36 update_para_list (*strcpy_flag, equal_flag,
 *cntl_flag, position);
37 } else {
38 position = search_global_list (token);
39 if (position != -1) {
40 update_global_list (position, *cntl_flag, line_no);
41
42 if (global_list [position].type == GLOBAL)
43 put_token_into_local_list (token, GLOBAL);
44 else if (global_list [position].type == FUNCTION)
45 put_token_into_local_list (token, FUNCTION);
 //...
49 position = local_count - 1;
50 update_local_list (position, *cntl_flag, line_no);
51 }
52 } /* end of outer if (position != -1) */
53 if (*strcpy_flag)
54 *strcpy_flag = FALSE;
55
56 } /* end of if (!search_decl_keywords ...) */
57 } /* end of if (*token_type == IDENTIFIER) */
58 }

 8

Figure 7. Clustering tree with 8:3 weight ratio
 for sample code 2 in Figure 5

In summary, six different weight ratios have been used
in a series of experiments. The weight ratios of 2:1, 9:4
and 7:3 do not work for the sample code 1 shown in
Figure 2. The weight ratio of 3:1 works well for the
sample code 1 but does not work well for sample code 2
presented in Figure 5. Both 5:2 and 8:3 ratios work very
well in all selected examples and generate very close
results. The ratio of 8:3 is then chosen to weigh data
attributes and control attributes in similarity measure.

5. Case Study

In order to evaluate how effectively the proposed
approach can be applied to the real industrial software, the
approach is used to restructure a real industrial program.

5.1 System under case study

The system under case study is a real network protocol
RSVP-TE program in telecommunication industry. RSVP
[7] is a resource reservation protocol that enables Internet
applications to obtain different qualities of service (QoS).
RSVP-TE [4] is a signaling protocol that extends the
RSVP to support multiple protocol label switching
(MPLS) [34] traffic -engineering applications. RSVP-TE
provides a mechanism to establish and maintain explicitly
routed label switched paths (LSPs) [34] with or without
resource reservation.

The original RSVP-TE program was completed by
schedule-driven. It was designed by providing only basic
functionality for simple cases, and then was added more
functionality during conformance test to satisfy the
specification of the protocol. The emphasis of the software
development is on functionality. RSVP-TE program was
written in C with about 6,500 lines of code (LOCs) (in this
paper, all LOCs do not include comments and white
spaces) and 110 functions. Some functions are large and
involve more than multiple functional activities. The
understandability of the code was low. Maintaining and
extending the code for additional functionality was less
than desirable. In order to improve the design quality, 24
functions with total 2,147 LOCs code are selected as
restructuring candidates. The function size ranges from 32
LOCs to 253 LOCs with an average of 89.46 LOCs.

5.2 Restructuring results
After clustering analysis, 17 functions out of 24 selected

functions that are identified involve more than one
functional activity. Some of them also have duplicated
code or interleaved code. In order to support long-term
maintainability and evolution, those 17 functions are
chosen for restructuring. In order to compare restructuring
results, Krakatau metrics tool is used to calculate metrics
of size and cyclomatic complexity. Cohesion measure
suggested by Anquetil and Lethbridge [1], in which
cohesion of a function is the average resemblance
coefficient between any two entities in the function, is
used to measure function cohesion.

Table 2. Comparison before and after restructuring

Metrics Before After changed

Average lines per
function

93.24 37.29 - 60.00%

Average cyclomatic
complexity of a function 19.47 7.69 - 60.50%

Average cohesion of a
function 0.08 0.16 +100%

Table 2 gives the summary of comparison before and
after restructuring. In the case study, the 17 poorly
designed functions with total 1,585 LOCs are restructured,
which represent 24.38% of the RSVP-TE program. After
restructuring, 34 new functions are generated. Compared
with original 17 functions, after restructuring, the average
size of a function drops by 60% from 93.24 LOCs to 37.29
LOCs, the average cyclomatic complexity decreases by
60.5% from 19.47 to 7.69, and average cohesion increases
by 100% from 0.08 to 0.16. The restructuring shows
measurable improvement over the original functions. The
complexity improvement is significant.

5.3 Empirical observations

In the case study, the restructuring approach is used for
24 functions in the RSVP -TE program. In general the
approach works well and provides heuristic advice. The
following presents a list of empirical observations and
limitations.

 Functional clusters. Related entities are grouped
together to form a cluster. If the cluster corresponds to a
specific functional activity, it is a functional cluster. A
clustering tree shows functional clusters and gives
heuristic advice to designers to consider restructuring.

Duplicated code . A clustering tree also shows some
patterns. The same pattern that appears more than once in
a clustering tree, may illustrate problems related to
duplicated code. This happened in the case study.

Interleaved code. Normally, if there is no interleaved
code, a cluster corresponds to a contiguous fragment of
code, e.g., all entity numbers are inside a certain range. If
an entity number belongs to that range but is not grouped
into that cluster, the entity may be an interleaved entity.

C1

R
es

em
bl

an
ce

co

ef
fic

ie
nt

Entities

 9

Cut-point . In some cases, there is no single cut-point
used to cut the whole clustering tree and get meaningful
results. Especially in a large clustering tree, there may
exist different cut-points used to cut different branches
(functional clusters). Each branch that corresponds to a
specific functionality is cut and moved to a new function.

Comparison of algorithms. In the case study, the
restructuring approach has been experimented on all 24
functions with three clustering algorithms: UPGMA,
SLINK and CLINK. There is only one function for which
all three algorithms generate the expected result and two
functions for which both UPGMA and SLINK work very
well. In total, UPGMA works well for 14 functions and
SLINK works well for13 functions. But CLINK does not
work well in the case study. The detailed results are not
shown here because of page limits.

Although clustering analysis in the restructuring
approach can show functional clusters and reveal some
potential problems in the source code, there are still some
limitations.

Non-functional clusters. A non-functional cluster refers
to a cluster that dose not contribute to a specific
functionality. Examples of non-functional clusters are
clusters that contain only control entities, or entities with
one attribute such as the same flag variable and etc.
Usually a non-functional cluster is connected to a
functional cluster and both of them together form a more
completed functional cluster. But it may also appear
independently. It is the software designer’s responsibility
to identify whether a cluster is a functional cluster or non-
functional cluster primarily due to possibly complicated
program semantics and other factors, e.g., performance.

Singleton clusters. A singleton cluster refers to a cluster
that contains only one entity. It usually represents a
relatively independent control statement, a function call
statement or an initialization statement. It is also the
software designer’s responsibility to decide whether a
singleton cluster should be grouped to another cluster or
not.

Big data structures. In the RSVP-TE program, there is a
global variable rsvpNode, which is a big data structure
(struct) with 52 member variables. In the restructuring
approach, such variable is treated as one variable.
Therefore different functional activities that are related to
different member variables could be grouped together.

One variable related to multiple functionalities. In
some functions, one variable may be used in entities that
are participated in different activities and these entities
tend to be grouped together.

6. Conclusions and Future Directions

This paper presented a program restructuring approach

using the clustering technique for C programs. The main
focus was on the selection of entities and attributes,

similarity measure, resemblance coefficient experiments,
and the application of the approach to an industrial
program. The main goal of the restructuring approach was
to provide automated support to identify ill-structured low
cohesive functions and give heuristic restructuring advice
to software designers improve the cohesion of functions in
both software development and evolution phases.

In the restructuring approach, entities are divided into
control entities and non-control entities. Similarly,
attributes are divided into data attributes and control
attributes. A new resemblance coefficient is defined to
measure similarity between entities with respect to
cohesion. The experimental study of various weight ratios
between the data attribute and the control attribute shows
that the weight ratio of 8:3 (or 5:2) consistently generates
the expected results for all selected examples under study.
As a case study, the approach was used to analyze a real
telecommunication program and subsequent restructuring.
In general, the approach works well. The clustering
analysis based on the resemblance coefficient defined in
this paper can identify high cohesive sub-functions inside
of a large low cohesive function and reveal potential
problems in the existing code.

In real programs, there are many artifacts and the code
may be written in an ad hoc manner or drifted away from
the original design idea due to evolution. The resemblance
coefficient defined in this paper only considers main
factors related to functional cohesion. Although the weight
ratio between data and control attributes was extensively
studied, there are still some limitations. Software designers
need to identify which clusters are functional clusters and
which are non-functional clusters. They also need to
decide where those singleton clusters should be placed. In
addition, big data structure with more independent
member variables tends to group different functional
activities together.

The main contribution of this paper is that a new
resemblance coefficient as similarity measure for program
restructuring at the function level was defined and
intensively studied. The restructuring approach based on
this resemblance coefficient was applied to an industrial
program. The result showed that the heuristic advice
provided by the clustering analysis was helpful.

In this paper, the restructuring approach was applied to a
real telecommunication program and worked well.
Different types of program may have different features
which might affect the cohesion or similarity measure.
More experiments are still needed for other types of
programs . In addition, the clustering result were only
compared with the expected result, objective criteria to
evaluate clustering results should be developed in the
future. The cohesion measure defined in [1] is based on
pairwise similarity measure and therefore it may not be
entirely objective. And the value of the cohesion measure
is very low because some entities may not share any

 10

common attributes. How to quantitatively measure the
cohesion still needs further research.

Acknowledgement

The authors would like to thank M. Zaid and R.
Crawhall of NCIT, Ottawa and R. Munikoti and K.
Kalaichelvan of EION Inc., for supporting this research.

References
[1] Anquetil, N. and Lethbridge, T. C. (2003). “Comparative

study of Clustering Algorithms and Abstract Representations
for Software Remodularisation”, IEE Proc. on Software,
150(3), pp.185-201.

[2] Anquetil, N., Fourrier, C and Lethbridge, T. (1999).
“Experiments with Hierarchical Clustering Algorithms as
Software Remodularization Methods”, Proc. of Working
Conf. on Reverse Eng.

[3] Arnold, R. S. (1989). “Software Restructuring”, Proc. IEEE,
77(4), pp.607-617.

[4] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V. and
Swallow, G. (2001). RSVP-TE: Extensions to RSVP for LSP
Tunnels, RFC 3209.

[5] Bieman, J. M. and Kang, B.-K. (1998). “Measuring Design-
Level Cohesion”, IEEE Trans. on Software Eng., 24(2),
pp.111-124.

[6] Bieman, J. M. (1994). “Measuring Functional Cohesion”,
IEEE Trans. on Software Eng., 20(8), pp.644-657.

[7] Braden, R., Zhang, L., Berson, S., Herzog, S. and Jamin, S.
(1997). Resource ReSerVation Protocol (RSVP), RFC 2205.

[8] Briand, L., Morasca, S. and Basili, V. (1996). “Property-
based software engineering measurement”, IEEE Trans. on
Software Eng., 22(1), pp.68-86.

[9] Chikofsky, E. J. and Cross II, J. H. (1990). “Reverse
Engineering and Design Recovery: A Taxonomy”, IEEE
Software, 7(1), pp.13-17.

[10]Choi, A. C. and Scacchi, W. (1990). “Extracting and
Restructuring the Design of Large Software Systems”, IEEE
Software, 7(1), pp.66-71.

[11]Chu, W. C and Patel, S. (1992). “Software Restructuring by
Enforcing Localization and Information Hiding”, Proc. of the
Conf. on Software Maintenance, pp.165-172.

[12]Dhama, H.(1995). “Quantitative models of cohesion and
coupling in software”, J. of Sys. and Software, (29), pp.65-74.

[13]Everitt, B. (1974). Cluster Analysis. Heineman Educational
Books, London.

[14]Fenton, N. E. and Pfleeger, S. L. Software Metrics: A
Rigorous and Practical Approach. PWS Publication.

[15]Fowler, M. (1999). Refactoring: Improving the Design of
Existing Code, Addison-Wesley.

[16]Hutchens, D. and Basili, V. R. (1985). “System Structure
Analysis: Clustering with Data Bindings”, IEEE Trans. on
Software Eng., 11(8), pp.749-757.

[17]Kang, B.-K. and Beiman, J. M. (1999). “A Quantitative
Framework for Software Restructuring”, J. of Software
Maintenance: Research and Practice11, pp.245-284.

[18]Kang, B.-K. and Beiman, J. M. (1998). “Using Design
Abstractions to Visualize, Quantify, and Restructure
Software”, The J. of Sys. and Software, 42, pp.175-187.

[19]Kim, H. S. and Kwon, Y. R. (1994). “Restructuring
Programs through Program Slicing”, Int’l J. of Software

Engineering and Knowledge Eng., 4(3), pp.349-368.
[20]Lakhotia, A. and Deprez, J. C. (1999). “Restructuring

Functions with Low Cohesion”, Proc. of Working Conf. on
Reverse Eng., pp.36-46.

[21]Lakhotia, A. and Deprez, J. C. (1998). “Restructuring
Programs by Tucking Statements into Functions”, J. of Info.
and Software Technology, 40(11-12), pp.677-689.

[22]Lakhotia, A. (1997). “A Unified Framework for Expressing
Software Subsystem Classification Techniques”, J. of Sys.
and Software, 36, pp.211-231.

[23]Lakhotia, A. (1993). “Rule-based Approach to Computing
Module Cohesion”, Proceedings of the 15th Int’l Conf. on
Software Eng., pp.35-44.

[24]Lung, C.-H., Zaman, M. and Nandi, A. “Applications of
Clustering Techniques to Software Partitioning, Recovery
and Restructuring”, to appear in The J. of Sys. and Software.

[25]Lung, C.-H. (1998). “Software Architecture Recovery and
Restructuring through Clustering Techniques”, Proc. of the
3rd Int’l Workshop on Software Architecture, pp.101-104.

[26]Mancoridis, S., Mitchell, B., Chen, Y. and Gansner, E.
(1999). “Bunch: A Clustering Tool for the Recovery and
Maintenance of Software System Organizations of Source
Code”, Proc. of Int’l Workshop on Program Comprehension.

[27]Mancoridis, S., Mitchell, B. S., Rorres, C., Chen, Y. and Gansner,
E. R. (1998). “Using Automatic Clustering to Produce High-
Level System Organizations of Source Code”, Proc. of the 6th
Int’l Workshop on Program Comprehension, pp.45-52.

[28]Mitchell, B. S. and Mancoridis, S. (2001). “Comparing the
Decompositions Produced by Software Clustering Algorithm
Using Similarity Measurements”, Proc. of Int’l Conf. of
Software Maintenance.

[29]Müller, H. A., Wong, K. and Tilley, S. R. (1995).
“Understanding Software Systems Using Reverse
Engineering Technology”, Object-Oriented Technology for
Database and Software Sys., World Scientific, pp.240-252.

[30]Müller, H. A., Orgun, M. A., Tilley, S. R. and Uhl, J. S.
(1993). “A Reverse Engineering Approach to Subsystem
Structure Identification”, J. of Software Maintenance:
Research and Practice, 5(4), pp.181-204.

[31]Munson, C. J. (2003). Software Engineering Measurement,
Auerbach Publications, ACRC Press Company.

[32]Pressman, R. S. (1997). Software Engineering: A
Practitioner’s Approach, 4th Edition, McGraw-Hill, Inc.

[33]Romesburg, H. C. (1990). Cluster Analysis for Researchers,
Krieger Publishing Company, Malabar, Florida.

[34]Rosen, E., Viswanathan, A. and Callon, R. (2001).
Multiprotocol Label Switching Architecture, RFC 3031.

[35]Schwanke, R. W. (1991). “An Intelligent Tool for Re-
engineering Software Modularity”, Proc. of the 13th Int’l
Conf. on Software Eng., pp.83-92.

[36]Sneath, P. H. A and Sokal, R. R. (1973). Numerical
Taxonomy: The Principles and Practice of Numerical
Classification, W. H. Freeman and Company, San Francisco

[37]Sommerville, I. (1996). Software Engineering, 5th Edition,
Addison-Wesley, England.

[38]Tzerpos, V. and Holt, R. C. (1998). “Software Botryology
Automatic Clustering of Software Systems”, Proc. of the 20th
Annual Int’l Conf. of the IEEE, 3, pp.811-818.

[39]Wiggerts, T. A. (1997). “Using Clustering Algorithms in
Legacy Systems Modularization”, Proc. of the 4th Working
conf. on Reverse Eng., pp.33-43.

