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Abstract 
 
Program restructuring is a key method to improve the 
quality of ill-structured programs and therefore to 
increase the understandability and reduce the 
maintenance cost.  It is a challenging task and much 
research is still ongoing.  This paper presents an 
approach to program restructuring at the functional level 
based on the clustering technique with cohesion as the 
major concern.  Clustering has been widely used to group 
related entities together. The approach focuses on 
automated support for identifying ill-structured or low 
cohesive functions and providing heuristic advice in both 
development and evolution phases.  A new similarity 
measure is defined and intensively studied.  The approach 
is used to restructure real industrial programs.  The 
empirical observations show that the heuristic advice 
provided by the approach can help software designers 
make better decision of why and how to restructure a 
program.  Specific source code level software metrics are 
presented to demonstrate the value of the approach. 
 
 
1. Introduction 

 
In software lifecycle, the software evolution usually 

accounts for more than 60% of total software costs [37]. 
Müller, et al., indicate that 50-90% of software evolution 
work focuses on program comprehension or understanding 
[29]. An ill-structured program usually contains functions 
involving multiple activities, which makes the program 
difficult to understand. In real-world software 
development, software products are usually driven by tight 
schedules. Hence software designers  often emphasize 
more on the functional perspective than the non-functional 
quality attributes. It is difficult to maintain good design 
quality during the whole development process. Even 
though a software product is well designed, over time the 
code will be modified in response to the changing needs of 
customers and technologies. Its original structure 
gradually fades and degrades. The program becomes 
difficult to understand and change, and therefore it is often 
costly to maintain. 

Program restructuring is an important option in software 

evolution to improve deteriorated structure and to keep 
software maintenance cost under control. It is  also used in 
software development to turn a poorly designed program 
into a well-designed one [3]. The early days of 
restructuring efforts focused on making a program’s 
control flow easier to follow. This category is quite mature 
[3]. But for the functional structure, one challenge of 
restructuring is how to group meaningfully related code 
segments together inside of a large or poorly structured 
function to form small or cohesive functions, because it is 
not uncommon that unrelated fragments and functionally 
cohesive code segments are interleaved in practice.  

Previous research on program restructuring at the 
function level primarily uses program slicing and 
input/output dependence techniques to restructure modules 
with cohesion as the main criterion [17-21]. Conceptually, 
their works are similar. The methods presented in [17-19] 
use data and control dependence information between 
input and output variables to measure cohesion and make 
restructuring decision. These methods, however, do not 
reflect the code fragments that are not directly related to 
the output variables. The tuck transformation presented by 
Lakhotia and Deprez [20,21] complements those methods 
in [17-19] by computing pairwise cohesion. The method 
considers data and control dependence between all 
variables, but its process is complicated and difficult to be 
used in industry. In addition, if a function has only one 
output variable, there is only one slice and therefore the 
function reaches the greatest cohesion.  

In practice, especially in telecommunication program, it 
is common that some code fragments, such as error 
handling routines, may be not related to output variables. 
In such case, the slices of output variables cannot reflect 
the code fragment related to error handling. In addition, it 
is also common that in a large function there is only one 
output variable (a global variable), but the function 
involves multiple activities. Therefore, previous 
approaches have some limitations. 

Cohesion, as an important measure in restructuring, is to 
measure how tightly related between elements in a 
component. The goal of clustering is to group similar or 
related elements together. It is possible to use clustering 
analysis to measure the strength of relationship between 
elements in the component. Previous articles of software 
clustering demonstrate research potential in software 
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clustering field [38] and conclude that clustering methods 
may be a very good starting point for the remodularization 
of software [39]. But previous research on software 
clustering field is mainly concerned with software 
remodularization at the architecture level and has not been 
used in program restructuring at code level.  

This paper presents an approach for program 
restructuring with the clustering technique at the 
functional level. It focuses on the automated support for 
identifying low cohesive function and helps make 
restructuring decision, instead of automated restructuring 
process. The purpose is to help software engineers identify 
ill-structured functions and give them heuristic advice. In 
detail, this paper discusses how to select entities and how 
to select attributes that are important to distinguis h two 
different entities from the functional cohesion point of 
view. A new resemblance coefficient as a similarity 
measure is defined. Extensive experiments on the weight 
of different attributes are conducted. Three agglomerative 
hierarchical algorithms: single linkage algorithm (SLINK), 
complete linkage algorithm (CLINK) and unweighted 
pair-group method using arithmetic averages (UPGMA), 
are chosen in this paper. The comparison among them is 
made with case studies. 

The structure of the rest of this paper is as follows. 
Section 2 reviews the related works in both program 
restructuring and software clustering areas. Section 3 
proposes an approach for program restructuring with 
clustering technique and discusses the issues involved in 
the approach. Section 4 gives an extensive study on 
similarity measure by weighting attributes differently. 
Section 5 is a case study on an industrial program. 
Empirical observations are also summarized. Section 6 
presents conclusions and future works. 

 
2. Related Works 
 

The closely related works on program restructuring at 
the function level use the program slicing and input/output 
dependence techniques with cohesion as a criterion [17-
21]. Their ideas are similar, but they use different cohesion 
measures and different restructuring processes.  

Kim and Kwon [19] present a method of restructuring 
an ill-structured module, which applies program slicing to 
extract processing blocks and identify multi-function 
module. The method uses module strength as a criterion to 
decide how to restructure program. The processing blocks 
refer to tightly coupled sub-modules, similar to the data 
slices in [6], in which a slice is a group of data tokens that 
contribute to a particular output variable in terms of data 
and control dependence. Based on code implementation, 
module strength is defined in terms of the level of sharing 
between processing blocks. 

Kang and Beiman [17,18] introduce a method to 
restructure modules during the design or maintenance 

phase. The authors define input/output dependence graph 
(IODG) of a module, similar to the variable dependence 
graph (VDG) in [23], to model the data dependence and 
control dependence relationship between input and output 
components of a module. They also define association-
based design-level cohesion (DLC) measure, and slice-
based DLC and functional cohesion (FC) measures. 
Cohesion measures presented in these papers only 
consider dependence information between input and 
output components and do not reflect code fragments that 
are not related to the output components.  

Lakhotia and Deprez [20,21] use tuck transformation to 
restructure program by breaking large functions into small 
functions. Tuck includes three transformations: wedge, 
split and fold. A wedge is a subset of statements in a slice, 
which contains related computations. After a wedge is 
formed, it is split from the rest of the code and folded into 
a new function. The paper uses rule-based approach 
proposed in [23] to compute pairwise cohesion between 
variables in the function as a criterion of restructuring. The 
empirical study in the paper [20] shows that the approach 
has some limitations for industrial applications.  

Research on software clustering has also been done at 
design or architectural level. Tzerpos and Holt [38] present 
a survey and research potential of clustering approaches to 
software engineering, where they indicate that classic 
clustering techniques can be used in software context and 
there is research potential in software clustering field. 
Wiggerts [39] provides a general overview of clustering 
techniques and their applications to system re -
modularization, where the benefit from the general theory 
of clustering analysis is highlighted. Lakhotia [22] gives a 
survey on subsystem classification techniques and 
provides a unified framework for entity description and 
clustering methods to facilitate comparison between 
various subsystem classification techniques.  

Previous software clustering approaches concentrate on 
software system modularization or remodularization at the 
architectural or design level. They follow software 
engineering principle to obtain high intra -module cohesion 
or low inter-module coupling, or both. The entities are 
functions or files. Their similarity measures are either 
based on relationships between entities [16,24,25,27, 
28,30], or based on shared features [1,2,35], with or 
without giving weights to the relationships or features. 
Researchers use different information to measure the 
similarity based on different points of view.  

The clustering algorithms used in previous works fall 
into three categories: hierarchical algorithms [1,2,16,24, 
25,35], optimization algorithms [26-28], and graph 
theoretic algorithms [10,30]. The hierarchical algorithms 
are used the most. In hierarchical algorithms, the survey in 
[22] shows that most researchers prefer SLINK algorithm, 
but CLINK algorithm is suggested by [1] based on their 



 3 

experiments. It seems that different algorithms are suitable 
for the different applications.  

Clustering analysis in software engineering is a 
sophisticated research domain. It is researchers’ job to 
decide how to choose entities and entity’s attributes, how 
to measure and compute similarity, and which algorithm to 
use for a particular clustering problem. 

 
3. An Approach to Program Restructuring 

with Clustering Technique 
 

This section presents an approach for program 
restructuring with the clustering technique at the function 
level and discusses key issues of clustering technique. 

 
3.1 Program restructuring approach 

The program restructuring approach proposed in this 
paper is supported by a suite of tools. The objective of 
program restructuring is to improve the structure or 
internal strength of a function. Cohesion is used as the 
main criterion. The approach is based on clustering 
analysis for the entities and their attributes extracted from 
source code. The existing structure of a program with 
quantitative measure is shown in a clustering tree after 
clustering analysis. The approach provides information 
about existing structure of a function, quantitative 
structure measure, and heuristic advice for improving 
existing code. It can be used to help software engineers 
make a decision - why and how to restructure an existing 
program. Figure 1 shows the approach for program 
restructuring with clustering technique. Currently, the 
study is conducted for C programs; however, the technique 
can be applied to other languages as well. 

 
 

Data Collection 
  & Processing  

Parsing 

Data refining 

Data matrix 

Source code 

Clustering  

Similarity 
measure 

Constructing 
Clusters 

   Visualization  

     & Analysis 

Clustering tree 

Analyzing 
clustering tree 

Restructuring 

Decomposing  

Composing 

 
 

Figure 1. An approach of program restructuring 
 

The approach has four key phases as shown in Figure 1. 
Phase one is data collection and processing. In this phase, 
the Parser tool parses source code automatically and 
generates raw data of entity-attribute matrix. The raw data 
may contain some “noises” (unwanted data) and therefore 
data refining is used to remove those noises. The entity-
attribute matrix generated after data refining is the input 
data for the next phase – clustering.  

Phase two is clustering. The most important and 
fundamental step in clustering analysis is similarity 
measure. When entities and their attributes are defined, a 
metric called resemblance coefficient is adopted to 
measure the similarity between entities, which is discussed 
in section 3.4. After resemblance coefficient has been 
defined, clusters can be constructed using a certain 
clustering algorithm. Currently, the approach supports 
three agglomerative hierarchical algorithms: SLINK, 
CLINK and UPGMA. The Clustering tool performs this 
phase automatically. 

Phase three is visualization and analysis. After the 
clustering phase, the result is dis played as a clustering tree. 
It shows the existing structure of a function. Closely 
related entities are grouped into a cluster. The degree of 
relatedness of two entities in a cluster is represented by a 
resemblance coefficient, which is also shown in the tree. 
By examining the tree, ill-structured code fragments can 
be identified, which are candidates for restructuring. 
Clustering tree provides heuristic advice on how to 
restructure a function. But software engineers must 
participate in making the final decision based on their 
experience, insights, and the restructuring objectives.  

Phase four is the actual restructuring of a program. 
Identified low cohesive functions will be decomposed into 
several code fragments and some of them are composed 
into new functions. This phase is processed manually. 

 
3.2 Entities 

To apply clustering to programs, we need to identify 
entities. There are two types of statements, executable and 
non-executable statements. Non-executable statements, 
such as comments and declarations, have no real effect on 
the functionality provided by the function. So they are not 
selected as entities. Executable statements include 
assignment statements, predicate statements, iteration 
statements, function call statements, end statement and so 
on. In the restructuring approach, an entity is an 
executable statement that is related to a functional activity 
and can be described by its attributes (attributes are 
discussed in the next section). Entities are further divided 
into control entities and non-control entities. A control 
entity refers to an entity that is either a predicate statement 
(such as if or switch statement) or iteration statement (such 
as for or while statement). If an entity is not a control 
entity, it is a non-control entity. Each entity is represented 
by a number, which is corresponding to the line number of 
a statement in the source code.  

 
3.3 Attributes 

An attribute is a feature of an entity. An entity may have 
many attributes. Different properties of an entity can be 
described by different attributes. But selected attributes 
must contribute to the understanding of predefined 
objective criterion.  
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A statement consists of variables, constants, operators, 
key words, brackets, function names (in function call 
statements) and semicolon (for C programs). In the context 
of cohesion, a statement is evaluated to see if it is related 
to a functional activity. Different variables and function 
names may be related to different functional activities and 
therefore are used as attributes. Constants, operators and 
key words are not chosen as attributes.  

Based on data dependence and control dependence 
relationship, variables are divided into data variables and 
control variables, which are described in the following: 

Data variable. A data variable refers to the variable that 
is directly used in a statement. Data variables as a type of 
attribute in a function reveal the data dependence 
relationship of the entities. Data variables include local 
variables, global variables, and parameters passed to the 
function. They can also be divided into two types of 
variables: variables with a primitive type and variables 
with a composite type or a user defined type. A composite 
variable, such as an array, a linked list, or a user defined 
data structure (struct), is treated as one variable. In 
addition, a function name in a function call statement is 
also treated as a data variable. 

Loop counter variable. A loop counter variable is 
another kind of data variable and is used to count the 
number of times that a loop is repeated. Because the 
restructuring focuses on static functional structure, no 
matter how many times a loop is repeated, the loop body is 
treated to have the same relatedness to one or more 
functional activities. In addition, the loop counter is 
usually associated with a composite variable, e.g., an 
index variable used in an array. Therefore, the loop 
counter variable is not counted as an attribute of an entity.  

Control variable. In order to reveal control dependence, 
control variables are postulated as a type of attribute in the 
restructuring approach. A control variable is one that is 
artificially added to an entity in a control block. It is a 
logical variable used to describe control dependence 
relationship between entities. Entities with the same 
control variable mean that they belong to the same control 
block, e.g., if or while, in the source code.  

Therefore, in the restructuring approach, data variables 
(excluding loop counter variables) and control variables 
are chosen as attributes to describe entities. They are also 
called data attributes and control attributes, respectively. 
Each attribute is measured on qualitative scale as binary 
representation. Thus each attribute has two states, either 
presence or absence, which are described below. 

0 – absence state of a control or data attribute 
1 – presence state of a control attribute 
2 – presence state of a data attribute 

In addition, the data attributes in control entities are 
treated as control attributes. Between any two entities, 
there are six different types of matches described below. 

• 1-1 match: a control attribute is present in both 

entities. 
• 2-2 match: a data attribute is present in both entities in 

case neither of them is a control entity. 
• 0-0 match: an attribute is absent in both entities. 
• 1-0 or 0-1 match (mismatch): a control attribute is 

present in one entity but absent in the other.  
• 2-0 or 0-2 match (mismatch): a data attribute is 

present in one entity but absent in the other. 
• 2-1 or 1-2 match: a data attribute is present in both 

entities in case one of them is a control entity and the 
other is a non-control entity. 

 
3.4 Similarity measure 

Similarity measure is used to evaluate cohesion and is 
represented with a resemblance coefficient. It has two 
features: Attributes and Matches. 

Attributes. Generally, the more attributes two entities 
share, the closer they are related and the more similar they 
are. There are two types of attributes: data attributes and 
control attributes. From the cohesion point of view, these 
two types of attributes contribute to different degree of 
cohesion because they describe different dependence 
relationship between entities. Lakhotia [23] indicates that 
two variables which have data dependence relationship 
have higher cohesive than two variables that have control 
dependence relationship. Therefore data attributes and 
control attributes should be weighted differently.  

Data attributes have different types, namely a local 
variable, a global variable, a parameter passed to the 
function or a function name in a function call statement. It 
is important to understand if we need to treat these 
different types of data attributes differently. In addition, a 
data attribute may appear in a non-control entity or a 
control entity. Hence it is also important to understand if a 
data attribute is measured equally when it describes 
different types of entities. We analyze the different types 
of data attributes as follows: 

Variable scope: A global variable can be referenced by 
multiple functions in a program. It may be related to many 
different functional activities. A local variable is 
referenced inside a function and it is only related to the 
functional activities provided by the particular function. 
But at the function level, from the functional activity point 
of view, there is no difference between a global variable 
and a local variable. In a low cohesive function, a global 
variable may be referenced by several different activities. 
But a local variable or a parameter passed to the function 
may also have the same situation. Hence, a global variable 
and a local variable in a function play the same important 
role on function cohesion and therefore are treated equally. 

Function call: A function name in a function call 
statement is treated as a data variable. In this restructuring 
approach, a function call statement is treated as a non-
control entity. Different functions usually perform 
different tasks or activities. A function name is used to 
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distinguish different function calls corresponding to 
different functionality. So a function name  in a function 
call is measured in the same way as a local variable. 

Data attributes in control entities: A control entity is 
different from a non-control entity in that it has an indirect 
contribution to a functional activity. When a variable or a 
data attribute appears in a control entity, it has no direct 
relatedness to an activity. But when a data attribute is used 
in a non-control entity it is directly related to an activity. 
Therefore, data attributes in control statements or entities 
should be treated differently from those in non-control 
entities. In the proposed approach, data attributes used in 
control entities are simply treated as control attributes.  

Therefore, all data attributes in data entities are 
considered to have equal importance to functional 
cohesion, thus having the same weight. As the data 
attributes in control entities are treated as control 
attributes, the problem of the weighting attributes boils 
down to the problem of the weighting between control 
attributes and data attributes. We believe that data 
attributes should be weighted more than control attributes, 
since a data attribute affects a functional activity directly 
while a control attribute affects indirectly. 

Matches . Now, the problem is to determine the weights 
for matches that play different roles on similarity measure.  

0-0 match: An 0-0 match means that an attribute is not 
used in either of the two entities. In an entity-attribute 
matrix, there are usually many attributes that are used in a 
function. But for each individual entity, it is only related to 
a few attributes and most of them are valued with 0. There 
are many 0-0 matches in the matrix. Lung et al. [24] 
address that counting 0-0 matches will generate distortion 
and result in dissimilarity. The study presented in [1] also 
shows that better results are obtained without considering 
0-0 matches. In the program restructuring, the similarity of 
two entities is not affected by adding unrelated attributes 
to the function. Therefore, 0-0 matches are ignored.  

1-2 / 2-1 match: This kind of match occurs between one 
control entity and one non-control entity when they share a 
common data attribute. When these two entities are in the 
same control block, they share a common control attribute 
and there is a 1-1 match that counts the control 
dependence. Thus there is no need to use 1-2 / 2-1 matches 
to describe control dependence again. When these two 
entities are not in the same control block, they do not have 
control dependence. So 1-2 / 2-1 matches are also ignored. 

1-1 match and 2-2 match. 1-1 matches and 2-2 matches 
mean that two entities share common attributes, which 
have a positive contribution to the similarity measure. A 1-
1 match indicates that two entities have a control 
dependence relationship, or two control entities share a 
common data variable. It reflects the control structure of a 
function. A 2-2 match shows that two entities have a data 
dependence. Because data dependence contributes more to 

cohesion than that of control dependence, a 2-2 match 
should have more weight than that of a 1-1 match. 

1-0 / 0-1 match and 2-0 / 0-2 match. A 1-0 / 0-1 match 
is a mismatch on a control attribute and shows the 
dissimilarity on control dependence or control structure. A 
2-0 /  0-2 match is a mismatch on a data attribute and 
describes the dissimilarity on data dependence. Both 
contribute to the dissimilarity between entities. If matches 
on common data attributes (2-2 matches) play more 
important role on similarities between entities than 
matches on common control attributes (1-1 matches), then 
mismatches on data attributes (2-0 / 0-2 matches), should 
also have more importance on dissimilarity than 
mismatches on control attributes (1-0 / 0-1 matches). 
Hence, 2-0 / 0-2 matches should be weighted more than 1-
0 / 0-1 matches.  

In summary, 0-0 matches and 1-2 /  2-1 matches are 
ignored; 2-2 matches have more contribution to the 
similarity than that of 1-1 matches; and 2-0 / 0-2 matches 
have more contribution to the dissimilarity than 1-0 / 0-1 
matches. The matches on data attributes are more 
important than on control attributes. The weighting of 
matches is consistent with the weighting of attributes.  

Resemblance Coefficient. Based on discussion 
mentioned above, a new resemblance coefficient between 
two entities is defined as follows. 

ccddccdd

ccdd

bwbwawaw
awaw

coeff
+++

+
=                         (1) 

      
where: coeff - resemblance coefficient 

da - number of 2-2 matches between two entities 

ca - number of 1-1 matches between two entities 

db - number of 2-0 and 0-2 matches between two 
entities 

cb - number of 1-0 and 0-1 matches between two entities 

dw - weight of data attributes 

cw - weight of control attributes 
0>> cd ww . 

Here, the weight of an attribute represents its importance 
comparing to other attributes. Attributes in the same type 
are weighted the same and the weight of data attributes is 
heavier than control attributes. If there is no common 
attribute shared by two entities, they are unrelated 
and 0=coeff . If all attributes used to describe two entities 
are shared by them, 0=db and 0=cb , then they achieve 
the maximum similarity with 1=coeff . The value of the 
resemblance coefficient is between 0 and 1.  

 
4. Experiments on Similarity Measure  
 

Resemblance coefficient has been defined, but how to 
decide the weights is still unsolved. Previous research did 
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not give systematic study on this issue. Dhama [12] uses 
heuristic estimate to give data parameters twice weight as 
much as control parameters. Schwanke [35] estimates the 
significance of a feature by Shannon information content, 
which gives rarely-used identifiers higher weights than 
frequently-used identifiers. In this paper, the weights of 
attributes are considered as positive integer and decided 
through extensive experiments.  

Different weight ratios are used in the resemblance 
coefficient to analyze 30 functions appeared in papers [5, 
6,19,20], student assignments, and real industrial 
programs. The size of each function ranges from 8 lines to 
55 lines (not including comments and white spaces). The 
experiments start with weight ratio of 2:1, that is, in 
equation (1), 2=dw and 1=cw . 

Throughout the experiments, all three clustering 
algorithms: SLINK, CLINK and UPGMA are used. 
CLINK tends to form large number of compact clusters 
and only gives good results for small examples. SLINK 
and UPGMA give similar results throughout the 
experiments. The results shown in this section are 
generated by UPGMA algorithm. 

Weight ratio of 2:1 . The weight ratio of 2:1 works well 
for most of selected examples. But it does not work well 
when it is used to analyze an example with communication 
cohesion in [5]. The example code is shown in Figure2, 
the entity-attribute input matrix is shown in Table1 and 
Figure 3 illustrates the clustering result.   

 

 
 
 
 
 
 
 
 
 

Figure 2. Sample code 1: Sum and Prod [5] 
 
Table 1. Entity-attribute matrix of sample code 1 

in Figure 2 
Attribute 

Data attribute Control 
attribute 

Entity 

n arr sum  prod avg for 
4 0 0 2 0 0 0 
5 0 0 0 2 0 0 
6 1 0 0 0 0 1 
7 0 2 2 0 0 1 
8 0 2 0 2 0 1 

10 2 0 2 0 2 0 
 
Figure 3 shows that entities (7,8) are grouped together, 

and entities (4,10) are grouped together. But in fact, 
entities (4,7) are related to the same functional activity – 
computation of sum. Entity 10 uses the result of sum to 

compute average avg. Entities (5,8) contribute to the same  
activity – computation of product prod. The tree does not 
reveal the real functional structure in this example. 
 

 
 
 
 
 
 
 
 

Figure 3. Clustering tree with 2:1 weight ratio 
for sample code 1 in Figure 2 

 
The resemblance coefficients between those entities 

give the explanation of the result. 
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Because )7,4()8,7( coeffcoeff >  and )8,5()8,7( coeffcoeff > , 

the algorithm groups entities (7,8) together instead of 
entities (4,7) and entities (5,8) together, respectively. 
Although data attributes are weighted twice as much as 
control attributes, it seems that control attributes still play 
a little bit more role on similarity measure than they 
should and more weight should be added to data attributes. 

Weight ratio of 3:1. The weight ratio of 3:1 is used in 
sample code 1 in Figure 2 and the result is shown in 
Figure 4. The clustering tree illustrates two clusters: C1 
and C2. Cluster C1 has three entities (4,7,10), which are 
related to the computation of sum and avg. Cluster C2 
consists of two entities (5,8), which are related to the 
computation of product prod. Entity 6 is a control entity 
that is shared by two computation activities. The tree 
shows the real functional structure. 
 
 
 
 
 
 
 
 
 

Figure 4. Clustering tree with 3:1 weight ratio 
                           for sample code 1 in Figure 2 
 

With 3:1 weight ratio, the clustering result of sample 
code 2 is totally different from the result with 2:1 weight 

1 procedure sum_and_prod(n: integer; arr: int_array; 
                               var sum, prod: integer;  var avg: float); 
2 var i: integer; 
3 begin 
4     sum := 0;  
5     prod := 0;  
6     for i:=1 to n do begin 
7           sum := sum + arr[i];  
8           prod := prod + arr[i];  
9     end; 
10     avg := sum/n;  
11 end; 
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ratio. Now the resemblance coefficients of entity pairs 
(4,7), (5,8) and (7,8) are as follows. 

43.0
1)13()13(

13
)7,4( =

+×+×
×

=coeff . 

43.0
1)13()13(

13
)8,5( =

+×+×
×

=coeff . 

30.0
)23(1)13(

1)13(
)8,7( =

×++×
+×

=coeff . 

Here, )8,7()7,4( coeffcoeff >  and )8,7()8,5( coeffcoeff > , so 

entities (4,7) and (5,8) are grouped together, respectively.  
Sample code 2 in Figure 5 is an example from an 

industrial program. It is the implementation of processing 
token body based on token type in a C code parser 
program. The main functional activity is to process token 
body with unreserved token type, which is implemented in 
the source code from line 27 to line 57.  

Figure 6 shows the clustering result with weight ratio of 
3:1. The cluster C1 is related to the activity of processing 
body with unreserved token type, which should be 
involved by entities between 27 to 54 as mentioned above, 
entity 26 is grouped with entities (18,20) because they 
share the same control attribute token_type. But entities 16 
and 19 interleave the cluster C1. Entity 16 merges with 
this cluster by sharing a common data attribute token with 
entities (30,38,43,45). Entity 19 joins to cluster C1 by 
sharing a common data attribute cntl_flag with entities 
(32,36,40,50). This shows that data attributes with 3:1 
weight ratio may play a little bit more role on similarity 
measure than they should. In the experiment, different 
weight ratios between 2:1 and 3:1 have been tested. Those 
ratios are 9:4, 7:3, 5:2, and 8:3. 

Weight ratios of 9:4 and 7:3 . When weight ratio of 9:4 
or 7:3 is used to sample code 1 in Figure 2, both of them 
generate similar clustering tree as the one with weight 
ratio of 2:1 shown in Figure 3. So both 9:4 and 7:3 weight 
ratios do not work well for the sample code 1.  

Weight ratios of 5:2 and 8:3 . When weight ratio of 5:2 
or 8:3 is used to sample code 1 shown in Figure 2, both of 
them generate similar clustering tree as the one with 
weight ratio of 3:1 shown in Figure 4. So both 5:2 and 8:3 
weight ratios work well for sample code 1. When these 
two ratios are used to the sample code 2 in Figure 5, they 
generate very close results. Figure 7 shows the clustering 
tree generated from 8:3 weight ratio for the sample code 2.  

Figure 7 shows that cluster C1 contains exact entities 
that are related to the activity of processing token body 
with unreserved token type. Entities 16 and19, which are 
inside the cluster in Figure 6 with the weight ratio of 3:1, 
are now outside the cluster. This is because the weight of 
data attributes is reduced. The relationship between entity 
16 and entities (30,38,43,45) by sharing a common data 
attribute token becomes weaker and entity 16 is separated 
from cluster C1. The same reason is for entity 19. The tree 
reveals the real functional structure of the samp le code 2. 

Both 8:3 and 5:2 ratios work well in this example. These 
two weight ratios also give expected results for all selected 
examples in the experiment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Sample code 2: Process Body 
 

 
 
 
 
 
 
 
 
 

Figure 6. Clustering tree with 3:1 weight ratio 
                           for sample code 2 in Figure 5 
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1 process_body (char[] token, int *token_type, int *cntl_flag,   
                int *strcpy_flag, int equal_flag, int line_no) 
2 {   
3     int  position;  
4     int  check_type_process_reserved (); 
5     int  search_local_list     (); 
6     int  search_decl_keywords  (); 
7     int  search_decl_user      (); 
8   
       //...  
16    *token_type = check_type_process_reserved (token); 
17   
18    if (*token_type == CNTL_KEY) 
19        *cntl_flag = TRUE;  
20    else if (*token_type == LIBRARY_FUNC) { 
21        if (strcmp (token, "strcpy") == 0) 
22           *strcpy_flag = TRUE;  
23        else 
24           ;   /* to avoid ambiguity of nested if */  
25    } 
26    else if (*token_type == IDENTIFIER) {  
27        if (! search_decl_keywords (token) && 

        ! search_decl_user (token)){ 
28           //... 
30           position = search_local_list (token); 
31           if (position != -1) {     
32              update_local_list (position, *cntl_flag, line_no); 
                  //... 
36              update_para_list (*strcpy_flag, equal_flag,   
                                               *cntl_flag, position); 
37           } else { 
38               position = search_global_list (token); 
39               if (position != -1) { 
40                  update_global_list (position, *cntl_flag, line_no); 
41                           
42                  if (global_list [position].type == GLOBAL) 
43                      put_token_into_local_list (token, GLOBAL); 
44                  else if (global_list [position].type == FUNCTION) 
45                      put_token_into_local_list (token, FUNCTION);                          
                       //... 
49                  position = local_count - 1;  
50                  update_local_list  (position, *cntl_flag, line_no); 
51              } 
52          } /* end of outer if (position != -1) */ 
53           if (*strcpy_flag) 
54               *strcpy_flag = FALSE;  
55   
56       } /* end of if (!search_decl_keywords ...)  */  
57    } /* end of if (*token_type == IDENTIFIER)  */ 
58 } 
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Figure 7. Clustering tree with 8:3 weight ratio 
                         for sample code 2 in Figure 5 

 

In summary, six different weight ratios have been used 
in a series of experiments. The weight ratios of 2:1, 9:4 
and 7:3 do not work for the sample code 1 shown in 
Figure 2. The weight ratio of 3:1 works well for the 
sample code 1 but does not work well for sample code 2 
presented in Figure 5. Both 5:2 and 8:3 ratios work very 
well in all selected examples and generate very close 
results. The ratio of 8:3 is then chosen to weigh data 
attributes and control attributes in similarity measure. 

 
5. Case Study 
 

In order to evaluate how effectively the proposed 
approach can be applied to the real industrial software, the 
approach is used to restructure a real industrial program. 

 
5.1 System under case study 

The system under case study is a real network protocol 
RSVP-TE program in telecommunication industry. RSVP 
[7] is a resource reservation protocol that enables Internet 
applications to obtain different qualities of service (QoS). 
RSVP-TE [4] is a signaling protocol that extends the 
RSVP to support multiple protocol label switching 
(MPLS) [34] traffic -engineering applications. RSVP-TE 
provides a mechanism to establish and maintain explicitly 
routed label switched paths (LSPs) [34] with or without 
resource reservation.  

The original RSVP-TE program was completed by 
schedule-driven. It was designed by providing only basic 
functionality for simple cases, and then was added more 
functionality during conformance test to satisfy the 
specification of the protocol. The emphasis of the software 
development is on functionality. RSVP-TE program was 
written in C with about 6,500 lines of code (LOCs) (in this 
paper, all LOCs do not include comments and white 
spaces) and 110 functions. Some functions are large and 
involve more than multiple functional activities. The 
understandability of the code was low. Maintaining and 
extending the code for additional functionality was less 
than desirable. In order to improve the design quality, 24 
functions with total 2,147 LOCs code are selected as 
restructuring candidates. The function size ranges from 32 
LOCs to 253 LOCs with an average of 89.46 LOCs. 

5.2 Restructuring results 
After clustering analysis, 17 functions out of 24 selected 

functions that are identified involve more than one 
functional activity. Some of them also have duplicated 
code or interleaved code. In order to support long-term 
maintainability and evolution, those 17 functions are 
chosen for restructuring. In order to compare restructuring 
results, Krakatau metrics tool is used to calculate metrics 
of size and cyclomatic complexity. Cohesion measure 
suggested by Anquetil and Lethbridge [1], in which 
cohesion of a function is the average resemblance 
coefficient between any two entities in the function, is 
used to measure function cohesion.  

 

Table 2. Comparison before and after restructuring 

Metrics  Before  After changed 

Average lines per 
function 

93.24 37.29 - 60.00% 

Average cyclomatic 
complexity of a function 19.47 7.69 - 60.50% 

Average cohesion of a 
function 0.08 0.16 +100% 

 

Table 2 gives the summary of comparison before and 
after restructuring. In the case study, the 17 poorly 
designed functions with total 1,585 LOCs are restructured, 
which represent 24.38% of the RSVP-TE program. After 
restructuring, 34 new functions are generated. Compared 
with original 17 functions, after restructuring, the average 
size of a function drops by 60% from 93.24 LOCs to 37.29 
LOCs, the average cyclomatic complexity decreases by 
60.5% from 19.47 to 7.69, and average cohesion increases 
by 100% from 0.08 to 0.16. The restructuring shows 
measurable improvement over the original functions. The 
complexity improvement is significant.  

 
5.3 Empirical observations 

In the case study, the restructuring approach is used for 
24 functions in the RSVP -TE program. In general the 
approach works well and provides heuristic advice. The 
following presents a list of empirical observations and 
limitations. 

 Functional clusters. Related entities are grouped 
together to form a cluster. If the cluster corresponds to a 
specific functional activity, it is a functional cluster. A 
clustering tree shows functional clusters and gives 
heuristic advice to designers to consider restructuring. 

Duplicated code . A clustering tree also shows some 
patterns. The same pattern that appears more than once in 
a clustering tree, may illustrate problems related to 
duplicated code. This happened in the case study. 

Interleaved code. Normally, if there is no interleaved 
code, a cluster corresponds to a contiguous fragment of 
code, e.g., all entity numbers are inside a certain range. If 
an entity number belongs to that range but is not grouped 
into that cluster, the entity may be an interleaved entity. 
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Cut-point . In some cases, there is no single cut-point 
used to cut the whole clustering tree and get meaningful 
results. Especially in a large clustering tree, there may 
exist different cut-points used to cut different branches 
(functional clusters). Each branch that corresponds to a 
specific functionality is cut and moved to a new function.  

Comparison of algorithms. In the case study, the 
restructuring approach has been experimented on all 24 
functions with three clustering algorithms: UPGMA, 
SLINK and CLINK. There is only one function for which 
all three algorithms generate the expected result and two 
functions for which both UPGMA and SLINK work very 
well. In total, UPGMA works well for 14 functions and 
SLINK works well for13 functions. But CLINK does not 
work well in the case study. The detailed results are not 
shown here because of page limits. 

Although clustering analysis in the restructuring 
approach can show functional clusters and reveal some 
potential problems in the source code, there are still some 
limitations.  

Non-functional clusters. A non-functional cluster refers 
to a cluster that dose not contribute to a specific 
functionality. Examples of non-functional clusters are 
clusters that contain only control entities, or entities with 
one attribute such as the same flag variable and etc. 
Usually a non-functional cluster is connected to a 
functional cluster and both of them together form a more 
completed functional cluster. But it may also appear 
independently. It is  the software designer’s responsibility 
to identify whether a cluster is a functional cluster or non-
functional cluster primarily due to possibly complicated 
program semantics and other factors, e.g., performance. 

Singleton clusters. A singleton cluster refers to a cluster 
that contains only one entity. It usually represents a 
relatively independent control statement, a function call 
statement or an initialization statement. It is also the 
software designer’s responsibility to decide whether a 
singleton cluster should be grouped to another cluster or 
not. 

Big data structures. In the RSVP-TE program, there is a 
global variable rsvpNode, which is a big data structure 
(struct) with 52 member variables. In the restructuring 
approach, such variable is treated as one variable. 
Therefore different functional activities that are related to 
different member variables could be grouped together. 

One variable related to multiple functionalities. In 
some functions, one variable may be used in entities that 
are participated in different activities and these entities 
tend to be grouped together. 

 
6. Conclusions  and Future Directions  

 
This paper presented a program restructuring approach 

using the clustering technique for C programs. The main 
focus was on the selection of entities and attributes, 

similarity measure, resemblance coefficient experiments, 
and the application of the approach to an industrial 
program. The main goal of the restructuring approach was 
to provide automated support to identify ill-structured low 
cohesive functions and give heuristic restructuring advice 
to software designers improve the cohesion of functions in 
both software development and evolution phases. 

In the restructuring approach, entities are divided into 
control entities and non-control entities. Similarly, 
attributes are divided into data attributes and control 
attributes. A new resemblance coefficient is defined to 
measure similarity between entities with respect to 
cohesion. The experimental study of various weight ratios 
between the data attribute and the control attribute shows 
that the weight ratio of 8:3 (or 5:2) consistently generates 
the expected results for all selected examples under study. 
As a case study, the approach was used to analyze a real 
telecommunication program and subsequent restructuring. 
In general, the approach works well. The clustering 
analysis based on the resemblance coefficient defined in 
this paper can identify high cohesive sub-functions inside 
of a large low cohesive function and reveal potential 
problems in the existing code.  

In real programs, there are many artifacts and the code 
may be written in an ad hoc manner or drifted away from 
the original design idea due to evolution. The resemblance 
coefficient defined in this paper only considers main 
factors related to functional cohesion. Although the weight 
ratio between data and control attributes was extensively 
studied, there are still some limitations. Software designers 
need to identify which clusters are functional clusters and 
which are non-functional clusters. They also need to 
decide where those singleton clusters should be placed. In 
addition, big data structure with more independent 
member variables tends to group different functional 
activities together.  

The main contribution of this paper is that a new 
resemblance coefficient as similarity measure for program 
restructuring at the function level was defined and 
intensively studied. The restructuring approach based on 
this resemblance coefficient was applied to an industrial 
program. The result showed that the heuristic advice 
provided by the clustering analysis was helpful. 

In this paper, the restructuring approach was applied to a 
real telecommunication program and worked well. 
Different types of program may have different features 
which might affect the cohesion or similarity measure. 
More experiments are still needed for other types of 
programs . In addition, the clustering result  were only 
compared with the expected result, objective criteria to 
evaluate clustering results should be developed in the 
future. The cohesion measure defined in [1] is based on 
pairwise similarity measure and therefore it may not be 
entirely objective. And the value of the cohesion measure 
is very low because some entities may not share any 
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common attributes. How to quantitatively measure the 
cohesion still needs further research. 
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