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Abstract 

 
Information about calls to the operating system (or 

kernel libraries) made by a binary executable maybe 
used to determine whether the binary is malicious. 
Being aware of this approach, malicious programmers 
hide this information by making such calls without 
using the CALL instruction. For instance, the CALL 
ADDR instruction may be replaced by two PUSH 
instructions and a RETURN instruction, the first 
PUSH pushes the address of instruction after the 
RETURN instruction, and the second PUSH pushes the 
address ADDR. The code may be further obfuscated by 
spreading the three instructions and by splitting each 
instruction into multiple instructions. This paper 
presents a method to statically detect obfuscated calls 
in binary code. The notion of abstract stack is 
introduced to associate each element in the stack to the 
instruction that pushes the element. An abstract stack 
graph is a concise representation of all abstract stacks 
at every point in the program. The abstract stack 
graph may be created by abstract interpretation of the 
binary executable and may be used to detect 
obfuscated calls. 
 
1. Introduction 
 

Programmers obfuscate their code with the intent of 
making it difficult to discern information from the 
code. Programs may be obfuscated to protect 
intellectual property and to increase security of code 
(by making it difficult for others to identify 
vulnerabilities) [6, 8, 9, 12, 18]. Programs may also be 
obfuscated to hide malicious behavior and to evade 
detection by anti-virus scanners [4, 13, 17].  

There now exist malicious programs—virus, 
worms, Trojans, spyware, backdoors, etc.—that are 
self-obfuscating. These programs, termed as 
metamorphic by the anti-virus community, obfuscated 
themselves before propagating to the next host [10]. 
Repeated obfuscation ensures that two copies of a 

virus, henceforth used to refer to a malicious program, 
are different and successive generations are 
significantly harder to reverse engineer. 

Christodrescu et al. [4] present malicious code 
detection as being an obfuscation-deobfuscation game 
between the virus writers and researchers working on 
malicious code detection. The obfuscations are such 
that there is considerable change in the byte sequence 
of the executable obtained but do not change the actual 
sequence of instructions being executed. The aim of 
the virus writer is to fool the antivirus tool into 
believing that it is dealing with a safe executable. 

To achieve its malicious intent, a virus must access 
system resources, such as, the file system and network. 
Based on analysis of thousands of viruses anti-virus 
companies have developed knowledge-bases of 
combinations of system calls that may be considered 
malicious. Some anti-virus scanners look for bit 
patterns associated with system calls to identify 
malicious programs. Such scanners are easily thwarted 
by metamorphic viruses or viruses that simply 
obfuscate system calls [15, 16]. For instance, the call 
addr instruction may be replaced by two push 
instructions and a ret instruction, the first push pushing 
the address of instruction after the ret instruction, the 
second push pushing the address addr. The code may 
be further obfuscated by spreading the three 
instructions and by further splitting each instruction 
into multiple instructions. 

To detect obfuscated viruses some anti-virus 
scanners execute a virus in an emulated environment 
and trap the calls to the operating system. Such 
dynamic analyzers must use some heuristic to 
determine when to stop analyzing a program, for its 
possible that a program may terminate on user 
command. These analyzers are fooled by viruses by 
introducing some delay, i.e., code that wastes time.  

This paper presents a method to statically detect 
obfuscated calls when the obfuscation is performed by 
using other stack(-related) instructions, such as push 
and pop, ret, or instructions that can statically be 
mapped to such stack operations. The method uses 



abstract interpretation wherein the stack instructions 
are interpreted to operate on an abstract stack. Instead 
of keeping actual data elements, an abstract stack 
keeps the address of the instruction that pushes an 
element on the stack. The infinite set of abstract stacks 
resulting from all possible executions of a program, a 
la, static analysis, is concisely represented in an 
abstract stack graph. 

As it is with any anti-virus solution, our method 
may be used to increase the level of difficulty for 
writing a virus. Our method can help by removing 
some common obfuscation from the toolkit of a virus 
writer. However, we do not claim to that the method 
can deobfuscate all stack related obfuscations. Indeed, 
writing a program that detects all obfuscations is not 
achievable for the general problem maps to detecting 
program equivalence, which is undecidable.  

Section 2 presents related work in this area and 
describes how metamorphic viruses use system calls to 
library functions to infect, conceal and propagate. 
Section 3 presents the notion of an abstract stack and 
the abstract stack graph. Section 4 presents our 
algorithm to construct the abstract stack graph. The 
section also includes an example to enumerate the 
algorithm. Section 5 describes how the abstract stack 
graph may be used to detect various obfuscations. 
Section 6 concludes this paper. 
 
2. Related work 
 

The analysis of the bit stream of a binary 
executable does not offer significant information. To 
get any meaningful information it must at least be 
disassembled, i.e., translated to assembly instructions. 
Most often the disassembled code may be analyzed 
further, following steps similar to those performed for 
decompilation [5]. Lakhotia and Singh [11] show how 
a virus writer could attack the various stages in the 
decompilation of binaries by taking advantage of the 
limitation of  static analysis. Indeed, Linn et al. [12] 
present code obfuscation techniques for disrupting the 
disassembly phase, making it difficult for static 
analysis to even get started. 

The art of obfuscation is very advanced. Collberg et 
al. [7] presents taxonomy of obfuscating 
transformations where a detailed theoretical 
description of various possible obfuscating 
transformations is presented. There exist obfuscation 
engines that may be linked to a program to create a 
self-obfuscating program. Two of them are Mistfall 
(by z0mbie), which is a library for binary obfuscation 
[2], and Burneye (by TESO), which is a Linux binary 
encapsulation tool [1].  

The antivirus techniques usually applied to detect 
metamorphic viruses are heuristics and emulation 
coupled with static or dynamic analysis of the code 
[14]. Christodrescu et al. [4] show that current anti-
virus scanners can be subverted by very simple 
obfuscating transformations [4]. 

Many recent viruses heavily depend on calls to 
system libraries. The Win95/Kala.7620 was one of the 
first viruses to use an API to transfer control to the 
virus code (in this case, its decryptor) [16]. Modern 
anti-virus tools are to have API emulation to detect 
these. To make these system calls, a popular technique 
adopted by most virus writers (as observed in recent 
binary viruses when disassembled and analyzed), 
targeting the Windows operating system is to locate 
the internal KERNEL32.DLL entry point and call 
KERNEL32 functions by ordinal. This is done by 
locating KERNEL32.DLL’s PE header in memory and 
using the header info to locate KERNEL32’s export 
section. 

A set of suspicious API strings will appear in non-
encrypted Win32 viruses. This can make the 
disassembly of the virus much easier and potentially 
useful for heuristic scanning. An effective anti-
heuristic/anti-disassembly trick appearing in various 
modern viruses is to hide the use of API strings to 
access particular APIs from the Win32 set. For 
example, the Win32/Dengue virus does not use API 
strings to access particular APIs [16]. Some recent 
viruses use a checksum list of the actual strings. The 
checksums are recalculated via the export address table 
of KERNEL32.DLL and the address of the API is 
found. Hence, the absence of API name strings should 
not be inferred as non-existence of any API calls in the 
program. 

There is hope, however. A recent result by Barak et 
al. [3] proves that in general, perfect program 
obfuscation is impossible, i.e., for any obfuscator one 
can write a deobfuscator. This is likely to have an 
effect on the pace at which new metamorphic 
transformations are introduced. Lakhotia and Singh 
[11] observe that though metamorphic viruses pose a 
serious challenge to anti-virus technologies, the virus 
writers too are confronted with the same theoretical 
limits and have to address some the same challenges 
that the anti-virus technologies face.  

Christodrescu and Jha use abstract patterns to 
detect malicious patterns in executables [4]. 
Mohammed has developed a technique to undo certain 
obfuscation transformations, such as statement 
reordering, variable renaming, and expression 
reshaping, with the  [13].  



3. Abstract stack and abstract stack 
graph 
 

We propose the notion of an abstract stack that 
captures the stack activity and simplifies analysis of 
control flow but is quite different from the actual 
stack. The actual stack for a program code keeps track 
of the values being pushed and popped in a LIFO (Last 
In First Out) sequence. The abstract stack on the other 
hand keeps track of the addresses of the instructions 
causing the push and pop of values in a LIFO 
sequence. For example, consider Figure 1. Each of the 
instructions in the sample program is marked with its 
address from L1 through L4. The actual stack and the 
abstract stack, after execution of the instruction at 
address L4, are as shown in Figure 1. Initially the 
addresses L1 and L2 would have been pushed onto the 
abstract stack, but due to the pop instruction at L3, the 
address L2 is popped and next L4 is pushed onto the 
abstract stack. 
 
Sample Program     Actual Stack        Abstract Stack 
L1: push eax  
L2: push ebx 
L3: pop esi 
L4: push edx 
 
 

Figure 1. 
 

An example computing the abstract stack at each 
program point is shown in Figure 2. Figure 2a is a 
sample code for which the control flow graph is as 
shown in figure 2b. Each block in the control flow 
graph represents a program point. The blocks are 
numbered in reverse post order and the edges of the 
graph are tagged as either being a tree edge, a forward 
edge, a cross edge or a back edge. Figure 2c shows few 
of the abstract stacks that are possible at some of the 
program points. These are not all of the abstract stacks 
but numerous more are possible at each program point. 
For instance the 3rd abstract stack at program point 2 is 
the result of traversing the control flow graph through 
the program points 1  2  3  4  3  4  5  
2 in that order. The abstract stack at program point 4 is 
the result of traversing the program points 1  2  3 

 4  3  4  5  2  3  4 in that order while 
the abstract stack at program point 8 is the result of 
traversing the program points 1  2  3  4  5  
2  3  4  3  5  2  7  8. 

As can be seen in Figure 2c, at each program point, 
there can be numerous possible abstract stack states. 
This might result in having to keep track of 

exponential number of abstract stacks. A more 
efficient way would be to have an abstract stack graph. 
An abstract stack graph is a directed graph 
representing the union of all the abstract stacks at each 
program point. A backward path in the graph ending at 
a particular node represents an abstract stack at that 
program point. Figure 2d shows the abstract stack 
graph for the control flow graph (Figure 2b). An 
algorithm to construct the abstract stack graph from the 
control flow graph is described in the next section. 
 
4. Algorithm to construct the abstract 
stack graph 
 

In this section we explain the algorithm in plain 
English. The algorithm assumes that an approximate 
control flow graph is available. 

The algorithm to construct an abstract stack graph 
consists of the following seven steps: 
 

Step 1: For each block of the control flow graph, 
replace sequences of instructions that are equivalent 
push or pop instructions. These instructions modify the 
stack pointer. For instance, the sequence of 
instructions: 
dec esp 
dec esp 
mov [esp], eax 
are replaced with push eax while the sequence of 
instructions: 
mov eax, [esp] 
inc esp 
inc esp 
are replaced with pop eax. 

Step 2: For each block of the control flow graph, 
check to see if there is more than one stack operation 
(push, pop, call, ret). If such a block is found, break it 
into appropriate number of fall-through blocks such 
that each block now formed has exactly one stack 
operation. Each block in the new control flow graph 
thus formed represents either a push block, a pop 
block, a call block, a ret block, or a block with no stack 
operation. 

Step 3: Tag each edge of the control flow graph as 
tree-edge, forward-edge, side-edge or back-edge. 

Step 4: Process each block by traversing the control 
flow graph in reverse post order. 

Step 5: For each block type B do the following: 
5(a) If the block B is of type push block or call 

block, then create a node in the abstract stack graph, 
with the address of the instruction causing the push (or 
call) and tag its number to it. If this block B has an 
incoming tree-edge in the CFG from another block B1, 

eax 

edx 

… 

L1 

L4 

… 



then create an edge from B to B1 in the abstract stack 
graph (where B1 is also a node in the abstract stack 
graph). Do the same if there are more incoming tree 
edges to B. 

5(b) If the block B is of type pop block or ret block, 
then for each block B1 that has a tree-edge pointing to 
B in the CFG is processed. The block to which such B1 
are pointing to in the as of yet formed stack graph are 
marked with the tag number of B. 

5(c) If the block B has no stack operations, then for 
each block B1 that has a tree-edge pointing to B in the 
CFG is processed. The blocks where the tag numbers 
of such blocks B1 are present in the as of yet formed 
stack graph are marked with the tag number of B. 

Step 6: Each of the blocks with incoming forward-
edges, side-edges and back-edges in the CFG are 
processed in this order. These blocks are processed 
according to their block types applying the rules as in 
step 5. 

Step 7: If an update takes place in the abstract stack 
graph, steps 1 through 6 are repeated until there is no 
more change in the abstract stack graph. 
 

Let us see the algorithm in working on the example 
control flow graph in Figure 2(b). Let us assume the 
control flow graph to be in required form with push, 
pop and call blocks and ignore, for the time being, the 
instructions that might form a no-stack-operation 
block. First, block E is formed in the abstract stack 
graph and tagged with 1. The next block is retrieved, 
which is a push block. Hence the block B0 is formed in 
the abstract stack graph and since it has an incoming 
tree edge from E in the CFG, an edge is created from 
B0 toward E. Similarly the push blocks B1 and B3 are 
included in the abstract stack graph. The next block 5 
is a pop block and has an incoming tree edge from 
block 4. Blocks to which 4 has an edge toward in the 
as of yet formed abstract stack graph are tagged with 5 
now. Hence, 5 is tagged onto the block B1 in the 
abstract stack graph. Similarly, B6 is formed with an 
edge toward B1 and 7 is tagged with E because 2 is 
pointing toward E. Then block B4 is formed is tagged 
with 8 and is pointing toward E because 7 is tagged 
over there. Next we consider the forward, cross and 
back edges. The forward edge results in an edge from 
B1 pointing toward B3. The cross edge results in 5 
being tagged to E. The back edge results in an edge 
from B0 pointing toward wherever 5 is tagged and that 
is B1. The algorithm is repeated for a new iteration 
because new information has been added to the 
abstract stack graph. Results in an edge from B6 
pointing toward E because 5 is tagged over there. 7 is 
tagged with B1 because B0 is now pointing toward B1. 
And now an edge is created from B4 to B1 because 7 

is tagged to B1. The next iteration generates no new 
changes and so the abstract stack graph is now stable 

The algorithm is robust enough to cope with the 
occurrences of unbalanced push or pop in loops. This 
means that if there are individual loops within which 
push or pop occur, and within these loops the push or 
pop are not balanced (i.e., there are more push than 
pop, or more pop than push), the algorithm can still 
produce a correct abstract stack graph that 
encompasses all the possible abstract stacks at each 
program point. The following section discusses various 
ways in which call obfucations are possible and the 
use of the abstract stack graph in detecting them. 
 
5. Detecting obfuscated calls 
 

A call to a procedure within the same segment is 
near and performs the following: it decrements the 
stack pointer (esp) by a word and pushes the 
instruction pointer (eip, containing the offset of the 
instruction following the call) onto the stack. Next it 
inserts the offset address of the called procedure into 
eip. This is shown in figure 3(a). A ret that returns 
from a near procedure basically reverses the call’s 
steps. It pops the old eip value from the stack into eip 
and increments esp by a word. This is shown in figure 
5(a). 

The goal of the obfuscator remains to obfuscate the 
call instruction in such a way so that the antivirus 
software is unable to detect that a system call is indeed 
being made. The obfuscation is not just limited to the 
call being made, but in most cases is also extended to 
the parameters being passed to the call and also to the 
ret statement. 

Figure 3 shows some of the ways of obfuscating the 
call instruction. E, L0, L1, etc., at the left of each 
instruction represent the address of the instruction and 
the numbers following the “ ” on the right of each 
instruction represent the flow of control. In figure 3(b) 
we see how a combination of push/jmp can be used to 
mimic the call. The 1st instruction pushes the entry 
point of the code onto the stack. The 2nd instruction 
pushes the offset address of the instruction following 
the call, which is the return address, onto the stack. 
The 3rd instruction loads the effective address of the 
instruction “fun” into the register eax and the 4th 
instruction does a jump through register to this 
address. When the function “fun” eventually does a 
ret, the control returns to the return address previously 
pushed onto the stack. Hence, without using a call, the 
same functionality is achieved here as is intended in 
3(a). The abstract stack graph shown for the sample 
code in figure 3(b) can be used to detect this  
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Sample Program 
 
E: //entry point 
B0: push eax 
C1: sub ecx, 1h 
C2: beqz B2 
B1: push ebx 
B3: push ecx 
C4: dec ecx 
C5: beqz B1 
C6: jmp B5 
B2: pop eip 
B4: push esi 
B5: pop eip 
C6: beq B0 
B6: call abc 

Figure 2a. 

Figure 2.

E: // entry

B1: push ebx B2: pop eip 

B6: call abc 

B3: push ecx 
C4: dec ecx 
C5: beqz B1 
C6: jmp B5

B0: push eax 
C1: sub ecx, 1h 
C2: beqz B2

1 

4

3 7

6

2

B5: pop eip 
C6: beq B0 5

Figure 2b. 

B4: push esi 8
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Figure 2d. 
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obfuscation. At instruction 6, we can trace back in the 
abstract stack graph to the instruction that pushed the 
return address onto the stack, which is instruction 2 
By looking at the semantics of the instructions 
following it we now know that a “call” is being made. 

Figure 3(c) shows a combination of push/ret or 
push/pop that can be used to obfuscate a call. At 
instruction 5, where a ret or a pop eip is done, the 
address that was previously pushed onto the stack by 
instruction 4 is now in eip transferring control to 
“fun”. The abstract stack graph shown here can be 
used to dtect this obfuscation. At instruction 5, tracing 
back in the graph to the instruction that pushed the 
“popped” address brings us to L2, which is the 4th 
instruction. By looking into eax we now know that 
“fun” was being called. 

Win32.Evol uses a combination of push/pop to 
make an obfuscated call to a system library function 
(LoadLibraryA in this case). It first moves the function 
name into a register (eax) and then pushes this onto the 
stack and later pops it to transfer control to the 
function. Sample code from the virus is as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

lea eax, [ebp+var_14] 
mov dword ptr [eax], ‘daoL’ 
mov dword ptr [eax+4], ‘rbiL’ 
mov dword ptr [eax+8], ‘Ayra’ 
mov byte ptr [eax+0Ch], 0 
push eax 
…. 
pop ebp 
 
5.1. Detecting obfuscations to parameters 

being passed to a call 
 
Parameters to a function in assembly are passed by 
pushing them onto the stack before a call to the 
function is made. The code in the called function later 
retrieves these parameters from the stack. Figure 4 
shows possible ways of obfuscating parameters to 
calls. 4(b) shows the use of out of turn pushes to 
distort the actual function to which the parameters are 
being passed. The first call occurring after the pushes 
need not be the function to which the parameters are 

3(a) 3(b) 3(c)

Figure 3. Possible ways of obfuscating a call instruction

E: push E ;entry 
L0: call fun 
L1: … 
… 
L15: ;fun here 

Normal call 

E: push E ;entry  1 
L0: push L3   2 
L1: lea eax, fun  3 
L2: jmp eax  4 
L3: … 
L15: ;fun here  5 
L16: ret  6 

Using 
push/jmp E: push E ;entry  1 

L0: push L4   2 
L1: lea eax, fun  3 
L2: push eax  4 
L3: ret  5 
L4: … 
L15: ;fun here  6 
 

Using push/ret 

E: push E ;entry  1 
L0: push L4   2 
L1: lea eax, fun  3 
L2: push eax  4 
L3: pop eip  5 
L4: … 
L15: ;fun here  6 
 

Using push/pop 

Actual Stack Actual Stack

eip = L15 eip = L15 eip = L15 eip = L15 

Actual Stack Actual Stack 

4

E

L0

L2

1 

2 53

Abstract Stack Graph 
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E 

L0 esp

E 

L3 esp

E

L4 esp 
E 

L4 

1 E

L0 2
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Abstract Stack Graph
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actually being passed. Instructions 2 and 3 push the 
parameters in registers eax and ebx onto the stack. The 
4th instruction calls “fun1” that simply returns 
(instruction 5) without actually retrieving any of the 
parameters. The 6th instruction calls “fun” that actually 
uses these parameters. The abstract stack graph shown 
here can be used to detect this obfuscation. At program 
point 6 in the abstract stack graph, which is a call to 
“fun”, the state of the abstract stack is E, L0, L1, L3. 
Hence the parameters being pushed at L0 and L1 
pertain to the call to “fun”. Though the same abstract  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stack state holds at program point 4, which is a call to 
“fun1”, it is ruled out that the pushes at L0 and L1 
pertain to “fun1”. This is because the ret at program 
point 5 is associated with the call to “fun1”. This too is 
deduced form the abstract stack graph itself by 
checking the address of the instruction that popped the 
top of the abstract stack. Since this is a call to “fun1”, 
we have matched the call/ret. This shows that the 
abstract stack graph can also be used to match blocks 
of call/ret. 
 

E: push E ;entry 
L0: push eax 
L1: push ebx 
L2: call fun 
L3: … 
… 
L15: ;fun here 

Normal passing 

E: push E ;entry  1 
L0: push eax  2 
L1: push edx  3 
L2: pop eax   4 
L3: push ebx  5 
L4: call fun   6 
L5: … 
L15: ;fun here 

Redundant push/pop 

E: push E ;entry  1 
L0: push eax  2 
L1: push ebx  3 
L2: call fun1  4 
L3: call fun   6 
L4: ;fun1 here 
L4: ret  5 
L5: ;fun here 

Out of turn push

E: push ;entry  1 
L0: xor edx, edx  2 
L1: bneqz L6   3 
L2: … 
L6: push eax   4 
L7: push ebx   5 
L8: call fun   6 
L15: ;fun here 

Redundant control

4(a) 4(b) 4(c) 4(d)

Figure 4. Possible ways of obfuscating parameters to calls
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When we get to a call, we know the instructions 
that have pushed elements on the stack. If a call takes 
two instructions, the top two pushes on the stack will 
be the parameters. The ith parameter corresponds to the 
ith element on the stack (starting from the top). This is 
assuming the first parameter is pushed last. If the last 
parameter is pushed first, we change it around. 

Figure 4(c) shows the use of redundant push/pop to 
obfuscate parameters to a call. Instructions 3 and 4 are 
redundant. At program point 6 in the abstract stack 
graph (in figure 4(c)), the abstract stack state shows 
address L0 and L3 as being on the stack, which are the 
instructions that push the parameters for “fun”, hence 
eliminating any redundant push/pops. 

Figure 4(d) shows the use of redundant control to 
obfuscate parameters to a call. This is done by 
exploiting the assumption that a conditional branch has 
two possible targets. The conditional branch may be 
instrumented, at runtime, to always go in one direction 
– i.e., either it is always taken and never falls through, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

or it is never taken and always falls through [18]. This 
technique relies on using predicates that always 
evaluate to either the constant true or the constant 
false, regardless of the values of their inputs: such 
predicates are known as opaque predicates. The 2nd 
instruction results in edx containing zero. Hence the 3rd 
instruction always evaluates to true and the branch is 
taken to L6. The abstract stack graph shown here can 
be used to detect this redundant control. At program 
point 6, where the call to “fun” is made, the abstract 
stack state includes the address of the instructions L6 
and L7 that push the arguments for “fun”, hence 
detecting the redundant control. 
 
5.2. Detecting obfuscations to ret 
 

A ret statement typically pops the top of the stack 
and returns control to the instruction immediately 
following the call to the function from where it is 
returning. The ret itself can be used to abuse a call or 

E: push E ;entry 
L0: call fun 
L1: … 
… 
L15: ;fun here 
… 
L20: ret 

Normal call/ret 

E: push E ;entry  1 
L0: call fun   2 
L1: … 
… 
L15: ;fun here 
… 
L20: pop eip  3 

Using pop to return 

E: push E ;entry  1 
L0: call fun   2 
; n junk bytes  
L5: … 
… 
L15: ;fun here 
L15: add [esp], n  3
; modifies [esp] 
L20: ret   4 

Return elsewhere 

E: push E ;entry  1 
L0: call fun   2 
L1: … 
… 
L15: ;fun here 
L15: pop eax  3 
; loose return address
; calc new ret address
L19: push Addr  4 
L20: ret   5 

Abusing call 

5(a)  5(b) 5(c) 5(d) 

Figure 5. Possible ways of obfuscating the ret 
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to return elsewhere. Figure 5 shows few of the possible 
ways of obfuscating ret. As shown in figure 5(b) a pop 
can be used instead of a ret to obfuscate the ret. Using 
the abstract stack graph, if after a call has been 
detected with no previous pushes, then a ret has been 
detected. At program point 3 in the abstract stack 
graph there are no previous pushes as the stack state 
shows only L0. Hence an obfuscated ret has been 
detected here. 

Instead of the conventional way of returning to the 
instruction immediately following a call, the return 
address is modified in the called function and control 
transferred to some other instruction. This is 
obfuscating ret to return elsewhere. In figure 5(c), the 
2nd instruction makes the call to “fun”. Immediately 
after the call instruction, n junk bytes are inserted to 
locate a specific return address (L5 in this case). 
Within “fun”, the contents of the stack pointer are 
modified by adding n bytes to the return address (the 
3rd instruction) and thus generating a new return 
address. To use the abstract stack graph to detect this 
obfuscation requires augmenting the abstract stack to 
maintain an additional tag called modified. When a 
value is pushed on the stack, modified is set to false. 
Now we also augment the algorithm to deal with other 
instructions. If an instruction may change the content 
of the stack, and we can determine the stack offset that 
is being changed, then we can change the tag of that 
location to modified. If the value was pushed by a call 
and that value is at the top of the stack when you get to 
ret, it implies that ret is returning elsewhere. 

The call instruction can also be abused to actually 
jump to a particular instruction. In figure 5(d), a call is 
made to “fun” at instruction 2. Within the function, the 
return address from “fun” is popped out from the top 
of the stack. A new return address is computed and 
pushed onto the stack (instruction 4). The 5th 
instruction transfers control to the new address 
location now. The abstract stack graph shown here can 
be used to detect this abuse of the call instruction. At 
program point 5, the top of the abstract stack has only 
E. Tracing back on the abstract stack graph, at program 
point 4, we find the address of the instruction that 
pushed the new “Addr”. If this Addr were a constant, 
then we can determine it, but if were to be computed at 
runtime, then there is no way of knowing it. 
 
6. Conclusions 
 

We have presented a method to detect obfuscations 
of call and ret instruction. The method performs 
abstract interpretation of stack related instructions. The 
interpretation yields an abstract stack graph that 

represents all possible shapes of the stack at any 
program point.  We have presented various 
obfuscations of stack related instructions and how they 
may be deobfuscated using the abstract stack graph. 
The construction of an abstract stack graph offers a 
step towards analyzing obfuscated binaries for 
malicious behavior. 
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