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Abstract

Whether context-sensitive program analysis is more ef-
fective than context-insensitive analysis is an ongoing dis-
cussion. There is evidence that context-sensitivity matters
in complex analyses like pointer analysis or program slic-
ing. One might think that the context itself matters, because
empirical data shows that context-sensitive program slicing
is more precise and under some circumstances even faster
than context-insensitive program slicing. Based on some
experiments, we will show that this is not the case.

The experiment requires backward slices to return to call
sites specified by an abstract call stack. Such call stacks can
be seen as a poor man’s dynamic slicing: For a concrete ex-
ecution, the call stack is captured, and static slices are re-
stricted to the captured stack. The experiment showed that
there is no significant increase in precision of the restricted
form of slicing compared to the unrestricted traditional slic-
ing.

1. Introduction

A slice extracts those statements from a program that po-
tentially have an influence onto a specific statement of inter-
est which is the slicing criterion. Originally, slicing was de-
fined by Weiser in 1979; he presented an approach to com-
pute slices based on iterative data flow analysis [18, 19].
The other main approach to slicing uses reachability analy-
sis in program dependence graphs (PDGs) [6]. Program de-
pendence graphs mainly consist of nodes representing the
statements of a program, and control and data dependence
edges:

• Control dependence between two statement nodes ex-
ists if one statement controls the execution of the other
(e.g. through if- or while-statements).

• Data dependence between two statement nodes exists
if a definition of a variable at one statement might
reach the usage of the same variable at another state-
ment.

The extension of the PDG forinterprocedural programs
introduces more nodes and edges: For every procedure a
procedure dependence graphis constructed, which is basi-
cally a PDG withformal-inand-out nodes for every formal
parameter of the procedure. A procedure call is represented
by acall node andactual-inand-out nodes for each actual
parameter. The call node is connected to the entry node by a
call edge, theactual-innodes are connected to their match-
ing formal-innodes viaparameter-inedges, and theactual-
outnodes are connected to their matchingformal-outnodes
via parameter-outedges. Such a graph is calledInterproce-
dural Program Dependence Graph (IPDG). TheSystem De-
pendence Graph (SDG)is an IPDG, wheresummary edges
between actual-in and actual-out have been added repre-
senting transitive dependence due to calls [9].

To slice programs with procedures, it is not enough to
perform a reachability analysis on IPDGs or SDGs. The re-
sulting slices are not accurate as thecalling contextis not
preserved: The algorithm may traverse a parameter-in edge
coming from a call site into a procedure, may traverse some
edges there, and may finally traverse a parameter-out edge
going to a different call site. The sequence of traversed
edges (the path) is anunrealizable path: It is impossible
for an execution that a called procedure does not return to
its call site. We consider an interprocedural slice to bepre-
ciseif all nodes included in the slice are reachable from the
criterion by arealizablepath.

Definition 1 (Slice in an IPDG)
The (backward) sliceS(n) of an IPDGG = (N,E) at node
n ∈ N consists of all nodes on whichn (transitively) de-
pends via an interprocedurally realizable path:

S(n) = {m ∈ N | m →?

R n}

Here,m →?

R n denotes that there exists an interprocedu-
rally realizable path fromm to n.

These definitions cannot be used in an algorithm directly
because it is impractical to check paths whether they are
interprocedurally realizable. Accurate slices can be calcu-
lated with a modified algorithm on SDGs [9]: The benefit of
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SDGs is the presence ofsummaryedges that represent tran-
sitive dependence due to calls. Summary edges can be used
to identify actual-out nodes that are reachable from actual-
in nodes by an interprocedurally realizable path through the
called procedure without analyzing it. The idea of the slic-
ing algorithm using summary edges [9, 17] is first to slice
from the criterion only ascending into calling procedures,
and then to slice from all visited nodes only descending into
called procedures. We refer the reader to [10, 11] for a pre-
sentation of the algorithms.

The next section will discuss empirical results and re-
lated work on how context-sensitive program slicing com-
pares to context-insensitive slicing. Section 3 contains a
new form of program slicing that restricts the slice to obey
a specified calling context. That approach is used for an ex-
periment in Section 4 to argue about context-sensitivity and
context. The last section draws conclusions.

2. Related Work

There has been some debate whether the increased com-
plexity of context-sensitive program analysis is worthwhile
the increased precision. There is no final conclusion as ev-
ery program analysis differs. For pointer analysis, context-
sensitive and context-insensitive analyses exist, however,
most authors claim that context-sensitive pointer analysis is
too expensive for only a small increase in precision [8, 7].
The case is different for program slicing: For slicers that
use a Weiser-style algorithm based on data flow equations,
context-sensitive slicing is expensive. The experiments
presented in [4, 14] show that unlimited context-sensitive
Weiser-style slicing is not affordable; Mock et al [14] limit
the depth of the considered context to two. This means that
the slicing algorithm only returns for a chain of two call
sites to the correct call site and is context-insensitive after
that. With this limited context-sensitivity the conducted ex-
periments show no large increase in precision. These re-
sults are in contrast to at least three experiments done with
PDG-based slicing. The first, done by Agrawal and Guo
[1], presented results stating that context-sensitive slicing
is faster and more precise than context-insensitive slicing.
However, this approach has been shown to be incorrect in
the second large study [10]. There, the experiments showed
that context-sensitive slicing in the style of [9, 17] is al-
ways much more precise than context-insensitive slicing.
On average, the slices computed by the context-insensitive
slicing algorithm are 67% larger than the ones computed
by the context-sensitive algorithm. Moreover, the context-
insensitive algorithm is even slower; on average, it needs
23% more time. These results contradictory to the ones
presented by Mock et al [14]. Krinke also experimented
with PDG-based slicing algorithms that rely on explicit
context-sensitivity and handle it similar to Weiser-style al-

gorithms. The performed experiments limit the depth of
the context similar to the approach of Mock et al. To asses
the results with limited context, Krinke compared the size
of the computed slices against the ones computed by the
context-insensitive and the (unlimited) context-sensitive al-
gorithm. He considered the size of the slices computed
by the context-insensitive algorithm as 0% precision and
the size of the slices computed by the unlimited context-
sensitive algorithm as 100% precision. For experiments
done with different limits, he reported increasing numbers
of precision. For example, even a limit of one results in
an average precision of 63% and a limit of 6 reaches al-
ready 98% precision. The third large scale study performed
by Binkley and Harman [5] had similar results. Their al-
gorithm is also based on PDGs and uses the original algo-
rithms from [9] implemented in the CodeSurfer slicing tool
[3]. Their results show that context-insensitive slices are
on average 50% larger than their context-sensitive counter-
parts.

3. Context-Restricted Slicing

The results of the PDG-based slicing studies suggest
that context matters in slicing algorithms, and that context-
sensitive algorithms have an enhanced precision with de-
creased computation time. This may lead to the assump-
tion that the context itself is the reason for precision. This
leads us to the creation of a “poor man’s dynamic slicer”.
During debugging, the programmer is not interested in all
possible executions, but in one specific, e.g. if we want to
find out why a program crashed at a certain point. Because
static slicing does not consider a specific execution but all
possible executions, it does not suit such debugging tasks
very good. Instead, dynamic slicing has been developed; it
computes slices which are specific to one particular execu-
tion. Because of this restriction, dynamic slices are more
precise than static slices. However, the computation of dy-
namic slices is expensive and has to be redone for every per-
formed execution. There exists no available dynamic slicer
that is ready to use. Instead, one has to rely on one of the
available static slicers like CodeSurfer [3], Sprite [4, 14], or
Unravel [13]. This results in the following scenario: If a
crashed program is debugged, we can normally extract the
current call stack that leads to a crash. A simple adaption
of the slicing algorithm could force the computed slice to
obey the extracted call stack by requiring called procedures
to return to the calling procedure as found in the call stack.

A program analysis is context-sensitive, if it only con-
siders interprocedurally realizable paths. One way to de-
scribe interprocedurally realizable paths is via context-free
language reachability similar to [16]: The intraprocedural
program dependence graph can be seen as a finite automa-
ton and the intraprocedurally realizable paths are words of
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its accepted language. Therefore, reachability in the pro-
gram dependence graph is an instance of regular language
reachability. The problem in interprocedural reachability is
the proper matching of call edges to return edges. This can
be achieved by defining a context-free language on top of
the IPDG. First, we assume that call and actual parameter
nodes are marked with a label for their call sitec. Edges
in the IPDG are now marked according to their source and
target nodes:

• Call edges between a call nodem at call sitec and a
noden in procedurep are marked with “(c”.

• Parameter-in edges between an actual-in parameter
nodem at call sitec and a node formal-in noden in
procedurep are also marked with “(c”.

• Parameter-out edges between a formal-out node in pro-
cedurep and a actual-out noden at call sitec are
marked with “)c”.

• All other edges are marked withε.

Let Σ be the set of all edge labels in an IPDGG. Every
path inG induces a word overΣ by concatenating the labels
of the edges on the path. A path is an interprocedurally
matchedpath if it is a word of the context-free language
defined by:

M → MM
| (cM)c ∀(c∈ Σ
| ε

This grammar assures the proper matching of calls and re-
turns by simulating an abstract call stack. Interprocedu-
rally matched paths require their start and end node to be
in the same procedure. Interprocedurally realizable paths
with start and end node in different procedures have only
partially matching calls and returns: Dependent on whether
the end node is lower or higher in the abstract call stack,
the paths are right-balanced or left-balanced. A path is an
interprocedurallyright-balancedpath if it is a word of the
context-free language defined by:

R → RR
| M
| (c ∀(c∈ Σ
| ε

Here, every)c is properly matched to a(c to the left, but
the converse needs not to hold. A path is an interprocedu-
rally left-balancedpath if it is a word of the context-free
language defined by:

L → LL
| M
| )c ∀(c∈ Σ
| ε

An interprocedurally realizable pathstarts as a left-
balanced path, and ends as a right-balanced path:

I → LR

Definition 2 (Interprocedural Reachability)
A noden is interprocedurally reachablefrom nodem, iff an
interprocedurally realizable path fromm to n in the IPDG
exists:m →?

R n.

Now, we restrict an interprocedurally realizable path to a
call stacks. A call stacks is represented by a list of call
sitesci: s = 〈c1, . . . , ck〉. A path matches a call stack
s if it is a word of the context-free language induced by
s = 〈c1, . . . , ck〉:

I → L
| L(ck

M
| L(ck−1M(ck

M
...
| L(c1M . . . (ck

M

This requires the path to return to the chain of call sites in
the call stack if there is no matching call.

Definition 3 (Context-Restricted Slice)
The (backward) slice S(n, s) of an IPDGG = (N,E) at
noden ∈ N restricted to the call stacks consists of all
nodes on whichn (transitively) depends via an interproce-
durally realizable path that matches the call stacks:

S(n, s) = {m ∈ N | m
s

→?

R n}

Here, m
s

→?

R n denotes that there exists an interproce-
durally realizable path fromm to n matchings. Note
that a context-restricted slice requires the criterionn to
be in a procedure called from the topmost call siteck of
s = 〈c1, . . . , ck〉.

The Algorithm 1 computes a context-restricted slice. It is a
variant of the context-sensitive slicing algorithm from [10],
which is a variant of [9, 17]. Here, the first pass that com-
putes the slices ignoring parameter-in or call edges has been
changed such that it is repeated once for every call siteci

of the specified call stack. During each of the iterations,
every node reachable via intraprocedural edges is added to
the worklistW . If a parameter-out edge is traversed, the
reached node is added to the worklistW down, which is pro-
cessed in the second pass. If parameter-in or call edges are
traversed, the reached node has to be part of the current call
siteci. If that is the case, the reached node is added to the
worklist W up, which is used as the initial worklistW for
the next iteration that processes call siteci−1.
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Input: G = (N,E) the given SDG
n ∈ N the given slicing criterion
s = 〈ci, . . . , ck〉 the given call stack

Output: S ⊆ N the slice for the criterionn

W up = {n}
W down = ∅
S = {n}
first pass, descending slice
for i = k . . . 1 do

W = W up

W up = ∅
while W 6= ∅ worklist is not emptydo

W = W/{n} remove one element from the worklist
foreachm → n ∈ E do

if m /∈ S then
if m → n is a parameter-out edge (m

po→ n) then
W down = W down ∪ {m}
S = S ∪ {m}

elsif m → n is a parameter-in or call edge (m
pi,cl→ n)

and the call site ofm is ci then
W up = W up ∪ {m}
S = S ∪ {m}

else
W = W ∪ {m}
S = S ∪ {m}

second pass, ascending slice
while W down 6= ∅ worklist is not emptydo

W down = W down/{n} remove one element from the worklist
foreachm ⇀ n ∈ E do

if m /∈ S then

if m ⇀ n is not a parameter-in or call edge (m
pi,cl→ n) then

W down = W down ∪ {m}
S = S ∪ {m}

return S the set of all visited nodes

Algorithm 1: Summary Information Slicing (in SDGs)
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ctags patch
unique stacks 186 85
slices 4136 2569
average size context-sensitive slice 2100 7109
average size context-restricted slice 1914 7021
average size context-sensitive slice 20% 34%
average size context-restricted slice 19% 34%
average size reduction 9% 1%

Table 1. Average sizes of context-sensitive
and -restricted slices

4. Experiment

We have implemented the above algorithm in our slic-
ing infrastructure [12, 10, 11] and performed two case stud-
ies, based on the programsctags and patch from our
earlier study presented in [10]. For each of the programs
we performed one characteristic execution in a debugger.
On every execution of a program’s procedure, we dumped
and extracted the current call stack. This leads to two sets
of call stacks which we used as test cases. We then com-
puted backward slices for each formal-in parameter node of
the intercepted procedure for each call stack. We measured
the sizes of each of those slices twice, once computed by
context-restricted slicing and once by traditional context-
sensitive slicing. The results are shown in Table 1 for the
two test casesctags (left column) andpath (right col-
umn). The first two rows show the number of unique call
stacks extracted from the test execution, and the number of
computed slices. The next rows show the average size of
the computed slices in numbers of contained SDG-nodes,
and as percentage of the program’s complete SDG.

The results do not confirm the expected effect: context-
restricted slices do not have a much higher precision than
context-sensitive slices. Though the context-restricted slice
is 9% smaller forctags than the context-sensitive slice,
the percentage of the complete program just decreases from
20% to 19%. For the other testpatch , the average size for
the context-restricted slice is just 1% smaller, and the differ-
ence in percentage of the complete program is neglectable.

So the question is why is there just a small size reduc-
tion? Our hypothesis is that this is related to unrestricted
called procedures. Context-restricted slices only restrict the
calling-context of calling procedures. The context of called
procedures is not restricted (as long as called procedures
are handled context-sensitive). We believe that a large share
of an average slice is due to called procedures. To investi-
gate this, we repeated the experiment withtruncatedback-
ward slicing. A truncated (backward) slice does not contain
nodes from called procedures; it does not ascend into them.
To compute it, the second pass of the slicing algorithm is

ctags patch
average size context-sensitive slice 924 2916
average size context-restricted slice 463 1701
average size context-sensitive slice 9% 14%
average size context-restricted slice 4% 8%
average size reduction 50% 42%

Table 2. Average sizes of for truncated slices

left out (because it computes exactly those nodes). A trun-
cated (backward) slice is computed by always ignoring the
parameter-out edges, as this would lead into called proce-
dures during backward traversal. It is worth to be noted
that there is no difference in the computation of a trun-
cated context-sensitive and a truncated context-insensitive
slice. The algorithm 1 can be adapted for the truncated
version accordingly: We remove the second pass and the
first branch of the if-elsif-then-cascade. With this modifi-
cation, we repeated the experiment; Table 2 shows the re-
sult. We can see that the average truncated slice is much
smaller than a non-truncated slice. Forctags , the size
went down from 2100 to 924 nodes of the SDG (a 56% re-
duction), and forpatch , it went down from 7109 to 2916
nodes (a 59% reduction). This illustrates that the major-
ity of nodes in a slice is due to nodes of called procedures.
The numbers for context-restricted slices now support our
hypothesis: Forctags , the context-restricted slice is on
average half the size of a context-sensitive slice, and for
patch , it is still 42% smaller. However, we still expected a
larger reduction because of the following observation: For
ctags , we measured that on average, every procedure is
called from three different call sites, and forpatch , we
measured 4.8 different call sites. We also measured the av-
erage size of the call stacks, which is 8.5 forctags and 4.2
for patch . These numbers suggest that a context-sensitive
truncated slice would visit many more procedures than a
context-restricted one. However, values around 50% sug-
gest that there are not so many alternative call stacks that
can lead to a specific point of execution. A further investi-
gation on this topic is planned.

5. Conclusions

The presented approach of context-restricted slices can
efficiently be implemented in current static slicing tools that
are based on PDGs. For debugging, context-restricted slic-
ing can be used as a poor man’s dynamic slicer. However,
the size reduction is not large enough for the non-truncated
slices. We plan to integrate and experiment with other light-
weight approaches like approximate dynamic slicing [2]
that captures whether a statement corresponding to a node in
the PDG has ever been executed, or call-mark slicing [15],
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where it is captured whether a procedure has ever been ex-
ecuted.

The presented experiment adds another aspect to the dis-
cussion about context-sensitive or context-insensitive pro-
gram analysis. For program slicing, earlier studies showed
evidence that context-sensitive slicing algorithms are much
more precise and can even be faster than their context-
insensitive counterparts. However, the experiment of this
approach showed that restricting slices to specific contexts
does not lead to significant smaller slices.

We do not claim that this is a general result, as the ex-
periment was to small for that purpose. To draw a gener-
ally valid conclusion, this experiment has to be repeated in
a larger scale, like done in [10, 11, 5]. Additionally, the
results are only valid for C—context plays a different role
in object-oriented programming languages, and we expect
different results.

Acknowledgments. Silvia Breu provided valuable com-
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