
Implementation and Verification of Implicit-Invocation Systems
Using Source Transformation∗

Hongyu Zhang, Jeremy S. Bradbury, James R. Cordy, Juergen Dingel

School of Computing, Queen’s University, Kingston, Canada
E-mail: zhang@namzak.com, (bradbury,cordy,dingel)@cs.queensu.ca

Abstract
In this paper we present a source transformation-based

framework to support uniform testing and model checking
of implicit-invocation software systems. The framework in-
cludes a new domain-specific programming language, the
Implicit-Invocation Language (IIL), explicitly designed for
directly expressing implicit-invocation software systems, and
a set of formal rule-based source transformation tools that
allow automatic generation of both executable and formal
verification artifacts. We provide details of these transfor-
mation tools, evaluate the framework in practice, and discuss
the benefits of formal automatic transformation in this con-
text. Our approach is designed not only to advance the state-
of-the-art in validating implicit-invocation systems, but also
to further explore the use of automated source transformation
as a uniform vehicle to assist in the implementation, valida-
tion and verification of programming languages and software
systems in general.

1. Introduction
With the growing size and complexity of software systems,

software verification and validation techniques such as testing
and model checking are increasingly important. While testing
focuses on the actual behaviour of the program, model check-
ing focuses on its mathematical model. Testing and model
checking are complementary: testing is lightweight but in-
complete while model checking is heavyweight but complete.

A major problem with testing and model checking is that
they require different software artifacts. In fact, there is often
a big semantic gap between the code artifacts that can be ex-
ecuted and tested and the modelling artifacts that can be veri-
fied using model checkers. This gap must typically be bridged
by hand with little tool support, leading to a real possibil-
ity of errors and spurious results when the finite-state model
does not correspond exactly to the implemented software sys-
tem. Corbett, Dwyer, et al. note that hand-constructed mod-
els are “expensive, prone to errors, and difficult to optimize”
[4]. The time required to convert artifacts by hand and the
possibility of spurious results can be greatly reduced using
automated transformations.

One kind of software system which is particularly difficult
to validate is implicit invocation (II) or publish-subscribe sys-
tems, which are increasingly popular as an integration mech-
anism for loosely coupled components in software systems.
II systems feature a lot of non-determinism due to concur-

∗This work is supported by the Natural Sciences and Engineering Re-
search Council of Canada and the Ontario Graduate Scholarship Program.

rent execution of components. This high degree of non-
determinism makes them particularly challenging to certify
and hence a good proving ground for comparing and com-
bining software verification and validation methods such as
testing and model checking.

In previous work we proposed a framework for the uni-
form testing and model checking of II systems [23] based on
an II model checking system originally developed by Garlan
and Khersonsky [7, 8] and extended by Bradbury and Din-
gel [1]. Our framework leverages Garlan and Khersonsky’s
XML intermediate representation for II systems and its auto-
mated translation to finite state models checkable by the Ca-
dence SMV model checker [14], a tool for exploring the state
space of a program to check formal properties such as free-
dom from deadlock. Our previous short paper focussed on
the testing and model-checking framework itself. In this pa-
per we concentrate on the details of its implementation using
source transformations.

At the core of our framework is the Implicit-Invocation
Language (IIL), a new special purpose language specifically
designed for expressing verifiable software systems that use
the II architectural style. IIL is designed to address several
problems: the lack of explicit features for II in existing pro-
gramming languages, leading to code that does not well ex-
press its real semantics; the large gap between II code and its
hand-created modelling representation, for example as Garlan
and Khersonsky’s XML representation; the lack of any con-
venient simulation and testing framework for II systems; the
lack of the ability to both test and model check II systems in
a uniform and consistent manner; and the lack of automated
tools to assist in these processes.

We have chosen to implement IIL entirely using formal
source transformations, both as an experiment in that tech-
nique and in order to allow for the future possibility of formal
verification of the translations to execution and modelling ar-
tifacts themselves. One set of transformations provides the
ability to execute and test IIL programs by translation to the
existing general concurrent programming language Turing
Plus [10], while another set provides the ability to verify and
model check IIL programs by translation to the XML inter-
mediate representation of Garlan and Khersonsky’s II mod-
elling method (Figure 1).

In the remainder of this paper, we provide a quick
overview of the II architectural style in Section 2 and in-
troduce the Implicit-Invocation Language (IIL) in Section 3.
Section 4 discusses the programming, execution, and verifica-
tion artifacts of our transformational framework. In section 5
we present the details of our automated source transforma-

IIL Program, I

with property in LTL, P

Turing Plus Program, T
XML Representation of II

Program, X

with property in LTL, P

Finite State Machine, M

with property in LTL, P

FORMAL ANALYSIS

USING MODEL

CHECKER

EXECUTION AND

TESTING

Transformation

 (I -> X)

Transformation

Transformation

(X -> M)

(I -> T)

Figure 1. Our transformational framework

tions to both execution and modelling artifacts. We describe
experience using our system and possible future directions
for exploring the complementary relationship between testing
and model checking in Section 6. Finally, we discuss related
work and draw conclusions in Sections 7 and 8.

2. II Systems
II systems are characterized by six parameters: compo-

nents, events, event-method bindings, an event delivery pol-
icy, a shared state, and a concurrency model. Components
in the system can announce events, which are the primary
method of communication between components. Upon re-
ceiving events from the components, the event dispatcher
sends the events out to all subscriber components that have
requested to receive that particular type of event.

The correspondence between announced events and the
methods to be invoked in response to these announcements
is defined in the event-method bindings. Event-method bind-
ings instruct the dispatcher where to send events. The event
delivery policy, a set of conditional delivery rules, instructs
the dispatcher on when and how to send them.

II systems we have studied include [1]: a Set-Counter
example in which one component stores elements in a set
and another keeps count of the number of elements; the Ac-
tive Badge Location System (ABLS), an electronic tagging
alternative to pagers, in which different components issue
requests, store information, and announce the location of
users; and the Unmanned Vehicle Control System (UVCS),
in which vehicle components announce information such
as their movement plan, and other components monitor the
movement to ensure vehicles reach their destinations without
collision. All of these systems are specified and integrated
using implicit invocation.

3. The Implicit-Invocation Language IIL
To help bridge the gaps between coding, testing and

verifying implicit-invocation systems we have designed the

special-purpose programming language IIL. IIL is explicitly
designed to allow for direct expression of implicit-invocation
semantics using custom syntax for II features and concepts on
top of a Java-like core. In order to guarantee that all programs
can be executed and tested, only features that can be directly
implemented or transformed to simulated concurrent execu-
tion are included. In order to guarantee that all programs can
be modelled, only language features that can be directly rep-
resented or transformed to Garlan and Kershonsky’s XML in-
termediate modelling language are included. And to attach
verification closely to code, properties to be verified are di-
rectly expressed as part of the program.

As an illustrative example, Figure 2 shows a standard
implicit-invocation example, the Set-Counter system [20] ex-
pressed in IIL. In order to directly express verifiable II sys-
tems, IIL includes the following special features: component
declarations, event declarations, announcement statements,
a dispatcher declaration, delivery statements, event-method
bindings, and property declarations.

The Set-Counter system declares two components: a Set
and a Counter. The Set component contains a set of ob-
jects and the Counter component keeps count of the objects
in the set. Figure 2 shows the IIL representation of both the
Set and Counter components. All components in IIL can
contain variables and methods.

The Set-Counter example declares four events. EnvAdd
and EnvRemove are external or environment events, which
represent external behaviour affecting the II system. Their
declarations give the event name and its announcement prop-
erties. The other declared events Insert and Delete are
local events which give the event name and optional data.
Components in IIL use announce statements to send local
events to the dispatcher. For example, an Insert event is
announced in the Add method of the Set component.

As well as components and events, an event dispatcher
is declared. The dispatcher is responsible for event delivery
and defines the delivery policy. Environment events are deliv-
ered immediately, while local events are delivered according
to the policy using deliver statements. In our Set-Counter ex-
ample the delivery policy says that if there are more Insert
events waiting to be delivered than Delete events, then an
Insert event is delivered immediately and a Delete event
is delivered randomly, otherwise the opposite occurs.

Event-method bindings are needed to register the meth-
ods to the events for event delivery. For example, in the
Set-Counter example the EnvAdd event is bound to the Add
method in the Set component s. That is, when an EnvAdd
event is announced the Add method in s will be invoked.

IIL also allows for direct expression of the temporal logic
property declarations to be verified for the program us-
ing the model checking process. For example the property
AlwaysCatchesUp in the Set-Counter example says that
global variable setSize will always eventually equal the
counter variable in the Counter component c.

system SetAndCounter {
 external event EnvAdd {1..N},
 EnvRemove {1..N};
 event Insert(int {1..2} numElements);
 event Delete(int {1..2} numElements);

 dispatcher delivers Insert, Delete {
 if (Insert.count > Delete.count) {
 deliver Immediate Insert;
 deliver Random Delete;
 } else {
 deliver Random Insert;
 deliver Immediate Delete;
 }
 }

 int {0..3} setSize;

 SetAndCounter() {
 Set s = new Set();
 Counter c = new Counter();

 bind EnvAdd to s.Add();
 bind EnvRemove to s.Remove();
 bind Insert to
 c.CountIns(Insert.numElements);
 bind Delete to
 c.CountDel(Delete.numElements);

 property AlwaysCatchesUp =
 (G F (setSize = c.counter));
 property ...
 }

 component Set
 announces Insert, Delete
 accepts EnvAdd, EnvRemove {
 int {0..2} value;

 Add() {
 value = {1,2}; // nondeterministic
 if ((setSize + value) < 4) {
 setSize = setSize + value;
 announce Insert(value);
 }
 }

 Remove() {
 ...
 }
 }

 component Counter
 accepts Insert, Delete {
 int {0..3} counter = 0;

 CountIns(int {1..2} number) {
 counter = counter + number;
 }

 CountDel(int {1..2} number) {
 ...
 }
 }
}

Figure 2. The Set-Counter example in IIL (slightly elided due to space constraints)

4. II Framework Artifacts
Our transformational framework for running, testing and

verifying IIL consists of three main types of artifacts:

• Programming/specification artifacts in IIL itself

• Execution/testing artifacts in the Turing Plus language

• Verification artifacts in the XML intermediate language
and the SMV modelling language

Programs are expressed entirely in IIL, then automatically
transformed to Turing Plus [10] for execution and testing and
to the XML intermediate representation for modelling and
SMV for verification. Because it is explicitly designed to ex-
press II systems, IIL programs are very concise – up to ten
times smaller than both the corresponding Turing Plus imple-
mentations used for testing and the XML and SMV represen-
tations used for model checking.

4.1 Execution Artifacts in Turing Plus
Execution and testing artifacts are derived from IIL using a

formal source transformation to Turing Plus [10], a general-
purpose concurrent extension of the programming language
Turing [11]. We decided to target Turing Plus for execution of
II systems because of its simple, general concurrency model
and randomized simulation scheduling framework, which al-
lows for lightweight, realistic testing of concurrent programs.

A critical part of our transformation from IIL to Turing
Plus is the design of a representation for implicit method in-
vocation and component concurrency in Turing Plus that ac-
curately reflects IIL semantics. In designing these, we used
as a reference semantics for IIL the corresponding features of
Garlan and Kershonsky’s XML notation for II systems [7, 8].

Turing Plus does not support implicit method invocation
directly, so in our Turing Plus model we used explicit invoca-
tion to implement implicit-invocation. Thus the Turing Plus

System Event Warehouse

Receives and stores the events

announced by components

Component Event Warehouse

Receives and stores the events

delivered by the dispatcher

Set

Component Event Warehouse

Receives and stores the events

delivered by the dispatcher

Counter

event announcement

event

delivery

event

access

Dispatcher
Delivers the events in the system

events warehouse

event

delivery

Figure 3. Implicit method invocation for the Set-
Counter example in Turing Plus

implementation uses explicit method calls in event announce-
ment, in event delivery (Figure 3), and in components to in-
voke bound methods when a delivered event is received.

The concurrency model determines how to assign and
manage threads in the system. Based on the Garlan and Ker-
shonsky modelling semantics, our implementation fixes the
concurrency model to use a separate Turing Plus thread for
each component, the event dispatcher, and the system itself.
To ensure that the execution semantics of an IIL program in
Turing Plus matches its model checking semantics in SMV,
all of the threads in the Turing Plus implementation of an II
system are synchronized using barrier synchronization.

Structurally, the Turing Plus implementation consists of a
module and nested monitor for each component declaration
and the dispatcher, and a main procedure that handles envi-
ronment event generation. These vary with system and are
derived from the IIL program by source transformation.

The Turing Plus implementation is based on a set of com-

Global Variable�
Declarations�

Property�
Declarations�

Constructor�

IIL program�

Component�
Instantiations�

Event-method�
Bindings�

Dispatcher�
Declaration�

Component�
Declarations�

Event Declarations�

Component�
modules�

Dispatcher�
modules�

Global Variable�
Declarations�

Environment�
Event generation�
& system setup�

Turing Plus�
program�

System constant�
initialization & file�

inclusion�

Component�
modules�

Dispatcher�
module�

SMV program�

Main module�

Variable�
Declarations�

Assignment�
Statements�

Assertions�

Variable Type�
Definitions�

Figure 4. Diagram showing how the parts of an IIL program are used in generating the corresponding
Turing Plus program and SMV model

mon definitions for the underlying mechanisms of II that are
program independent, such as type definitions for events,
event queues, and event warehouses (collections of event
queues), as well as modules to manage the system event ware-
house, component event warehouses, and thread synchroniza-
tion. These modules are independent of the IIL program be-
ing transformed and are included from a library using gener-
ated include directives in each transformed result.

4.2 Verification Artifacts in SMV
To model check systems written in IIL, we use the ap-

proach previously presented in [1, 7, 8]. This approach fo-
cuses on the automatic analysis of II by representing an II
system in an XML intermediate representation and using an
existing Java tool to transform it into an SMV model accepted
by the Cadence SMV model checker. The challenge therefore
was to create a source transformation for IIL programs to the
limited features of the XML modelling representation.

The SMV model for an IIL program represents each com-
ponent and the dispatcher as an SMV module. There is also a
main module which instantiates the other components. Mod-
ules in SMV have input and output parameters which are used
for event announcement. For example, in the Set-Counter ex-
ample an output parameter of the Set component is connected
to an input parameter of the Dispatcher for the announcement
of an Add event, and an output parameter of the Dispatcher
is connected to an input parameter of the Counter component
for delivery of the event. The model checking semantics of
the SMV program is (by design) identical to the execution
semantics of the Turing Plus program outlined above.

5. Transformations in the II Framework
Now that we have introduced the artifacts involved in our

framework, we can discuss TXL and our automated transfor-
mation tools for artifact conversion. Figure 4 shows an overall

summary of how the parts of an IIL program are used to auto-
matically transform IIL programs into a Turing Plus program
for execution and an SMV model for verification.

5.1 Source Transformation using TXL
TXL [5] is a programming language designed to support

source transformation tasks. It combines features of both
functional and rule-based programming, and supports unifi-
cation, implied iteration and deep pattern match. A TXL pro-
gram consists of two parts: a context-free, possibly ambigu-
ous grammar describing the syntactic structure of the artifacts
to be transformed, and a set of by-example formal transfor-
mation rules that use pattern-replacement pairs to describe
the desired transformations. TXL has been used in a range of
applications from software design recovery to artificial intel-
ligence, in both academic and industrial contexts [6].

5.2 Transformation to Execution Artifacts
Our automated tool for transforming IIL to Turing Plus

consists of a set of formal transformation rules written in
TXL. The structure and syntax of Turing Plus programs is
very different from IIL – some of these differences have been
discussed in Section 4.1. The transformation to Turing Plus
is divided into four steps: component transformation, dis-
patcher transformation, system and environment setup gen-
eration, and restructuring of the resulting system body.

The fours steps form a tightly coupled transformation:
each must be completely consistent with the other for the
combined result to be correct. In order to facilitate this con-
sistency, each of the steps is derived by formal source trans-
formation from the same source artifact: the entire IIL source
program itself. This demonstrates the advantages of the main
design goal of IIL: to capture all aspects of the II system in
one uniform source artifact. Each step takes as input the en-
tire source program in IIL, using different parts of the source

 1 module Set
 2 export Fork, receiveEvent
 3 include "queueManager.i"
 4 queueManager.createEventQueue ("EnvAdd")
 5 queueManager.createEventQueue ("EnvRemove")
 6 var value : int
 7
 8 monitor SetMonitor
 9 export receiveEvent, getCount,
 Remove, Add
10 procedure Add
11 var e : event
12 queueManager.getEvent ("EnvAdd", e)
13 var Arr :
 array 1..2 of int := init (1, 2)
14 var Sel : int
15 randint (Sel, 1, 2)
16 value := Arr (Sel)
17 if ((setSize + value) < 4) then
18 setSize := setSize + value
19 var etba Insert : event
20 etba Insert.name := "Insert"
21 etba Insert.param (1).intPara :=
 value
22 announce (etba Insert)
23 end if
24 end Add
25
26 procedure Remove
27 ...
28 end Remove

29 function getCount (ename : string) : int
30 result queueManager.getCount (ename)
31 end getCount
32
33 procedure receiveEvent (e : event)
34 queueManager.receiveEvent (e)
35 end receiveEvent
36 end SetMonitor
37
38 procedure receiveEvent (e : event)
39 SetMonitor.receiveEvent (e)
40 end receiveEvent
41
42 process run : 100000
43 for l : 1..999999999
44 Rendezvous.readySetGo
45 if SetMonitor.getCount ("EnvRemove")
 > 0 then
46 SetMonitor.Remove
47 elsif SetMonitor.getCount ("EnvAdd")
 > 0 then
48 SetMonitor.Add
49 end if
50 end for
51 end run
52
53 procedure Fork
54 fork run
55 end Fork
56 end Set

Figure 5. Generated Turing Plus module/monitor for the Set component of the Set-Counter example

as needed to transform or generate its result.
Step 1: Component transformation. Component trans-

formation combines information from the event declarations,
component declarations, and constructors in the IIL program.
In Turing Plus components are represented as modules and
the component transformation occurs in 5 parts. To clarify
the component transformation we refer to the Turing Plus im-
plementation of the Set component in Figure 5, which was
automatically transformed from the Set-Counter IIL example
in Figure 2. For each part of the transformation we make ref-
erence o the corresponding parts of Figure 5.

First, module and monitor names for components in the
Turing Plus program are generated from the component
names in IIL (lines 1,8). Second, an event warehouse (a col-
lection of event queues) is created for each type of event that a
component accepts (lines 4,5). Third, each method in a com-
ponent is added to the export list for its monitor (line 9). This
makes the methods public, so that they can be called from
outside the monitor, for example in the run process (line 48).

Fourth, the method bodies for each component are gener-
ated. In addition to the syntactic transformation of the method
bodies from IIL to Turing Plus, the invoking event must be
retrieved (lines 45-48). A method requires the retrieval of
the invoking event in order to use data contained in the event.
Since the information about the invoking event is not included
in the method body of the IIL program, we must extract this
information from the remote component instantiations and
the event-method bindings during transformation.

Fifth, the run process (lines 42-51) needs to check each
event queue and invoke the appropriate bound method if
the event queue is not empty. During transformation, the
accepts statements in the IIL program are used to gen-
erate the conditional expression of the if statement in the
run process, and event-method binding information is used to
generate the method call.

As an example of the TXL transformation rules used in
this step, Figure 6 shows the main rule used to generate the
module and monitor structure from an IIL component. As is

evident in this example, TXL’s by-example concrete syntactic
patterns and functional decomposition style help make it con-
venient to express and validate our source transformations.

Step 2: Dispatcher transformation. The dispatcher in
Turing Plus is constructed using the event declarations, the
dispatcher declaration, and the system constructor of the IIL
program. All of this remote information must be combined
using a global-to-local transformation to generate the result.

For each event in a system the dispatcher creates a queue
in the system event warehouse. Event queues are not repre-
sented in the IIL program and are generated using the same
method as described for component queues above. The event
delivery policy is translated directly from the dispatcher body
of the IIL program into code for the Turing Plus dispatcher
module. In order to complete the event delivery transforma-
tion we also need to use information from the component in-
stantiations and the event-method bindings.

Figure 7 shows the result of generating the Dispatcher for
the Set-Counter example. Random delivery is simulated us-
ing the Turing Plus randint library routine to flip a coin. The
main TXL rule to generate the Dispatcher module from the
dispatcher section of the IIL program is similar in form to the
rule for components shown in Figure 6.

Step 3: System and environment setup. In this step we
generate declarations for global variables specified in the IIL
program and initialize system constants of the Turing Plus
implementation. We incorporate the parts common to all sys-
tems (discussed in Section 4.1) by generating file includes
such as the include ”rendezvous.i”, which adds the module
that handles barrier synchronization. Finally, we generate
statements at the end of the program to fork a concurrent pro-
cess for each of the component and dispatcher modules.

Environment setup generates a procedure using a method
call for each external event, similar to the component event
announcement shown in Figure 3. An example TXL function
from this step is shown in Figure 8. This function demon-
strates the use of TXL’s functional control paradigm to im-
plement a source transformation that inherits global contex-

rule tr_component Bindings [repeat event_binding]
 Events [list event_declarator]
 replace [component_declaration]
 'component CompName[id]
 EventAnn [opt event_announces]
 EventAcc [opt event_accepts]
 '{
 Body [repeat var_res_met_declaration]
 '}

 % Translate variable declarations
 construct VarDecls [repeat variable_declaration]
 _ [gather_var_decl Body]
 [tr_var_decl]
 % Translate method declarations
 construct MetDecls [repeat method_declaration]
 _ [gether_met_decl Body]
 [tr_met_decl Events Bindings CompName]
 % Method names to export
 construct ExportMets [list method_name]
 _ [get_list_method_name MetDecls]
 % Monitor name
 construct MonitorName [id]
 CompName [+ ‘Monitor]
 % First method to run
 deconstruct ExportMets
 FirstMet [id], RestMets [list method_name]
 % Event name for first method
 deconstruct * [event_binding] Bindings
 'bind FirstEvent [id] 'to CompNameId .
 FirstMet '(_ [list expression]') ;
 construct QuotedFirstEvent [stringlit]
 _ [quote FirstEvent]
 % Rest of methods to run
 construct Elsifs [repeat elsif_inrun]
 _ [get_elsifs RestMets Bindings
 CompName MonitorName]

 by
 'module CompName
 'export Fork, receiveEvent
 'include "queueManager.i"
 EventAcc [tr_event_accepts]
 NewVarDecls
 'monitor MonitorName
 'export receiveEvent, getCount, ExportMets
 NewMetDecls
 'function getCount(ename: string): int
 ‘result queueManager.getCount(ename)
 'end getCount
 'procedure receiveEvent(e: event)
 queueManager.receiveEvent(e)
 'end receiveEvent
 'end MonitorName
 'procedure receiveEvent(e: event)
 MonitorName.receiveEvent(e)
 'end 'receiveEvent
 'process 'run: 100000
 'for : 1 .. 999999999
 Rendezvous.readySetGo
 'if MonitorName.getCount
 (QuotedFirstEvent) > 0 'then
 MonitorName '. FirstMet
 Elsifs
 'end 'if
 'end 'for
 'end run
 'procedure Fork
 ‘fork run
 'end Fork
 'end CompName
end rule

Figure 6. Main TXL Rule for generation of the Turing Plus module/monitor structure for an IIL component

module Dispatcher

 export Fork

 eventsManager.createEventQueue("EnvAdd")
 eventsManager.createEventQueue("EnvRemove")
 eventsManager.createEventQueue("Insert")
 eventsManager.createEventQueue("Delete")

 procedure deliverEvent

 % External events are always immediate
 if eventsManager.getCount("EnvAdd") > 0 then
 var e : event
 eventsManager.getEvent("EnvAdd", e)
 Set.receiveEvent(e)
 end if

 if eventsManager.getCount("EnvRemove") > 0 then
 var e : event
 eventsManager.getEvent("EnvRemove", e)
 Set.receiveEvent(e)
 end if

 % Delivery policy for internal events
 if eventsManager.getCount("Insert") >
 eventsManager.getCount("Delete") then
 var e: event
 eventsManager.getEvent("Insert", e)
 Counter.receiveEvent(e)
 var flip: int
 randint(flip, 0, 1)
 if flip = 1 then
 if eventsManager.getCount("Delete") > 0 then
 eventsManager.getEvent("Delete", e)
 Counter.receiveEvent(e)
 end if
 end if

 elsif eventsManager.getCount("Delete") > 0 then
 var e: event
 eventsManager.getEvent("Delete", e)
 Counter.receiveEvent(e)
 var flip: int
 randint(flip, 0, 1)
 if flip = 1 then
 if eventsManager.getCount("Insert") > 0 then
 eventsManager.getEvent("Insert", e)
 Counter.receiveEvent(e)
 end if
 end if
 end if
 end deliverEvent

 % The actual process of the Dispatcher
 process run : 100000
 for l : 1 .. 999999999
 Rendezvous.readySetGo
 deliverEvent
 end for
 end run

 % Procedure to start up Dispatcher when appropriate
 procedure Fork
 fork run
 end Fork
end Dispatcher

Figure 7. Generated Turing Plus Dispatcher module for the Set-Counter example

tual information to generate its result - in this case the list of
events passed in from the main system setup generation rule.

Step 4: System body re-ordering. Unlike IIL, Turing
Plus is a declaration-before-use language, and Turing Plus
programs must follow a strict order and structure of decla-
ration. In order to separate concerns and avoid overly con-
straining transformation rules, the previous three transforma-
tion steps ignore these constraints. This leaves the ordering
problem to this last separate transformation, which involves

reordering the program elements to match the order in Fig-
ure 4. In essence, this transformation is a topological sort of
the program into declaration-before-use dependency order. A
simple TXL rule used in this step is shown in Figure 9.

5.3 Transformation to Verification Artifacts
A major drawback to the model checking work we pre-

sented in [1] was that it was not completely automated, since
user interaction was required to develop the XML modelling

function add_event_declaration
 Events [list event_declarator]

 % List of external events
 construct ExtEventNames [list reference]
 _ [get_ext_event_name_declarator Events]

 % List of external event limits
 construct EndOfEvents [list reference]
 _ [build_endOfEvents ExtEventNames]

 % List of external event counters
 construct EventsCount [list reference]
 _ [build_eventsCount ExtEventNames]

 % Make the "randonEvent(...)" statements
 construct RandomEvents [repeat randomEvent]
 _ [build_randomEvent ExtEventNames
 EndOfEvents EventsCount]

 % Make the statement to print total events generated
 construct RandPuts [repeat randint_and_put]
 _ [build_randPut EndOfEvents ExtEventNames Events]

 replace * [repeat declaration_or_constructor]
 % Add to end of generated code

 by
 'procedure 'randomEvent (eventName : string,
 maxEventCount : int,
 var eventCount: int, frequency : int)
 ‘if eventCount < maxEventCount then
 ‘var flip: int
 randint (flip, 1, frequency)
 ‘if flip = 1 then
 ‘var e: event
 e.name := eventName
 announce(e)
 eventCount += 1
 'end' if
 'end 'if
 'end 'randomEvent

 'var EndOfEvents : int
 'var EventsCount := 0
 'var clockLimit: int

 ‘process run
 ‘for l : 1 .. clockLimit
 Rendezvous.readySetGo
 ‘put "main loop ", l
 RandomEvents
 'end 'for
 'end 'run

 'randomize

 RandPuts

 ‘put "Please input clockLimit: " ..
 ‘get clockLimit

end function

Figure 8. TXL function to make the Turing Plus external event generator for an IIL program

representation for the program. Our current approach over-
comes this deficiency and bridges the gap between artifacts
by completely automating the process of generating finite
state models for software systems written in IIL.

The transformation from IIL to SMV finite state models
involves three steps: program restructuring, conversion to
XML, and finite state machine translation. The first two steps
convert IIL into the XML modelling notation using cascaded
TXL source transformations of the IIL program. The third
step uses an existing Java tool to transform the XML repre-
sentation to a set of finite state machine models in SMV that
can then be verified using the Cadence SMV model checker.

Step 1: Program restructuring. The original goal of the
IIL language was as a convenient replacement for the verbose
XML representation that would be easier to read, write and
understand. In the end, IIL has evolved into a full special-
purpose language that includes many other notational con-
veniences, such as true global variables, local variables in
methods, for loops and switch statements, none of which
are available in the XML intermediate language. In this first
step of our modeling transformation, these notational conve-
niences are resolved, in essence by compiling and reordering
the IIL program using source transformation. The result is a
simplified IIL program which is isomorphic to its XML mod-
elling language equivalent, but not yet in XML notation.

Three main language features of IIL are not present in the
XML representation and must be converted. First, global
variable access is transformed to match the indirect global
variable access of the XML representation. IIL components
have direct access to globals, while the XML representation
uses the SMV model, in which global variables must be ac-
cessed indirectly through special local input/output variables.

Second, IIL supports variable declaration at both the com-
ponent and method level while the XML modelling represen-
tation allows variables at the component level only. This step
involves moving all method level variables to the component
level. To avoid potential name clashes, method variables are

uniquely renamed using the method name as a prefix.
Third, IIL allows the convenience of switch statements

in the dispatcher and both switch statements and for loops
in component methods, while the XML modelling represen-
tation has only if-then-else statements in order to sim-
plify its modelling task. The transformation therefore trans-
forms switch statements into if-then-else and unrolls
for loops into statement sequences, using classic transfor-
mations borrowed from the compiler community.

Recall that by design IIL is restricted to expressing pro-
grams that have a modelling language equivalent - thus be-
cause the XML modelling representation does not have loops,
IIL for loops are constant bounded and can always be un-
rolled. Similarly, although the XML modelling representa-
tion has no switch statement, the transformation can con-
vert them to their if-then-else equivalents. The TXL
rule for converting switch statements used in this stage is
shown in Figure 10.

Finally, the program is restructured into the strict order
required by the XML modelling representation. In IIL there
are no restrictions on ordering, but the XML representation
must be strictly structured according to its schema. As in the
transformation to Turing Plus, we simplify the previous steps
by implementing the ordering constraints as a separate source
transformation on the result.

Following this step the IIL program has been restructured
into a statement-by-statement match to the target XML mod-
elling representation, but has not yet been converted to XML.
Again, rather than convert to XML tag notation while re-
structuring the IIL program, we have separated the conversion
to XML tags into a separate cascaded source transformation
in order to separate concerns. This cascaded transformation
style is characteristic of complex TXL transformations and
has served us well in this project as in others.

Step 2: Conversion to XML mark-up. The second step
of the modeling transformation involves the syntactic map-
ping of the simplified and reordered IIL program to XML

notation. For example consider an event-method binding, de-
fined in a bind statement, from Figure 2:

bind Insert to c.CountIns(Insert.numElements);

The bind statement causes an Insert event to invoke the
CountIns method in the instance c of the Counter com-
ponent. In the XML intermediate representation the bind
statement is transformed into:
<event-binding event-name="Insert">
<method-binding instance-name="c" method-name="CountIns"/>

</event-binding>

The TXL rule for the XML markup translation of bind
statements is shown in Figure 11. The rule matches every
IIL bind statement and captures its event name and list of
method invocations. The event name is quoted so that it can
be used in the XML tag, and a sequence of XML method-
binding tags for the bound method invocations is generated
by the subrule construct method binding. The rule
then replaces the bind statement by an XML tag with the
event name around the tagged sequence of method bindings.

Step 3: Generation of finite state machines. Following
the transformation from IIL to the XML modelling notation,
we use the Java tool developed by Garlan and Khersonsky [7]
(modified in [1]) to transform the XML representation of the
program into a set of finite state machines in SMV. These can

% In every scope, sort variable declarations
% before anything else
rule var_decl_first
 replace $ [repeat declaration_or_constructor]
 Anything [declaration_or_constructor]
 VarDecl [variable_declaration]
 Rest [repeat declaration_or_constructor]
 deconstruct not Anything
 _ [variable_declaration]
 by
 VarDecl
 Anything
 Rest
end rule

Figure 9. Example TXL rule used in reordering
generated Turing Plus code

rule tr_switch_statement

 replace [statement]
 'switch '(Exp1 [expression] ')
 '{
 'case Exp2 [expression] ':
 CaseBlock [repeat declaration_or_statement]
 Rest [repeat switch_alternative]
 '}

 deconstruct Exp1
 Exp1RE [relational_expression]

 deconstruct Exp2
 Exp2RE [relational_expression]

 construct IfBlock [block]
 '{ CaseBlock [remove_break] '}

 construct ElseClause [opt else_clause]
 _ [tr_switch_alternative_1 Exp1RE Rest]
 [tr_switch_alternative_2 Rest]

 by
 'if '(Exp1RE == Exp2RE ')
 IfBlock
 ElseClause
end rule

Figure 10. TXL rule to convert ILL switch state-
ments to if-then-else form

rule tr_event_binding
 replace [event_binding]
 ’bind EventName [reference]
 ’to ListMethods [list method_invocation];
 construct QuotedEventName [stringlit]
 _ [quote EventName]
 construct RepMethods [repeat method binding]
 _ [construct_method_binding ListMethods]
 by
 <event-binding event-name=QuotedEventName>
 RepMethods
 </event-binding>
end rule

Figure 11. TXL rule to convert bind statements
to XML markup form

then be checked using the Cadence SMV model checker to
verify the property constraints declared in the IIL program.
Additional details of this step can be found in [1, 7, 8].

5.4 Evaluation of Transformations
To evaluate our framework we used the three examples

introduced in Section 2: Set-Counter, the Active Badge Lo-
cation System (ABLS) and the Unmanned Vehicle Control
System (UVCS). For each example, our evaluation involved
programming the system in the IIL language and verifying
(by hand) that our transformation tools from IIL to Turing
Plus and from IIL to the XML modeling representation per-
formed correctly. We demonstrated that semantics was well
preserved across all of the transformations by checking that
the execution behaviour and the model checking behaviour
matched the original semantics of the IIL programs. Finally,
we verified that the specified properties of the IIL programs
held, both empirically and formally, by testing and model
checking the results of our transformations.

6. Testing and Model Checking using the II
Framework

We have discussed the programming, execution and verifi-
cation artifacts and the automated transformations used in our
framework. We now detail how the framework can be used in
both testing and model checking.

6.1 Testing
Our first transformation converts an IIL program into a se-

mantically equivalent Turing Plus program which can then be
compiled using the Turing Plus compiler and concurrency li-
brary to an executable program. The result of executing this
Turing Plus program is the production of an execution trace.
For purposes of validation, we used manual code instrumen-
tation in the Turing Plus program to output run-time informa-
tion into the traces. Here for example is a partial execution
trace of the Set-Counter system:

...
clock tick 20
EnvAdd announced
clock tick 21
setSize = 1
Insert announced
clock tick 22
counter = 1
clock tick 23
...

In this example we have output the clock tick, the name of
each announced event, and the new values of updated global
and local variables. The above trace shows an announcement
of the EnvAdd event by the environment, which causes the
number of elements in the set (the variable setSize) to be
increased. The Set component then announces an Insert
event which is delivered to the Counter component causing
the counter variable to be increased.

We have used execution traces to perform standard testing
techniques on all three of our example II systems. Our Tur-
ing Plus programs are convenient for testing because the test
harness for environment events is generated automatically as
part of our transformation. Moreover, because Turing Plus
uses a randomized simulation scheduler, multiple executions
of the same program with the same inputs generally result in
different execution traces, allowing for bulk testing of many
different concurrent executions.

6.2 Model Checking
Our second automated transformation converts IIL pro-

grams to the XML modelling representation and then to SMV
finite state models for formal verification. We have verified a
variety of liveness and safety properties in the context of our
IIL examples. IIL currently allows for expression of proper-
ties written in Linear Temporal Logic (LTL) but we also have
the ability to check Computational Tree Logic (CTL). The
LTL operators used in the expression of properties are: X φ
(in the next state φ holds), G φ (φ holds globally), F φ (φ
holds eventually), φ1 U φ2 (φ1 holds at least until φ2 does).

For example, consider the Unmanned Vehicle Control Sys-
tem (UVCS) example system. On one hand, we need to guar-
antee liveness properties such as each vehicle in the system
eventually reaches its destination:

F ((Vehicle1.currRegion = Vehicle1.destRegion)
& (Vehicle1.xpos = Vehicle1.destxpos)
& (Vehicle1.ypos = Vehicle1.destypos))

On the other hand, we need to verify safety properties such as
collision avoidance between two vehicles:

G (˜(Vehicle1.currRegion = Vehicle2.currRegion)
| ˜(Vehicle1.xpos = Vehicle2.xpos)
| ˜(Vehicle1.ypos = Vehicle2.ypos))

In our experiments we verified that vehicles would in fact
reach their destination location and that vehicles do not col-
lide. Detailed results of our model checking experiments are
presented in a previous paper [1].

6.3 Future Directions
Although the design purpose of our IIL language and

transformational framework is the comparison and explo-
ration of synergy between testing and verification, thus far we
have only independently evaluated testing and model check-
ing. Next we plan to use our framework to explore the re-
lationship between testing and model checking. We believe
that it provides a good testbed for studying the synergies be-
tween these two verification and validation methods, and in
particular can allow us to investigate questions such as:

• Can testing help increase confidence in model checking
and the correctness of the model checker?

One possibility would be representing execution traces as
CTL properties and using model checking to verify that each
trace is also possible in the model.

• How can testing be used to simplify or optimize model
checking?

One of the primary optimizations in model checking is de-
composition. Testing could be used to identify parts of the
system that can be easily abstracted or removed for model
checking. For example, if a component is not used in a test
trace it may be safe to remove it from the verification.

• Can model checking be used to evaluate the coverage
offered by a test suite?

Model checking could be used to guarantee output cover-
age in black box testing. For example, we could verify that a
variable always is one of a set of values that covers the out-
puts, or model-check the converse to find a counter-example.

Model checking could also provide guarantees in white
box testing. For example, if we wanted to provide state-
ment coverage for an IIL program we could instrument the
Turing Plus program to record a program counter in the ex-
ecution trace. If we noticed that certain statements were not
covered, we could use model checking to prove that the pro-
gram counter can never have those values, or to generate a
counter-example input to add to the test suite.

• Might it be useful to integrate temporal logic proper-
ties into the testing effort through, for instance, run-time
safety analysis?

One possibility would be to use the safety specification of
a program to automatically generate a run-time monitor that
checks if a finite event trace satisfies the property [9].

7. Related Work
Rapide[13] and Eventua[17] are other special-purpose lan-

guages for event-based systems. Rapide is an executable lan-
guage intended for modeling the architectures of concurrent
and distributed systems. Eventua is an object-oriented lan-
guage that includes native support for events. Eventua pro-
grams can be transformed to the %$ς-calculus for execution.
Our work differs from these approaches in that we focus on
formal analysis in addition to execution traces.

Both Bandera [4] and Spin [12] provide automatic transla-
tion from a general purpose programming language to a stan-
dard model checker. Our approach differs in that we focus
on a special-purpose II language that expresses all aspects of
both program and properties in one uniform notation, and in
that we achieve all our results using formal source transfor-
mation rules which at least in theory allow for formal verifi-
cation of the translations themselves.

As an alternative to our approach, it would be interesting
to explore using Java to represent event-based systems (e.g.
using the Message-Driven Thread API for Java[15], or pub-
lish/subscribe infrastructures like Elvin[19] or Siena[2]) and
to use Bandera for model generation and analysis. However,

because IIL expresses implicit invocation semantics and ver-
ification conditions in custom syntax rather than through li-
brary calls, and in a single uniform notation, it encodes the
program, its execution and modelling much more directly.

Although as we have shown TXL expresses the source
transformations in our framework very clearly, our method
does not depend on any particular tool and other source
transformation languages and systems such as Stratego [22],
ASF+SDF [21], ANTLR [16] and others have their own ad-
vantages and could serve as well.

Ours is also not the only system that has proposed using
formal source transformation to bridge gaps between verifi-
cation and practice. In our own previous work we have used
formal source transformation to extend the capabilities of the
VeriSoft C++ model checker to handle Java RMI verification
[3], and at Microsoft Research formal source transformation
has been used to transform concurrent device drivers to se-
quential approximations that can be checked for some con-
currency properties using sequential model checking [18].

8. Conclusion
We have presented a uniform source transformation-

based framework for specifying, testing, and model checking
implicit-invocation (II) systems. It consists of IIL, a special
purpose high-level language for specifying II systems, and
two fully automatic, formally specified source translations:
one to the Turing Plus language for execution and testing,
and one to the input language of a standard model checker for
verification. The framework demonstrates how formal source
transformation can be used to combine the convenience of
a special-purpose language with the benefits of two com-
plementary quality assurance techniques: testing and model
checking. Furthermore, it shows how the significant gaps be-
tween artifacts can be bridged using transformation. Auto-
matic source translation makes the analysis in our framework
less error prone, less time consuming and more reliable.

The contribution of our work lies not only in the develop-
ment of the transformation framework but also in the oppor-
tunities for future research. The framework provides an ex-
cellent testbed for exploring both automated transformation
and the synergies between testing and model checking.

References
[1] J. Bradbury and J. Dingel. Evaluating and improving the

automatic analysis of implicit invocation systems. In Proc.
ESEC/FSE 2003, Sept. 2003.

[2] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and eval-
uation of a wide-area event notification service. ACM Trans.
on Computer Systems, 19(3):332–383, Aug. 2001.

[3] T. Cassidy, J. Cordy, T. Dean, and J. Dingel. Source transfor-
mation for concurrency analysis. In Proc. 5th Int. Workshop
on Language Descriptions, Tools and Applications, pages 26–
43, April 2005.

[4] J. Corbett, M. Dwyer, J. Hatcliff, et al. Bandera: Extracting
finite-state models from Java source code. In Proc. Int. Conf.
on Software Engineering, June 2000.

[5] J. Cordy. TXL – a language for programming language tools
and applications. Proc. 4th Int. Workshop on Language De-

scriptions, Tools and Applications, Electronic Notes in Theo-
retical Computer Science, 110:3–31, 2004.

[6] J. Cordy, T. Dean, A. Malton, and K. Schneider. Source trans-
formation in software engineering using the TXL transforma-
tion system. J. Inform. and Software Technology, 44(13):827–
837, 2002.

[7] D. Garlan and S. Khersonsky. Model checking implicit-
invocation systems. In Proc. Int. Work. on Software Spec. and
Design, Nov. 2000.

[8] D. Garlan, S. Khersonsky, and J. Kim. Model checking
publish-subscribe systems. In Proc. Int. SPIN Work. on Model
Checking of Software, May 2003.

[9] K. Havelund and G. Roşu. Synthesizing monitors for safety
properties. In Proc. Int. Conf. on Tools and Algorithms for
Construction and Analysis of Systems, pages 342–356, 2002.

[10] R. Holt and J. Cordy. The Turing Plus report. CSRI, Univ. of
Toronto, 1987.

[11] R. Holt and J. Cordy. The Turing Programming Language.
Communications of the ACM, 31(12):1410–1423, 1988.

[12] G. J. Holzmann and M. H. Smith. An automated verifica-
tion method for distributed systems software based on model
extraction. IEEE Trans. on Software Engineering, 28(4):364–
377, 2002.

[13] D. Luckham and J. Vera. An event-based architecture def-
inition language. IEEE Trans. on Software Engineering,
21(9):717–734, 1995.

[14] K. McMillan. Getting started with SMV. Cadence Berkeley
Laboratories, 1998.

[15] mdthread.org. Message-driven thread API for the Java pro-
gramming language. Web page: http://www.mdthread.org.

[16] T. Parr and R. Quong. ANTLR: A predicated- LL(k) parser
generator. Software-Practice and Experience, 25(7):789–810,
1995.

[17] J. Patterson. An object-oriented event calculus. Technical Re-
port TR02-08, Iowa State University, 2002.

[18] S. Qadeer and D. Wu. KISS: Keep it Simple and Sequential.
In Proc. PLDI 2004, ACM SIGPLAN 2004 Conference on Pro-
gramming Language Design and Implementation, pages 14–
24, June 2004.

[19] B. Segall and D. Arnold. Elvin has left the building: A pub-
lish/subscribe notification service with quenching. In Proc.
AUUG’97, Sept. 1997.

[20] K. Sullivan and D. Notkin. Reconciling environment integra-
tion and software evolution. In Proc. SIGSOFT ‘90 Symp. on
Software Development Environments, Dec. 1990.

[21] M. van den Brand, P. Klint, et al. The ASF+SDF meta-
environment: a component-based language development envi-
ronment. Proc. 1st Int. Workshop on Language Descriptions,
Tools and Applications, Electronic Notes in Theoretical Com-
puter Science, 44(2), 2001.

[22] E. Visser. Stratego: A language for program transformation
based on rewriting strategies. Proc. Rewriting Techniques
and Applications (RTA01), Lecture Notes in Comp. Science,
2051:357–361, 2001.

[23] H. Zhang, J. Bradbury, J. Cordy, and J. Dingel. A transfor-
mational framework for testing and model checking implicit-
invocation systems. In Proc. Int. Work. on Distr. Event-Based
Systems (DEBS ’04), May 2004.

10

