
A CASE Tool Platform
Using an XML Representation of Java Source Code

Katsuhisa Maruyama�

Department of Computer Science
Ritsumeikan University

1-1-1 Noji-higashi Kusatsu
Shiga 525-8577, Japan
maru@cs.ritsumei.ac.jp

Shinichiro Yamamoto
Department of Information Systems

Aichi Prefectural University
1522-3 Ibaragabasama Kumabari Nagakute-cho

Aichi-gun Aichi 480-1198, Japan
yamamoto@ist.aichi-pu.ac.jp

Abstract

Recent IDEs have become more extensible tool platforms
but do not concern themselves with how tools running on
them collaborate with each other. They compel tool develop-
ers to use proprietary representations or the classical AST to
build software tools managing source code. Although these
representations contain sufficient information, they are nei-
ther portable nor extensible. This paper proposes a tool
platform that manages commonly used, fined-grained infor-
mation about Java source code by using an XML represen-
tation. Our representation is suitable for developing tools
which browse and manipulate actual code since the origi-
nal code is both structured with tags and stored in textual
elements of a converted XML document. Additionally, it ex-
poses information resulting from global semantic analysis,
which is never provided by the typical AST. Our proposed
platform allows the developers to extend the representation
for the purpose of sharing or exchanging various kinds of
information about source code, and also enables them to
build new tools by using existing XML utilities.

1. Introduction

Object-oriented software is hard to develop without inte-
grated development environments (IDEs) since it contains
many classes and the relationship between them. A re-
markable point is that a recently released IDE is not only a
collection of programming tools but also an extensible tool
platform. For example, Eclipse [2] has a powerful plug-in
mechanism for easily adding a new tool to and removing an
existing tool from itself.

By supporting the plug-in mechanism, developers have

�He is also with Institute for Software Research, University of Califor-
nia, Irvine. Irvine, CA 92697-3425 USA.

chances to build their own tools and desire their tools to
collaborate with each other. Accordingly, a tool platform
must collect the detailed information about programs be-
ing developed and then present it in proper form that can
meet diverse developers’ requirements. Unfortunately, the
conventional tool platforms store information about source
code by using either proprietary representations or the typ-
ical abstract syntax tree (AST) [13]. Of course these repre-
sentations contain sufficient information and several power-
ful tool platforms such as Eclipse [2], the DMS Software
Reengineering Toolkit [7], or RECORDER [6] provide
well-designed application programming interfaces (APIs)
for accessing the information. However, the classical repre-
sentations are neither portable nor extensible. That is, none
of the conventional platforms concern themselves with how
a newly built tool stores additional information obtained
through its execution and exchanges such information with
other tools. In addition, only the prepared APIs are insuf-
ficient for building diverse tools. Therefore, the tool devel-
opers tend to create overhead modules, which are used for
extracting necessary information from the integrated repre-
sentation, in their respective tools, or might have to mod-
ify integrated modules and date structure. To build vari-
ous kinds of software tools managing source code and make
them collaboratively work without much effort, a tool plat-
form should use a not only simply standard but also portable
and extensible representation, which is the medium for shar-
ing and exchanging source-code information and allows the
developers to add individual information they define.

The authors have developed a tool platform with a soft-
ware repository that can store and provide fine-grained in-
formation about Java source code by using the extensible
markup language (XML) [3]. This paper proposes this tool
platform and a new XML-based representation, which are
called Sapid/XML (sophisticated APIs for CASE tool de-
velopment with an XML repository) and XSDML (exten-
sible software document markup language), respectively.

In XSDML documents converted from source code, code
fragments are classified by marking with respective tags
and structured by nesting the tags based on the structure
of the source code. Additionally, these documents con-
tain additional information resulting from syntactic and se-
mantic analysis. In respect of portability, the motivation of
Sapid/XML (or XSDML) is analogous to that of conven-
tional XML representations such as a markup language for
Java source code (JavaML) [14] and an XML-based rep-
resentation for object-oriented source code (OOML) [19].
However, its target differs much from their targets. The pur-
pose of Sapid/XML is to facilitate developers building tools
which manipulate actual source code. Sapid/XML provides
a fine-grained representation which is an alternative to the
classical AST containing all information about source code
while JavaML provides a highly abstract representation of
source code. Moreover, Sapid/XML inserts several use-
ful links obtained through global semantic analysis for the
whole of source code, which are not supported by JavaML
and OOML.

Sapid/XML both makes Java source code more portable
and convenient since our proposed XSDML is based on
XML which is a simple, widely used text-based format and
the XSDML exposes the structure and relationship lurking
in source code. Many existing XML utilities can be used for
examining and manipulating the source code. Sapid/XML
also allows developers to extend the prepared representa-
tion. They can define new tags and attributes to share com-
mon information and exchange specific one although its
definition needs a simple consistency check for the docu-
ment type definition (DTD) [3]. It is useful for building
new software tools to extend a representation of source code
without examining and modifying modules in a tool plat-
form. Here we have to mention that Sapid/XML does not
strive to dismiss existing IDEs. It shows the potential of a
tool platform using an XML representation of source code.

We first present an overview of Sapid/XML and explain
how Java source code is converted to an XSDML document
and how software tools access the converted XSDML doc-
uments. Next we show several software tools running on
Sapid/XML. Then we give experimental results in respect to
the performance of Sapid/XML. Finally, we conclude with
a summary.

2. Sapid/XML Tool Platform

Sapid/XML generates XML documents represented in
our proposed XSDML from Java programs (written in Java
1.4) and provides them for software tools. Figure 1 shows
an overview of the Sapid/XML tool platform. It mainly
consists of four components: a source code converter (a
syntactic parser and a semantic analyzer), access libraries,
a Java-XML software repository, and Java wrappers. This

Table 1. Elements of the XSDML
Element name Fragment of Java source code
File compilation unit (File)
Package package declaration
Import import declaration
Class class declaration
Intf interface declaration
SInit static initializer
Ctor constructor declaration
Method method declaration
Field field declaration
Param formal parameter
Local variable declaration
ExtdOpt superclass clause
ImplOpt superinterface clause
ThrwOpt throws clause
Members class/interface body
Qname qualified identifier
Type type
Stmt statement
Label label declaration
Expr expression
ident identifier
literal literal
comment comment
kw Keyword
op operator
sp blank or tab character
nl new line character

section explains how Java programs are converted into XS-
DML documents and what information is contained in the
documents, and describes access libraries and Java wrap-
pers accessing these documents.

2.1. Syntactic Parser

The XSDML represents source code as twenty non-
terminal and seven terminal elements, which are shown in
Table 1. The terminal element has only the textual content
while the non-terminal element can nest others. The syn-
tactic parser inserts directly these elements into the origi-
nal source code without changing the contents of the code,
that is, it only adds tags and attributes in the original code.
Each of the code fragments is delimited by the tags and
all tokens (identifiers, keywords, comments, white spaces,
and new lines) of the code remain in the textual contents
of the terminal elements. The original source code can
be restored from the converted XSDML document by re-
moving all tags and leaving behind the textual contents of
elements. Attributes are available to represent additional
properties such as modifiers, accessibility settings, fully-
qualified names, and sorts of elements. For example, types
(Type), statements (Stmt), expressions (Expr), and lit-
erals (literal) elements are classified as three, fifteen,
fifty-nine, and six by the attribute sort, respectively. Parts
of the values of the sort attribute are listed in Table 2 1.

1See http://www.jtool.org for details.

2

Tools for supporting software development

Java-XML
repository

XML documents

Sapid/XML tool platform

Text-based
source code

...

Source code converter

XML

XML

XML

XML

DOM, SAX, XSLT, JDOM, ...

Semantic analyzer
(global analysis)

Semantic analyzer
(local analysis)

Syntactic parser

Access libraries (a collection of APIs for conversion and retrieval)

Cross-reference
 extractor

Refactoring
 browser

 Java
programs
 Java
programs
 Java
program

DTD

Java objects

CFG & PDG
 constructor

Java wrappers

Figure 1. Overview of the proposed tool platform.

Table 2. Values of the sort attribute
sort of Type Description
Array array type ([])
Primitive primitive type (including void)
Object reference type

sort of Stmt Description
EMPTY empty statement
EXPR expression statement
BLOCK block
DOWHILE do statement
WHILE while statement
FOR for statement
IFELSE if-then statement
SWITCH switch statement
BREAK break statement
CONT continue statement
RETURN return statement
SYNC synchronized statement
THROW throw statement
TRY try statement
ASSERT assert statement

sort of Expr Description
MUL multiplication operator (*)
DIV division operator (/)
MOD remainder operator (%)
ADD addition operator (+)
SUB subtraction operator (-)
Assign assignment operator (=)
Assign$op compound assignment operator, the $op is one

of arithmetic operator (e.g., MUL)
DOT dot operation (.)
InstanceOf type comparison (instanceof)
Plus unary plus operator (+)
Minus unary minus operator (-)

sort of Expr Description
PreINC prefix increment operator (++)
PreDEC prefix decrement operator (--)
PostINC postfix increment operator (++)
PostDEC postfix decrement operator (--)
LogicalNOT logical complement operator (!)
LogicalAND conditional-and operator (&&)
LogicalOR conditional-or operator (||)
CondLT comparison operator (<)
CondGT comparison operator (>)
CondLE comparison operator (<=)
CondEQ equality operator (==)
CondNE equality operator (!=)
CondGE comparison operator (>=)
CtorCall call to a constructor
SpCtorCall call to a superclass’s constructor
MethodCall method call
ArrayAccess array access expression
InstanceCreation class instance creation expression
ArrayCreation array creation expression
Cast cast expression
Paren parenthesized expression
VarRef variable reference
Literal literal
This this operation
...

sortof literal Description
INT integer literal
FLOAT floating-point literal
STR string literal
CHAR character literal
BOOL boolean literal
NULL null literal

3

<?xml version="1.0"?>
<!DOCTYPE File SYSTEM "JX-model3-ext.dtd">
<File classpath="/usr/home/maru/Work/Report/scam04/xsdml-examples/FirstApplet" id="s792723457" pat..
</nl><Import id="d0"><kw>import</kw><sp> </sp><QName id="s843055105"><ident defid="s843055105">jav..
</nl><nl line="3" offset="41">
</nl><Class access="Public" fqn="FirstApplet" id="s796917761"><kw>public</kw><sp> </sp><kw>class</..
</nl><sp> </sp><Method access="Public" id="s809500673" typefirst="s813694978"><kw>public</kw><sp>..
</nl><sp> </sp><Stmt id="s826277890" sort="EXPR"><Expr id="s830472193" sort="DOT"><Expr id="s83..
</nl><sp> </sp><op>}</op></Stmt></Method><nl line="7" offset="162">
</nl><op>}</op></Members><Ances distance="0" name="FirstApplet" sort="CLASS"></Ances><Ances distan..
</nl><FqnMap fqn="java.awt.MenuContainer" jar="rt.jar" path="java/awt/MenuContainer.class"></FqnMa..

Figure 3. Document represented in XSDML.

1: import java.applet.*;
2: import java.awt.*;
3:
4: public class FirstApplet extends Applet {
5: public void paint(Graphics g) {
6: g.drawString("FirstApplet", 25, 50);
7: }
8: }

Figure 2. Java source code.

The simple source code quoted from [14] and an XS-
DML document converted from it are shown in Figure 2 and
Figure 3, respectively. Each line of the document except the
XML headers corresponds to that of Java source code since
the XSDML retains every new line. Moreover, the origi-
nal code can be seen in the textual contents of the terminal
elements (e.g., blanks or keywords are enclosed with the
<sp> or <kw> tag). This crude document is hard for hu-
man to read but we can use various XML utilities to view
it. Figure 4 illustrates a tree view of the XSDML document
shown in Figure 3 as displayed by the Mozilla [5].

Here it is worth discussing the problems Badros pointed
out in [14]. He stated that the representation marked-up by
only adding tags would need to further lexically analyze the
contents of the elements and it would not sufficiently ab-
stract the classical source code. To alleviate these problems,
the XSDML introduces a fine-grained tagging and slightly
verbose attributes. For example, the method call at line 6 in
the source code shown in Figure 2 is converted into 1:

<Stmt id="s826277890" sort="EXPR">
<Expr id="s830472193" sort="DOT">
<Expr id="s830472194" sort="VarRef"

read="yes" write="yes">
<ident defid="s805306369">g</ident>

</Expr><op>.</op>
<Expr id="s830472195" sort="MethodCall">

<ident defid="c302" fqn="void"
ref="java.awt.Graphics">

drawString</ident>
<op>(</op>..

</Stmt>

1Moderate blanks and new lines are inserted in the examples presented
hereafter so that the readers easily see them.

Figure 4. Tree view of the XSDML document.

The statement (Stmt) corresponding to the method call is
decomposed into some detailed elements. Another example
for the method declaration from line 5 to 7 in the source
code is as follows:

<Method access="Public" id="s809500673"
typefirst="s813694978">

<kw>public</kw><sp> </sp>..
</Method>

The value of the access attribute and the textual content
in the kw element are redundant. As shown in the above

4

two examples, the XSDML representation does not require
lexical analysis any longer although it retains the contents
of the original code. Moreover, these examples indicate that
our conversion is suitable for implementing tools which ma-
nipulate actual source code and browse it without changing
its appearance since white spaces (tabs and blanks) and new
lines remain. For example, a refactoring tool or a coding
checker prefers to use our representation. The highly ab-
stract representation such as the JavaML is insufficient to
implement these software tools although it is convenient for
making a survey of source code and some tools require such
representation independent to a specific programming lan-
guage.

2.2. Semantic Analyzer

The significant feature of the Sapid/XML is that it re-
flects information based on semantic analysis in its XML
representation. The semantic analyzer inserts two kinds of
the information: type and reference. The type information
is expressed by the fqn attribute. For the type Graphics at
line 5 in the source code shown in Figure 2, the following
description is generated.

<Type fqn="java.awt.Graphics" id="s813694979"
sort="Object">

<ident defid="c4" ref="java.awt.Graphics">
Graphics</ident>

</Type>

It can be easily seen that the fully-qualified name of Graph-
ics is java.awt.Graphics because of the value of fqn. The
fully-qualified name is determined based on the search path
for Java class and jar files, and used for obtaining the next
reference information.

The reference information is classified as a local or
global link. The local link is expressed by both the id and
defid attributes like the JavaML. The defid indicates
the link of the call or access to the element the id value of
which equals to the defid value. A referenced element is
always decided since the value of id must be unique within
an XML document. The XSDML enhances this notation
to express global links across several XML documents by
adding the ref attribute. For example, the following de-
scription:

<Expr id="s830472195" sort="MethodCall">
<ident defid="c302" fqn="void"

ref="java.awt.Graphics">
drawString</ident>

<op>(</op>..
</Expr>

indicates invocation to the method drawString the id value
of which equals to c302 in the class java.awt.Graphics.
The fqn attribute denotes the return type. The link of the
field access is represented in the same manner.

Along with the reference information, read and write
attributes are added to the Expr elements corresponding to
all references to fields and local variables. For example, a
reference to a variable g which is a prefix to the method call
to drawString is represented as follows:

<Expr id="s830472194" sort="VarRef"
read="yes" write="yes">

<ident defid="s805306369">g</ident>
</Expr>

The read="yes" or write="yes" means that a vari-
able is used without or with (possibly) changing its value,
respectively.

The process of determining which method would be
called and which field would be accessed is similar to that
done when compiling source code. It is based on the ap-
parent (or declarative) type of a related object since an
actual object is decided at run-time and its precise type
is not known at compile-time. The apparent type is ob-
tained from the value of the fqn attribute corresponding
to a primary ident or Expr element. Here the care-
ful readers will wonder why java.awt.Graphics has the
id attribute. Sapid/XML uses the byte code engineering
library (BCEL) [9] and automatically generates summary
XML documents from Java class and jar files whenever the
files are referred by the analyzed class. Moreover, it deter-
mines which classes should be re-analyzed when a specified
class is changed, by utilizing the global link information
(and adding the new tags Ances and FqnMap). If any an-
cestor of the specified class, any class it refers to, or itself
is modified, the platform automatically re-generates a new
XSDML document from it.

The type and reference information (plus the read/write
information) is often extracted by existing tools but is not
reusable in general. For example, most compilers lose part
of it after generating final class files. Although some of
them store it in the class files, its format is hard to read be-
cause of optimization. Sapid/XML makes such information
more explicit and provides it in an easy-to-use format in
order that software tools can query and manipulate source
code. This is significant since a semantic analyzer is hard
and expensive to build from scratch. Moreover, the pro-
vided link information must be common and fundamental to
all kinds of software tools although it is not enough to build
them without supplemental information. Neither JavaML
nor OOML contains the link information while JavaML
deals with only local references.

2.3. Access Libraries and Wrappers

Every XSDML document is stored in the Java-XML
repository. Tools running on Sapid/XML can request the
access libraries to convert Java programs into XSDML doc-
uments and to retrieve some of them from the repository

5

with several queries. The retrieved documents can be used
through various XML utilities, (e.g., the document object
model (DOM) [1], the simple API for XML (SAX) [8], the
extensible stylesheet language (XSL) and XSL transforma-
tions (XSLT) [10], and JDOM [4]). For example, the fol-
lowing Java code using DOM APIs outputs the name of all
methods existing in a Java source file of interest.

Element elem = doc.getDocumentElement();
NodeList nl =

elem.getElementByTagName("Method");
for (int i = 0; i < nl.getLength(); i++) {

NodeList nl2 = nl.item(i).getChildNodes();
for (int j = 0; j < nl2.getLength(); j++) {

Node node = nl2.item(j);
if (node.getNodeName().equals("ident")) {

System.out.println(
node.getFirstChild().getNodeValue());

}
}

}

The doc variable indicates a document object of the XS-
DML document generated from the source file.

The standard APIs (e.g., DOM and SAX) are of course
convenient for writing code independent to a specific pro-
gramming language but too primitive for most developers
when they build a tool in practice. Accordingly, the de-
velopers tend to write tedious code repeatedly. To avoid
this repetition, Sapid/XML provides several Java wrappers
which have alternative, high-level APIs for accessing XS-
DML documents. In Figure 5, the rectangles denote the
Java wrappers corresponding to XSDML elements depicted
in the top of them.

The wrappers are classes tool developers would fre-
quently use and allow them to easily access to portions of
a DOM tree in the Java object form. For example, the code
getting a list of classes in the Java source file (indicated by
doc) is as follows:

Element elem = doc.getDocumentElement();
JavaFile jfile = new JavaFile(elem);
JavaClassList clist = jfile.getAllClasses();

In addition, the code outputting the name of all methods
existing in a class is as follows:

JavaMethodList mlist = jclass.getAllMethods();
Iterator it = mlist.iterator();
while (it.hasNext()) {

JavaMethod jm = (JavaMethod)it.next();
System.out.println(jm.getName());

}

The variable jclass is an object of the JavaClass wrap-
per. All wrappers are designed only to extract information
from XSDML documents and never change their contents.
They are also useful samples of writing code that accesses
and manipulates XSDML documents.

<Stmt> <Field>

<Local>

<Expr> <Expr sort="MethodCall">

<Expr sort="VarRef">

<Expr sort="*">

<Expr sort="CtorCall">

<Param>

JavaStatement JavaField

JavaLocal JavaParameter

JavaCallJavaExpr JavaConstructorCall

JavaVariable

JavaArgument

JavaVariableList

JavaFieldList

org.w3c.dom.ElementJavaElement

<File>

<Type>

<Package>

<Import>

JavaFile

JavaPackage

JavaImport

JavaType

<Class>

JavaClass JavaClassList

<Method>

JavaMethod JavaMethodList

Figure 5. Java wrappers for the XSDML.

3. Practical Tools Using Sapid/XML

One strength of Sapid/XML is that it structures Java
source code with several tags and embeds additional in-
formation resulting from semantic analysis in the converted
XML documents. By specifying tags in querying and trans-
formation, the portion of code can be accessed and ex-
tracted. Moreover, Sapid/XML neither loses tokens of orig-
inal source code nor adds superfluous texts to the textual
contents of elements when generating XSDML documents.
This feature is convenient for modifying only the part of
source code and retaining the remaining code, or marking
(or highlighting) source code without changing its appear-
ance. Most source code viewers and editors do not desire
a tool platform to arbitrarily change the contents of source
code (e.g., indentations or the position of braces) since they
have their individual formatters.

To evaluate these benefits, we have developed the fol-
lowing tools.

� A method viewer generating a HTML document that
lists the declaration of methods for each class.

� A source code browser generating a browsable code
containing hyperlinked references in HTML form.

� A CFG/PDG constructor producing a control flow
graph (CFG) [13] and a program dependence graph
(PDG) [16] for each method existing in source code.

� A cross-reference extractor collecting link information
about inverse references (e.g., callers of a method) and

6

Figure 6. Viewing the declaration of methods.

relationships (e.g., method override), and producing
XML documents containing the information.

� A refactoring browser restructuring existing source
code without changing its observable behavior.

Due to space limitation, we will explain only the former
three tools in this paper. 2

3.1. Method Viewer

The method viewer is a simple XSLT application. Fig-
ure 6 shows a web browser displaying method declarations
in the source code. It was trivial to identify classes, meth-
ods, and constructors since they were marked with Class,
Method, and Ctor in the converted XSDML document,
respectively. Carefully looking at Figure 6, all class names
(type names) in the method declarations were replaced with
fully-qualified ones. Displaying such information is easily
performed by using the value of the fqn attribute of Type
elements instead of its textual contents. With Sapid/XML,
tools can obtain various kinds of information about source
code through XML utilities and thus developers can build
such tools without writing much code.

2All of these tools can be downloaded from http://www.jtool.org.

Figure 7. Viewing HTML-based source code.

3.2. Source Code Browser

The source code browser is also an XSLT application.
The developed stylesheet is described in Appendix A. Fig-
ure 7 shows a view of the generated HTML-based source
code. This stylesheet performs mainly two transformations.
One is to enclose the name (ident) of classes, methods,
fields, local variables with the
and elements. The @defid indicates the value of the
defid attribute of elements owning the enclosed names.

The other transformation is to find references to
classes (types), methods, fields, and local variables, and
enclose the references with <a href="�$relpath�
�$path�.html#�@defid�"> and elements. As
mentioned in Section 2.2, all references in XSDML doc-
uments have the defid attribute the value of which in-
dicates the target element, which substitutes for @defid.
Moreover, global references (other than references to local
variables) have the ref attribute which denotes the fully-
qualified name of a class containing the target element.
The $path is obtained through the FqnMap map storing
the correspondences between the fully-qualified name of

7

a class and the name of a file containing the class. The
$relpath denotes a relative path to the top of directories
storing HTML files and is provided as a parameter of the
stylesheet.

Tags except for newly added ones are removed and the
textual contents of all elements are left behind. A remark-
able point is that the appearance of the restored source code
is the exactly same as that of the original source code.
Sapid/XML is well suited for creating this kind of tool be-
cause it preserves all tokens of the original source code in
converted XSDML documents.

3.3. CFG/PDG Constructor

The CFG and PDG (or control and data flow) are often
used for creating tools that support software development.
For example, the CFG is useful for eliminating dead code
or code clone, and the PDG is invaluable for debugging or
testing. Program slicing [20] is famous application using
the PDG, which is widely applied to various fields. Inci-
dentally, our developed refactoring browser uses the CFG
and PDG. The information about CFGs and PDGs can be
obtained through XML documents and/or Java objects.

The CFG consists of a set of nodes and edges. Each
node denotes a statement which is either an assignment or
a condition predicate, which is marked the Stmt or Expr
tag. Each edge represents immediately control flow from
a statement and another one. An example of the generated
CFG is as follows:

<nodes>..
<node no="4" id="s805306373">

<def-var id="s805306373" name="sum"/></node>
<node no="5" id="s826277895">

<use-var id="s805306372" name="n"/></node>
..</nodes>

<edges>..
<edge src="5" dst="6" sort="TrueCtrlFlow"/>
<edge src="6" dst="7" sort="TrueCtrlFlow"/>
<edge src="7" dst="5" sort="TrueCtrlFlow"

loopback="yes"/>
<edge src="5" dst="8" sort="FalseCtrlFlow"/>

..</edges>

The src or dst attribute demotes the value of the
no attribute of a source or destination node, respec-
tively. The sort attribute is TrueCtrlFlow (if-then),
FalseCtrlFlow (if-else), or FallThrFlow [15]. The
loopback="yes" means its edge is a back-edge for a
loop. The analyzer of the current version of Sapid/XML
cannot deal with control flow involved in exception. To alle-
viate this problem, a path edge [17] which indicates control
flow for exception handling will be embedded.

Similar to the CFG, the PDG consists of a set of nodes
and edges. Each node is equal to a node of the CFG gen-
erated from the same source code. Edges denote control
and data dependences. A control dependence edge repre-
sents a control condition on which the execution of a state-
ment depends. Data dependence edge represents flow of

data between statements, which is classified as either loop-
carried or loop-independent [18]. An example of the gener-
ated PDG is as follows:

<nodes>..</nodes>
<edges>
<edge src="5" dst="6" sort="TrueCtrlDep"/>
<edge src="5" dst="7" sort="TrueCtrlDep"/>
..
<edge src="2" dst="5" sort="ParameterIn">

<var id="s805306372" name="n"/></edge>
<edge src="4" dst="6" sort="DefUseDep">

<var id="s805306373" name="sum"/></edge>
<edge src="6" dst="6" sort="DefUseDep">

<var id="s805306373" name="sum" lc="5"/></edge>
<edge src="8" dst="9" sort="ParameterOut">

<var id="s809500674" name="$sum"/></edge>
</edges>

The sort attribute equals TrueCtrlDep (true con-
trol dependence), FalseCtrlFlow (false control de-
pendence), DefUseDep (def-use data dependence),
ParameterIn (def-use data dependence related to an in-
coming parameter), or ParameterOut (def-use data de-
pendence related to an outgoing parameter). The lc at-
tribute in a var element indicates a loop-node carrying the
edge enclosing the var element.

3.4. Discussion

Both of the former two tools were completed with little
time and effort and comprised small amount of description
(about 46 LOC and 55 LOC, respectively) because we were
able to use an existing XSL processor and wrote code in the
standardized stylesheet language without learning propri-
etary programming interfaces. The CFG/PDG constructor
demonstrated that Sapid/XML provides sufficient informa-
tion about source code, which is not inferior to that pro-
vided by the AST. Moreover, we conformed that extending
the original XSDML representation is useful for sharing and
exchanging analyzed information. In fact, one new attribute
to indicate a location of each code fragment was added
when developing the cross reference extractor. Moreover,
one new tag and one new attribute to express the changes of
source code were defined in the refactoring browser.

In addition to these tools, we are considering tools that
enable developers to annotate any code fragment by using
individual elements or attributes. For example, a version
control tool might desire to attach an annotation containing
information about the last modified time to not only each
file but also each method as follows:

<Method .. modified="Mon Apr 5 10:45:14">..
</Method>

or it might present access permission for each method as
follows:

<Method .. mode="Read-only">..
</Method>

8

Table 3. Size of converted XML documents and processing time.

Java source file (.java) XML file (.xml)
Program

of files LOC Size [bytes] .java.xml [bytes] ratio .class.xml [bytes] Total [bytes]

Notepad 2 1,343 38,805 412,522 10.63 1,239,167 1,651,689
Sylepad 5 2,159 65,245 717,249 11.00 1,433,866 2,151,115
SwingSet2 31 8,617 294,619 3,088,867 10.48 2,193,784 5,282,651
Java2D 62 14,187 509,949 6,355,034 12.46 2,217,521 8,572,555

Table 4. Size of converted XML documents and processing time.

XML file (.xml) Conversion time [s] Manipulation time [s]
Program

of files # of elements Syntactic Semantic Total Each file Counter Each file Viewer Each file

Notepad 2 20,634 5.444 22.077 27.521 13.761 0.032 0.016 2.250 1.125
Sylepad 5 35,418 9.336 28.793 38.129 7.626 0.034 0.007 4.970 0.994
SwingSet2 31 150,086 59.455 140.051 199.506 6.436 0.068 0.002 27.220 0.878
Java2D 62 308,631 88.526 480.403 568.929 9.176 0.129 0.002 54.940 0.886

Additionally, developers might want to embed a temporary
note that differs from a conventional (permanent) comment
into source code.

<Method note="n000000001">..</Method>

<note id="n000000001" expire="04/12/2004">
The name of this method was recently changed.
</note>

In this case, the unparser must be slightly modified and a
proper editor (or viewer) displaying the textual contents of
the added note tag is needed to prepare.

4. Experimental Results

The XML representation of source code in general
causes expansion of the file size and processing time be-
cause of its portability and flexibility. To roughly eval-
uate performance of Sapid/XML, we carried out sim-
ple experiments with four programs (Notepad, Sylepad,
SwingSet2, and Java2D) packaged in the Sun Microsys-
tems J2SDK1.4.2.

Table 3 shows the size of the original Java source files
and their converted XSDML files. The size of the con-
verted XML files (.java.xml) is about 10 times (10.63,
11.00, 10.48, and 12.46 times, respectively) larger than
that of original files. This is because our proposed XML
representation contains various kinds of analyzed informa-
tion of source code. Moreover, Sapid/XML automatically
generates summary XSDML documents (.class.xml) from
classes related to the analyzed Java source files. These files
consume much space although they can be shared by re-
spective programs. The repository size might cause the “out
of memory” problem when Sapid/XML handles a huge pro-
gram.

Table 4 shows two types of the processing time. The
conversion time denotes how long it takes to convert Java
source files into XSDML documents. This time is divided
into two phases: syntactic parsing and semantic analysis.
The manipulation time were measured by using two appli-
cations. The “Counter” application traverses all elements
(tags and attributes) and counts their numbers, which uses
the DOM processor, Xerces2 Java Parser 2.6.2 [12]. The
“Viewer” application generates a browsable source code in
HTML form. It uses the XSL processor, Xalan Java ver-
sion 2.6.0 [11] and the stylesheet described in Appendix A.
The execution was performed on a computer with a Pen-
tium4 2.4GHz CPU and a 640MB of RAM, running Red
Hat Linux9 and Sun Microsystems J2RE1.4.2 01.

The conversion time for each Java source file is about
6 to 14 seconds and is much longer than the general com-
pile time. This main reason is that Sapid/XML uses XS-
DML documents and an XML processor when performing
global semantic analysis. This result might not be serious
to build an application which seldom needs the conversion
(e.g., a source code viewer for the standard libraries) but
is much considerable to build interactive tools which need
the frequent re-conversion. To reduce the conversion time,
we are planning to adopt the semantic analyzer of sophis-
ticated compilers or modifying existing IDEs to generate
XSDML documents. The manipulation time for simple ap-
plications (not complicated applications such as the seman-
tic analyzer) is considered to be reasonable (about 1 second
for each file).

5. Conclusion

Tool developers require more portable and extensible
representations of tool platforms. This paper has proposed
the XSDML representation using XML and Sapid/XML

9

that is a tool platform for managing such representation.
Sapid/XML retains original code fragments in the converted
XSDML documents and inserts the globally analyzed infor-
mation into them. With this platform, the developers easily
build software tools that collaborate with each other.

For the platform to be truly practical, its performance
must be improved and the development of many tools are
needed. From functional points of view, Sapid/XML can-
not replace an existing powerful IDE. Additionally, our pro-
posed XSDML representation is not perfect and should be
refined. We are planning to integrate the XSDML represen-
tation and its converter into popular IDEs (e.g., Eclipse [2]).

The Sapid/XML tool platform and some tools running
on it can be downloaded from http://www.jtool.org.

Acknowledgments

The authors would like to thank Akinori Yonezawa at the
University of Tokyo and Etsuya Shibayama at the Tokyo In-
stitute of Technology for their helpful suggestions and com-
ments. This work is based on and has been cooperating
with the Sapid project. We also thank Kiyoshi Agusa of
the Nagoya University and all members who have been en-
gaging the Sapid project. This work was sponsored by the
Information-technology Promotion Agency (IPA), Japan.

References

[1] Document Object Model (DOM).
http://www.w3.org/DOM/.

[2] Eclipse. http://www.eclipse.org/.
[3] Extensible Markup Language (XML).

http://www.w3.org/XML/.
[4] JDOM. http://www.jdom.org/.
[5] Mizilla. http://www.mozilla.org/.
[6] RECORDER. http://recoder.sourceforge.net/.
[7] Semantic Designs, Inc., The DMS Software Reengineering

Toolkit. http://www.semdesigns.com/
Products/DMS/DMSToolkit.html.

[8] Simple API for XML (SAX).
http://www.saxproject.org/.

[9] The Byte Code Engineering Library (BCEL).
http://jakarta.apache.org/bcel/.

[10] The Extensible Stylesheet Language Family (XSL).
http://www.w3.org/Style/XSL/.

[11] Xalan-Java. http://xml.apache.org/xalan-j/.
[12] Xerces2 Java Parser.

http://xml.apache.org/xerces2-j/.
[13] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princi-

ples, Techniques, and Tools. Addison-Wesley, 1986.
[14] G. J. Badros. JavaML: A markup language for java

source code. In Proc. Int’l WWW Conference, May 2000.
http://www9.org/w9cdrom/index.html.

[15] T. Ball and S. B. Horwitz. Slicing programs with arbitrary
control flow. In Proc. Intl. Work. on Automated and Algo-
rithmic Debugging, LNCS 749, pages 206–222, May 1993.

[16] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The pro-
gram dependence graph and its use in optimizati- on. ACM
TOPLAS, 9(3):319–349, July 1987.

[17] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. Sinha, S. A. Spoon, and A. Gujarathi. Regression
test selection for java software. In Proc. OOPSLA, pages
312–326, Oct. 2001.

[18] S. Horwitz, T. Ball, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM TOPLAS, 12(1):26–60, Jan.
1990.

[19] E. Mamas and K. Kontogiannis. Towards portable source
code representations using xml. In Proc. Working Confer-
ence on Reverse Engineering, pages 172–182, Nov. 2000.

[20] M. Weiser. Program slicing. IEEE Trans. Software Engi-
neering (TSE), 10(4):352–357, July 1984.

A. XSLT Stylesheet Used in the Experiments

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:param name="relpath"/>
<xsl:key name="Fqn" match="FqnMap" use="@fqn"/>

<xsl:template match="/">
<html><pre><xsl:apply-templates/></pre></html>

</xsl:template>
<xsl:template match="*|@*">
<xsl:apply-templates select="*|@*|text()"/>

</xsl:template>
<xsl:template match="text()">
<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="Class/ident|Intf/ident|
Method/ident|Ctor/ident|
Field/Expr/ident|
Local/Expr/ident|
Param/ident" priority="1">

<xsl:value-of select="."/>
</xsl:template>

<xsl:template match="Type[@sort=’Object’]/ident|
Expr[@sort=’VarRef’]/ident|
Expr[@sort=’MethodCall’]/ident|
Expr[@sort=’CtorCall’]/ident">

<xsl:choose>
<xsl:when test="@ref">

<xsl:variable name="path"
select="key(’Fqn’,@ref)/@path"/>

<xsl:if test="contains($path, ’.java’)">

<xsl:value-of select="."/>
</xsl:if>

<xsl:if test="contains($path, ’.class’)">

<xsl:value-of select="."/>

</xsl:if>
</xsl:when>

<xsl:otherwise>

<xsl:value-of select="."/>
</xsl:otherwise>
</xsl:choose>

</xsl:template>
</xsl:stylesheet>

10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

