
Clone Detection in Source Code by Frequent Itemset Techniques

Vera Wahler, Dietmar Seipel, Jürgen Wolff v. Gudenberg, and Gregor Fischer

University of Würzburg, Institute for Computer Science
Am Hubland, D – 97074 Würzburg, Germany�

wahler,seipel,wolff,fischer � @informatik.uni-wuerzburg.de

Abstract

In this paper we describe a new approach for the de-
tection of clones in source code, which is inspired by the
concept of frequent itemsets from data mining.

The source code is represented as an abstract syntax tree
in XML; we can use different kinds of XML–languages for
different programming languages, such as Java, C++, or
PROLOG. Our approach is very flexible; it can be config-
ured easily to work with multiple languages.

1. Introduction

A frequently observed phenomenon in larger software
projects is that certain pieces of code are copied and slightly
modified for reuse. A reason for this is the wish of the
programmer to take advantage of existing software compo-
nents. This is not a bad strategy, since components, that are
already used, are well tested and known to work. Moreover,
in most situations copying the required code fragments is
the fastest way to software reuse. Methods for a better en-
capsulation of the code require a considerable amount of
time. In most situations it is hard to produce a working ver-
sion of the software in time and there is no time left for
improving the code.

The handling of duplicated code can be very problematic
in many respects. An error in one component is reproduced
in every copy. Since it is not documented in which places
duplicates can be found, it is extremely hard to find and re-
move such errors. The maintenance of existing software be-
comes much more complicated and costly. Moreover, blow-
ing up the code reduces the level of abstraction of the code,
which is highly undesirable, since it becomes much harder
for others to get acquainted with the code, e.g. for adding
new functionality.

It is very likely, that one cannot avoid the occurrence of
clones due to the programming with copy and paste. Thus,
it is a good strategy to provide tools for the program devel-

oper for finding duplicates and for preparing reports about
them.

Various attempts have already been made to finding du-
plicates in software projects. However, most of the known
techniques are restricted to analysing certain programming
languages. Tests have shown [4] that none of the existing
approaches produces optimal results in any case.

We have developed a new method based on the concept
of frequent itemsets that works on an XML–representation
of the program [6]. Hence, our method could be extended
for searching clones in general tree structures, since we
work on a more abstract level.

The rest of the paper is organized as follows: After pre-
senting some basic definitions regarding clones in Section
2, we recapitulate some related work on clone detection in
Section 3. In Sections 4 and 5 we introduce our new ap-
proach to detecting clones, which is inspired by the concept
of frequent itemsets, including the XML–representations for
the programs and the configuration data. Finally, two case
studies are reported in Section 6.

2. Basic Definitions

Code Fragments. A code fragment is a contiguous piece
of source code, i.e. one or more successive lines. In our
approach one simple statement, which usually corresponds
to one line of code, is the smallest unit of measurement.

Different Types of Clones. A clone is a copy of a code
fragment. Usually, clones consisting out of more than 5
statements are considered interesting. Since the clone rela-
tion is symmetric we better say that the origin and the copy
form a clone pair.

To further characterize different types of clones we adopt
the notation of [4]: A textual copy where only formatting
white space or comments may be changed is called a clone
of type 1.

More interesting are clones of type 2, where parameters
or variables may have different types or names.

1

We consider binary expressions as clones, if both
operands form an expression clone pair. This recursive def-
inition is anchored on the fact that two different variables or
constants are taken as clones, respectively, whereas simple
variables are distinguished from array accesses or constants.
E.g., the following assignment statements t = a[0] and
max = a[2] are clones of type 2.

Finally, in clones of type 3 one or more statements may
be inserted or deleted. Although these are the most com-
mon clones, they are very hard to detect. Most of the cur-
rent clone detection mechanisms including ours cannot deal
with clones of type 3.

3. Related Work

According to [15] clone detection techniques can be di-
vided into string–based, token based or parse tree–based.

Since string–based methods like the ones of Baker or
Rieger [1, 5] usually work on the source code directly, they
are quite general and may be applied to various languages.
On the other hand, the semantics of the underlying program-
ming language is completely ignored. These methods need
no internal data structure, but [1] uses p–suffix–trees for op-
timizing the pattern matching.

Kamiyas approach [10] approach is token–based. The
sequence of tokens is produced by a scanner and it becomes
transformed to a new sequence of tokens by language spe-
cific transformation rules and by the replacement of param-
eters. The last step is the comparison of the possible sub-
strings, and the result is a set of clone pairs.

The parse tree or abstract syntax tree (AST) contains the
complete information about the source code. Hence more
sophisticated methods for the detection of clones can be
applied. Baxter [3] generates an annotated parse tree by
a compiler generator and then searches for clones. Krinke
[11] has chosen program dependency graphs (an extension
of ASTs) as the internal format. He uses an iterative ap-
proach for detecting maximal similar subgraphs. Addition-
ally, Merlo uses metrics, which are applied to an AST–
representation to find clones. His unit for measurement are
the bodies of functions. A similar technique is described in
[14]. Our approach is also parse tree–based. However, we
use an XML–representation, and thus we add one level of
abstraction.

A comparison of the methods known from literature has
shown that so far there exists no single method that is su-
perior to all other methods in all situations [4, 15]. All ap-
proaches have certain advantages and disadvantages. Tech-
niques that detect many clones (high recall) also return
many code fragments which are no clones (lower precision).
In turn, techniques with a high precision will usually have a
lower recall.

A major deficiency in all approaches is that too few

clones are detected [4]. Most approaches can find clones of
type 1 more easily than clones of type 2. Kamiya, Krinke,
Merlo, and Rieger mention that their approaches can also
find clones of type 3, but in practise only Krinke’s approach
does. In his approach, however, the clones of the other types
are found with a very low recall, and the running time is ex-
ponential. Thus, clones of type 3 cannot be larger than a
certain size.

4. Finding Clones as Frequent Itemsets

Starting with the XML representation of the AST we gen-
erate our initial database and we employ a link structure and
a hash table to speed up the data access. The second step is
the application of the algorithm for finding frequent item-
sets. Figure 1 shows the overall view of the approach.

Figure 1. Overall Architecture

4.1. Frequent Itemsets in Data Mining

In data mining [8] frequent itemsets are used to illus-
trate relationships within large amounts of data. The classi-
cal example is the analysis of the buying–behaviour of cus-
tomers. The database consists of a set of transactions, and
each transaction is a set of items (individual articels) from a
universal itemset ��� .

The goal is to find itemsets � that are subsets of many
transactions � in the database � (���	�). An itemset is
called frequent, if it occurs in a percentage that exceeds a
certain given support count
 :

����������� ����� � ������� �
� � �

�
��
An itemset consisting of items is called –itemset.

The method for finding frequent itemsets is iterative.
First, the set !#"�� � �$�%�&� �'� � � �)(+*,
����� �
-�
of all frequent 1–itemsets is constructed. The generation of!�. from !�.0/ " is divided into two steps: In the join step
the set 1#. of all the possible candidates for !#. is build by
combining itemsets from !2.3/ " that overlap in 5476 items:

198. � � � "�: �<; � � ">= �<;?�@!�.3/ " * � � "BA �<; � �� C4762�D�
2

12. contains all itemsets �E��1 8. , such that all F4G(–subsets� 8 of � are in !2.0/ " . This construction is allowed due to
the so–called apriori–property, which says that all subsets
of frequent itemsets have to be frequent, too. During the
prune step the frequent –itemsets are selected from 1 . :

!�.9� � ���@1#. �
�����
�
H�D�

This process is repeated until !#.I�+J , i.e. until no frequent –itemsets are found. Every itemset �-�K! . , such that no
extension of � is in ! .<L " is a maximal frequent itemset.

4.2. Frequent Itemsets for Clone Detection

A program consists of statements, which may be struc-
tured; they form the items in the database � . Struc-
tured statements contain additional statements. XML–
configuration files define how to proceed with those struc-
tured statements; in the following section these configura-
tion files are explained in more detail.

As a refinement of the original algorithm in clone de-
tection a –itemset can only consist of consecutive state-
ments. Based on the link structure in the initial database
consecutive statements which represent itemsets can be
found very fast. Obviously, clones are sequences which oc-
cur in at least two places in the program. Thus, clones corre-
spond to frequent itemsets for the support count
M��6DN � � � .Given consecutive statements O "3= �P�Q� = O<. in our pro-
gram. The straighforward join step would combine two fre-
quent C4K(–itemsets of the form

�P"R� � OQ" = �Q�P� = O .0/ "S� = � ; � � O ; = �P�Q� = O . �D�
For clone detection we found out that it is much more ef-
ficient to use a modified join step, which combines a fre-
quent (–itemset � " � � O " � with a frequent �4T(–itemset�<;U� � OV; = �Q�P� = O<.W�D� If O " is the header of a nested expres-
sion, then we allow this join only if �P; contains the complete
body of this nested expression.

As an extension, we can compute clones of type 2 which
occur with a given minimal support count
YX�6DN � � � .
Example. Consider the following code fragment, which
determines the maximum max of an array a[0..2] with
three values by conditionally exchanging pairs of values:

1 if (a[0] > a[1]) {
2 t = a[0];
3 a[0] = a[1];
4 a[1] = t;
5 }
6 if (a[1] > a[2]) {
7 t = a[1];
8 a[1] = a[2];

9 a[2] = t;
10 }
11 max = a[2];

The statements in lines 1, 2, 3, 4, 6, 7, 8, 9, and 11 form
frequent 1–itemsets. They form 4 clone classes: � (=[Z � ,� 6 =V\&= (](�� , �_^ =a` � , and �_b =[c � . Observe, e.g., that 2 and 3
are no clones of each other, since the variable t is no clone
of a[0]. The frequent 6 –itemsets are � (=aZ � , � 6 = ^ � , �0^ = b � ,� \d=[` � , and � `�=ac � . The frequent ^ –itemsets are � 6 = ^ = b �and � \&=[`e=[c � . E.g., �H� � 6 = ^ = b � is built by combining the
frequent (–itemset �0"G� � 6&� with the frequent 6 –itemset�<;f� �0^ = b � . The frequent ^ –itemsets subsume the frequent
1– and 2–itemsets, i.e. the contained (– and 6 –itemsets are
removed from the result. Finally, the frequent b –itemsets
are � (= 6 = ^ = b � and � Z�=V\&=a`�=[c � ; they are the result of the
algorithm, since they subsume the ^ –itemsets.

4.3. Implementational Aspects

We have also investigated to what extent XML–query
languages such as XQuery can be used in our algorithm for
clone detection, since we store Java source code in XML–
files in JAML format [6]. In one version of our tool the gen-
eration of relevant subtrees from the DOM–tree is done by
using the tool Galax [7] for posing XML–queries to JAML–
files. However, subsequent test cases have shown that this
solution is not fast enough. Moreover, it turned out that we
did not need to select subelements of an XML–document
using complex path expressions.

Figure 2. Link Structure

In the current version of our implementation the inital
database was used as the basis, and we created an efficient
link structure and a hash table for speeding up the data ac-
cess. This revised version turned out to be relatively effi-
cient for our practical applications. Figure 2 visualizes the
link structure in more detail. The identifiers in the picture
become the keys for the global hash table.

3

5. Source Code and Meta Data in XML

The program works on an XML–representation of the
source code, and it can be configured by an XML–file con-
taining meta data about how statements are nested and how
they may be considered as clones.

So far we have worked with Java and PROLOG source
code. A clever adaption of the configuration files opens
the application for other languages and other XML–
representations of source code.

5.1. Source Code in XML

The Java representation JAML is relatively verbous,
since it stores all information – including white spaces and
line breaks. E.g., a while–statement

while (t < a[i]) {
i++;

}

is represented as

<while-statement>
<keyword>while</keyword>
<symbol>(</symbol>
<condition>...</condition>
<symbol>)</symbol>
<block>
<symbol>{</symbol>
...
<symbol>}</symbol>

</block>
</while-statement>

where the attributes of the element symbol and the JAML–
representation of the condition t < a[i] and the state-
ment i++; have been omitted.

PROLOG–rules are represented in another suitable XML–
language, which was developed in [16]; an example is given
in the appendix.

5.2. Meta Data in XML

There exist several XML–files for flexibly configuring
our algorithm.

The configuration files for Java are based on the Java
syntax definition. For instance the following part of the
JAML DTD specifies a while–construct:

<!ELEMENT while-statement
(keyword,
symbol, condition, symbol,
%statement;)>

The corresponding part in the configuration file looks
like:

<recursive_node
tagname="while-statement">
<startnode

necessary="no"
lookup="yes">
statement

</startnode>
</recursive_node>

The tag recursive_node is used for statements which
have a more complex structure and can contain additional
statements such as while, for, if, etc. The body of a
while–statement has additional statements.

Figure 3 shows the tree structure of a while–statement
in JAML. The node statement is not a real XML–node,
but it represents a parameter entity (an abbreviation). The
tagname startnode in the configuration file has several
attributes: necessary="no" is used to express that there
need not exist nested statements (a while–expression does
not need a body). If the startnode is a parameter entity
(such as %statement;), then the lookup–attribute has
the value yes; in that case we have to look up the meaning
of the possible parameter entities in an additional configu-
ration file.

Figure 3. Tree Structure of while–Statement

For PROLOG the configuration file contains only two –
almost identical – elements. The first element specifies how
the head of a PROLOG rule is processed:

<recursive_node
tagname="head">
<startnode

necessary="no"
lookup="no"
firstNodeBelow="yes"/>

</recursive_node>

The second element – which differs from the first one only
in the attribute value body for tagname – deals with the
rule bodies.

4

6. Case Studies

We have evaluated the Java core API (JDK), an-
other sofware called HagerROM, which is developed at
Würzburg University, our own CloneDetection tool, and
some PROLOG programs. In this section we report about the
case study with the JDK and with PROLOG, respectively.

6.1. The Java Development Kit (JDK)

The JDK is an integrated development environment for
Java–applications, –applets, and –components, which was
developed by Sun Microsystems. The standard version,
which can be downloaded free of charge, is accompanied
by a huge portion of the sources, which form the Java core
API. It can be split into several packages (cf. Figure 4).

Package Size
com 4.6 MB
java 14.4 MB
javax 11.5 MB
org 9.2 MB

Figure 4. Package Sizes

It was remarkable that the package java contributed a
large portion of the overall running time, whereas the pack-
age javax could be handled relatively fast although its size
was about the same. The reason are the smaller sizes of the
sets � !2. � of frequent –itemsets in the first three iterations,
which dominate the run time, cf. Figures 5 and 6.

For javax much fewer frequent 1–itemsets and much
fewer clones are found than for the other packages.

The largest clone which we have detected is a 42–
itemset; it has the frequency 7. The clone is the body of
the method int java.util.Arrays:

private static void
sort1(TYPE x[], int off, len),

where TYPE is one of the 7 primitve types (int, float, etc.).
This clone is an example for necessary duplication.

The overall running time for our case study was about 60
minutes.

6.2. The DISLOG Development Kit

We are developing a tool kit called DISLOG Develop-
ment Kit (DDK) under XPCE/SWI–PROLOG; the function-
ality ranges from (non–monotonic) reasoning in disjunctive
deductive databases to various PROLOG applications, such
as a PROLOG software engineering tool and a tool for the
management and the visualization of stock information.

size com java javax org sum

1 7053 13830 2101 6840 29824
2 2999 6592 716 2921 13228
3 1278 2817 340 1762 6197
4 620 1139 131 501 2391
5 325 606 78 207 1216
6 174 363 81 134 752
7 128 206 33 63 430
8 101 191 25 40 357
9 38 46 21 28 133

10 37 49 16 30 132
11 19 35 2 10 66
12 9 28 4 21 62
13 20 37 2 12 71
14 4 57 2 3 66
15 15 24 2 5 46
16 6 22 2 6 36
17 0 4 0 0 4
18 2 18 0 2 22
19 5 5 0 6 16
20 0 5 0 4 9
21 2 4 0 4 10
22 2 10 0 2 14
23 2 0 0 2 4
24 0 4 0 4 8
.
42 0 1 0 0 1

Figure 5. Maximal Clones for the Different
Parts of the JDK

Figure 7. Runtime for the JDK

Currently, the DDK has about 90.000 lines of PROLOG
code, which could be analyzed using our CloneDetection
tool in about 90 minutes. Several interesting results about
DDK were obtained during our case study.

5

Figure 6. Maximal Clones for Several Case Studies: JDK, HagerROM, CloneDetection

7. Conclusions and Future Work

We have developed a new algorithm for the detection of
clones of the types 1 and 2 based on the finding of frequent
itemsets. The evaluation has demonstrated the feasability of
our approach.

The program works on an XML–representation of the
source code, and it can be configured by an XML–file con-
taining meta data about how statements are nested and how
they may be considered as clones. Thus, alternative defi-
nitions of type 2 clones can easily be obtained. A clever
adaption of these configuration files opens the application
for other languages and other XML–representations of the
source code. For representing Java source code we currently
use the XML–language JAML [6], but an alternative source
language independent format such as srcML [12] would
also be possible.

We see two major applications of clone detection.
Firstly, it signals weak points in the program and encour-
ages the restructuring and refactoring. A fully automatic
replacement of clones by higher order structures, however,
is certainly not the best choice. But in this aspect an integra-
tion with an interactive program development environment
would be very helpful. A second application is the detec-
tion of copies (clones) in a teaching environment. We will
pursue these two applications in the future

Furthermore, we will extend the algorithm to detect
clones of type 3 and clones that occur with a frequency
greater than 2 as well. The latter will be possible in our
approach, since we can simply lift the support count for fre-
quent itemsets.

Finally, note that a preprocessing step of the XML rep-
resentation of the abstract syntax tree using XSLT transfor-
mations can enable our algorithm to work on general XML
files. It is remarkable that this extension will actually mean
a simplification of the algorithm.

References

[1] Brenda S. Baker: On Finding Duplication and
Near–Duplication in Large Software Systems, Second
Working Conference on Reverse Engineering 1995,
IEEE Computer Society Press.

[2] Magdalena Balazinska, Ettore Merlo, Michel Dage-
nais, Bruno Laguë, Kostas Kontogiannis: Measuring
Clone Based Reengineering Opportunities, Proceed-
ings of 6th IEEE International Symposium on Soft-
ware Metrics, 1999.

[3] Ira D. Baxter, Andrew Yahin, Leonardo Moura,
Marcelo Sant’ Anna, Lorraine Bier: Clone Detec-
tion Using Abstract Syntax Trees, Proceedings Inter-
national Conference on Software Maintenance ICSM
1998.

[4] Stefan Bellon, Daniel Simon: Vergleich von Klon-
erkennungstechniken, 5th Workshop on Software
Reengineering, 2003.

[5] Stephane Ducasse, Matthias Rieger, Serge Demeyer:
A Language Independent Approach for Detecting Du-
plicated Code, Proceedings of the International Con-
ference on Software Maintenance ICSM 1999.

6

[6] Gregor Fischer, Jürgen Wolff von Gudenberg:
JAML – An XML–Representation of Java Source
Code, University of Würzburg, Institute for Computer
Science, Technical Report, 2004, to appear.

[7] Galax – A Software for XQuery:
http://db.bell-labs.com/galax/

[8] Jiawei Han, Micheline Kamber: Data Mining - Con-
cepts and Techniques, Kaufmann, 2001.

[9] Marbod Hopfner, Dietmar Seipel, Jürgen Wolff
von Gudenberg: Comprehending and Visualising
Source Code based on XML–Representations and Call
Graphs, Proceedings of International Conference on
Program Comprehension IWPC 2003.

[10] Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue:
CCFinder: A Multi–Linguistic Token–based Code
Clone Detection for Large Scale Source Code, IEEE
Transactions on Software Engineering, to appear.

[11] Jens Krinke: Identifying Similar Code with Program
Dependence Graphs, Proceedings of the Eighth Work-
ing Conference On Reverse Engineering WCRE 2001.

[12] Jonathan I. Maletic, Michael L. Collard, Andrian Mar-
cus: Source code Files as Structured Documents, Pro-
ceedings of 10th IEEE International Workshop on Pro-
gram Comprehension IWPC 2002.

[13] Jeat Mayrand, Claude Leblanc, Ettore M. Merlo: Ex-
periment on the Automatic Detection of Function
Clones in a Software System Using Metrics, Proceed-
ings of International Conference on Software Mainte-
nance ICSM 1996.

[14] Filip van Rysselberghe: Detecting Duplicated Code
Using Metric Fingerprints. Master’s thesis, University
of Antwerp, 2002.

[15] Filip van Rysselberghe, Serge Demeyer: Evaluating
Clone Detection Techniques, Proceedings of the Inter-
national Workshop on Evolution of Large Scale Indus-
trial Applications ELISA 2003.

[16] Dietmar Seipel, Marbod Hopfner, Bernd Heumesser:
Analyzing and Visualizing PROLOG–Programs based
on XML–Representations, Proceedings of Workshop
on Logic Programming Environments WLPE 2003.

Appendix

The following XML–representation for PROLOG–rules
was developed in [16]. E.g., the transitive closure rule

tc(U1, U2) :-
arc(U1, U3), tc(U3, U2).

is represented as

<rule file="transitive_closure">
<head>

<atom predicate="tc/2">
<var name="U1"/>
<var name="U2"/>

</atom>
</head>
<body>

<atom predicate="arc/2">
...

</atom>
<atom predicate="tc/2">
...

</atom>
</body>

</rule>

We have used the following DTD:

<!ELEMENT program (rule*)>
<!ELEMENT rule (head, body)>
<!ELEMENT head (atom*)>
<!ELEMENT body (atom*)>
<!ELEMENT atom ((term|var)*)>
<!ELEMENT term (term*)>

<!ATTLIST rule
file CDATA #required>

<!ATTLIST atom
predicate CDATA #required>

<!ATTLIST term
functor CDATA #implied>

<!ATTLIST var
name CDATA #implied>

7

