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Abstract

This paper proposes a new approach to program slicing
based on abstract interpretation and model checking. First,
the notion of abstract slicing is introduced. Abstract slic-
ing extends static slicing with predicates and constraints by
using as the program model an abstract state graph, which
is obtained by applying predicate abstraction to a program,
rather than a flow graph. This leads to a program slice
that is more precise and smaller than its static counterpart.
Second, a method for performing abstract slicing is devel-
oped. It is shown that abstract slicing can be reduced to a
least fixpoint computation over formulas in the branching
time temporal logic CTL. This enables one to use symbolic
model checkers for CTL as an efficient computation engine
for abstract slicing. A prototype implementation and exper-
imental results are reported demonstrating the feasibility of
the approach.

1 Introduction

Program slicing is a program analysis technique that has
been proven to be useful in a variety of software engineer-
ing applications such as program debugging, testing, un-
derstanding, maintenance, metrics, and reuse. For detailed
surveys, we refer the interested readers to [4, 12, 33]. Re-
cently, program slicing has also been applied to state space
reduction for formal verification[19] and test generation[5].
The original approach to program slicing was introduced
by Weiser[35]. The program slice with respect to a pro-
gram point, called slicing criterion, is defined as a reduced,
executable program whose behavior is equivalent to that of
the original program with respect to the program point. A
set of data flow equations over a flow graph is solved to
produce a program slice. Ottenstein and Ottenstein[29] in-
troduced an alternative approach. The program slice with

respect to a program point is defined as the parts of a pro-
gram that directly or indirectly affect the program point.
The direct-affect relation is computed using a flow graph
and the indirect-affect relation is computed using a program
dependence graph. These approaches are called static slic-
ing since they employ information statically available from
the flow graph of a program.

This paper addresses two shortcomings of static slicing.
First, static slicing uses a flow graph as the program model.
It is often the case that a flow graph is a very coarse abstrac-
tion since it preserves only the control flow and does not
respect the values of variables. This results in an imprecise
program slice that only determines, for every program point,
whether the program point affects the slicing criterion or
not. It is desirable to answer a more complicated question:
for every program point, under which variable values does
the program point affect the slicing criterion? Second,
static slicing produces a program slice by considering all
possible executions of a program and hence each program
point may affect many other program points. This results in
a large program slice whose size of a program slice is not
significantly small in comparison to the size of the original
program. It is desirable to answer: for every program point,
does the program point affect the slicing criterion if we are
only interested in certain executions of a program rather
than all possible ones?

To remedy these shortcomings, this paper proposes
a new approach to program slicing based on abstract
interpretation[10] and model checking[9]. Our approach
is a specialization of Schmidt and Steffen’s framework for
program analysis[32] in which an abstraction of a program
is used as the program model and model checking is per-
formed against the abstraction. The main contributions of
the paper are twofold. First, we introduce the notion of ab-
stract slicing. We illustrate the main ideas of abstract slicing
through a simple C program shown in Figure 1.(a). Static
slicing shows that the program points v1, v2, v3, v4 affect v4



v1: max = x;
v2: if (y > x)
v3: max = y;
v4: return max;

(a) example program

v1: max = x;
v2: if (y > x)
v3: max = y;
v4: return max;

(b) static slicing on v4

v1: max = x; ¬(y > x)
v2: if (y > x) y > x
v3: max = y; y > x
v4: return max; true

(c) abstract slicing on v4

with predicate y > x

v1: max = x; false
v2: if (y > x) y > x
v3: max = y; y > x
v4: return max; y > x

(d) abstract slicing on v4

with predicate y > x and
constraint (v1, y > x)

(Figure 1.(b)). Abstract slicing shows the values of predi-
cates under which v1, v2, v3, v4 affect v4 (Figure 1.(c)). We
observe that v1 affects v4 when the predicate y > x is not
satisfied, while v2 and v3 affect v4 when y > x is satis-
fied. Abstract slicing also supports the use of constraints
(Figure 1.(d)). Suppose that we are only interested in the
executions satisfying the constraint y > x at v1. In this
case, abstract slicing shows that v1 cannot affect v4. Put to-
gether, abstract slicing extends static slicing with predicates
and constraints. Predicates are used to respect the values
of variables and constraints are used to limit the scope of
analysis. Static slicing can be regarded as a special case of
abstract slicing in which no predicates and constraints are
used.

To extend static slicing with predicates and constraints,
we incorporate predicate abstraction into static slicing.
Predicate abstraction[14] is a special form of abstract in-
terpretation in which a set of predicates over the program’s
variables is used to construct a finite and sound abstraction
of the program. During the last years, several tools such as
SLAM[2], BLAST[20], and MAGIC[7] have demonstrated
that predicate abstraction can be effectively used for pro-
gram verification. In this paper, we show that program slic-
ing can also benefit from predicate abstraction. We use as
the program model an abstract state graph, which is ob-
tained by applying predicate abstraction to a program with
predicates and constraints, rather than a flow graph. This
leads to a program slice that is more precise and smaller
than its static counterpart, answering the two questions: for
every program point, under which predicate values does the
program point affect the slicing criterion? and does a pro-
gram point affect the slicing criterion if we are only inter-
ested in the constrained executions?

Second, we develop a method for performing abstract
slicing. Conventional static slicing methods based on data
flow equations[35] and program dependence graphs[29] can
be extended for abstract slicing. These methods, how-
ever, have problems with scalability due to the state ex-
plosion problem, that is, the size of an abstract state graph
grows exponentially in the number of predicates. Rather,
we formulate abstract slicing in terms of symbolic model
checking[28] that has been shown to be effective for con-
trolling the state explosion problem. We show that abstract

slicing can be reduced to a least fixpoint computation over
formulas in the branching time temporal logic CTL[13].
This enables one to use symbolic model checkers for CTL
such as SMV[28] and NuSMV[8] as an efficient computa-
tion engine for abstract slicing.

The main advantages of establishing a connection be-
tween abstract slicing and model checking may be summa-
rized as follows. First, we need to focus on only high-level
specifications of abstract slicing written in temporal logic.
All the details about the implementation of least fixpoint
computations are hidden in model checkers. Second, we
can apply abstract slicing in a language-independent man-
ner in the sense that the temporal logic formulas employed
in our method are applicable with non-essential modifica-
tions to various programming languages. Third, we can ap-
ply abstract slicing to programs whose size and complexity
are limited by the capabilities of current model checkers.
More importantly, we can enjoy the continuing and rapid
advances in the model checking community.

The remainder of the paper is organized as follows. Sec-
tion 2 recalls the basics of static slicing, predicate abstrac-
tion, and symbolic model checking. Section 3 and Section 4
present abstract slicing and a method for performing ab-
stract slicing, respectively. Section 5 reports a prototype
implementation and experimental results. Section 6 com-
pares our approach to previous work on program slicing.
Finally, Section 7 concludes the paper with a discussion of
future work.

2 Background

For the remainder of the paper, we use V to denote the set
of program points of a program and partition V into two dis-
joint subsets Vstmt and Vbranch. A program point in Vstmt

is a simple statement such as assignment, read, or write. A
program point in Vbranch is the branch condition of a con-
ditional or repetitive statement. There are two distinguished
program points vs ∈ V and vf ∈ V that are the start point
and final point of the program, respectively.



The flow graph G of a program is a directed graph whose
nodes correspond to program points and arcs correspond to
possible flow of control between program points. A simple
statement has only one successor, while a branch condition
has two successors. We label a program point v with defin-
itions and uses of variables: {def (x) | x is defined at v} ∪
{use(x) | x is used at v}. Figure 2 shows the flow graph of
the example program in Figure 1.

v1: max = x;
v2: if (y > x)
v3: max = y;
v4: return max;

��
��
v4 use(max)

��
��
v3def(max), use(y)

��

��
��
��
v2 use(x), use(y)

�

��
��
v1 def(max), use(x)

�

Let v and v′ be program points. We say that v di-
rectly data-affects v′ (or equivalently, v′ is directly data-
dependent on v) if there is a variable x such that x is defined
at v, x is used at v′, and there is a path v, v1, ..., vn, v′ such
that for every 1 ≤ i ≤ n, x is not defined at vi. In Figure 2,
v1 directly data-affects v4 and v3 directly data-affects v4.
We say that v′ postdominates v if every path from v to vf

contains v′ and that v directly control-affects v′ (or equiv-
alently, v′ is directly control-dependent on v) if v has two
successors v1 and v2 such that v′ postdominates v1 but v′

does not postdominate v2. In Figure 2, v2 directly control-
affect v3 since v3 postdominates itself and does not post-
dominate v4. The affect relation between program points is
the transitive closure of the union of the direct data-affect
and direct control-affect relation.

Static slicing is defined with respect to the flow graph of
a program. We consider three forms of static slicing: back-
ward slicing, forward slicing, and chopping[22]. A slicing
criterion for backward slicing and forward slicing is a pro-
gram point v1. The backward slice with respect to v consists
of the program points that affect v. Forward slicing is the
dual of backward slicing. The forward slice with respect
to v consists of the program points that are affected by v.
Chopping is a combination of backward slicing and forward
slicing. A slicing criterion for chopping is a pair (v, v′) of
program points. The chop with respect to (v, v′) consists of
the program points that are affected by v and affect v′.

1For the sake of presentation, we use a program point as a slicing cri-
terion. The results of this paper can be immediately applied to more elab-
orated slicing criteria, e.g., a pair (v, X) consisting of a program point v
and a set X of variables[35].

Given a program and a set of predicates over the pro-
gram’s variables, predicate abstraction constructs a finite
and sound abstraction of the program. Intuitively, an ab-
straction of a program is sound if every execution of the
program has a corresponding execution in the abstraction.

We first adopt the following definitions. Let {p1, ..., pn}
be a set of predicates over the program’s variables and
{b1, ..., bn} be a set of boolean variables such that for
every 1 ≤ i ≤ n, bi represents pi. A valuation σ over
{b1, ..., bn} represents the predicate p′1 ∧ ... ∧ p′n where for
every 1 ≤ i ≤ n, p′i = pi if σ(bi) = 1 and p′i = ¬pi if σ(bi)
= 0. For notational convenience, we identify a valuation
σ with the boolean vector 〈σ(b1), ..., σ(bn)〉. For example,
in Figure 3.(a), 〈1〉 and 〈0〉 represent the predicates y > x
and ¬(y > x), respectively. For a valuation σc over the
program’s variables, σ is an abstraction of σc if σc satisfies
p′1 ∧ ... ∧ p′n. For example, define σx,y as a valuation over
{x, y} that maps x to 0 and y to 1. 〈1〉 is an abstraction
of σx,y . For a predicate cond over the program’s varibles,
σ satisfies cond if there is a valuation σc such that σ is an
abstraction of σc and σc satisfies cond. For example, 〈1〉
satisfies y > x.

We define the abstract state graph G{p1,...,pn} of a pro-
gram with predicates {p1, ..., pn} as follows. A node of
G{p1,...,pn} is a pair (v, σ) where the control part is a
program point v and the data part is a valuation σ over
{b1, ..., bn}. A node (v, σ) is a start node if v = vs and
is a final node if v = vf . Figure 3.(a) shows G{y>x} of the
example program in Figure 2.
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(a) the abstract state graph
with predicate y > x
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(b) the abstract state graph
with predicate y > x and
constraint (v1, y > x)

When determining whether there is an arc from (v, σ) to
(v′, σ′), we consider two cases. The first case is that v is
a simple statement. There is an arc from (v, σ) to (v′, σ′)
if there are two valuations σc and σ′

c over the program’s
variables such that (i) σ is an abstraction of σc, (ii) σ′ is an
abstraction of σ′

c, and (iii) the execution of v with σc leads
to v′ and σ′

c. For example, in Figure 3.(a), using σc = σ′
c



= σx,y , we can show that there is an arc from (v1, 〈1〉) to
(v2, 〈1〉). The second case is that v is a branch condition
cond. Let v1 be the ‘then’ successor and v2 be the ‘else’
successor of v. There is an arc from (v, σ) to (v1, σ) if
σ satisfies cond and there is an arc from (v, σ) to (v2, σ)
if σ satisfies ¬cond. For example, consider v2 whose true
successor is v3 and false sucessor is v4. There is an arc from
(v2, 〈1〉) to (v3, 〈1〉) since 〈1〉 satisfies the branch condition
y > x, while there is no arc from (v2, 〈1〉) to (v4, 〈1〉).

We define the abstract state graph G
{c1,...,cm}
{p1,...,pn} of

a program with predicates {p1, ..., pn} and constraints
{c1, ..., cm} as follows. A constraint is a precondition asso-
ciated with a program point. The set of nodes of G

{c1,...,cm}
{p1,...,pn}

is a subset of nodes (v, σ) of G{p1,...,pn} such that if ci

is a constraint associated with v, then σ satisfies ci. The
set of arcs of G

{c1,...,cm}
{p1,...,pn} is obtained by restricting the do-

main and range of the set of arcs of G{p1,...,pn} to the nodes

of G
{c1,...,cm}
{p1,...,pn} . Figure 3.(b) shows G

{y>x}
{y>x} of the example

program. Due to the constraint y > x at v1, we have that
(v1, 〈1〉) is a node while (v1, 〈0〉) is not.

CTL is a branching time temporal logic that has been
extensively used in symbolic model checking. We give a
brief introduction to CTL and refer to [13] for the formal
syntax and semantics for CTL. Formulas in (future) CTL
are built from a set AP of atomic propositions, standard
boolean operators, path quantifiers E (for some path) and
A (for all paths), and modal operators X (nexttime) and U
(until).

The semantics of CTL is defined with respect to a Kripke
structure (Q,Q0, L,R) where Q is a set of states, Q0 ⊆ Q
is the set of initial states, L: Q → 2AP labels each state
with atomic propositions, and R ⊆ Q × Q is the total tran-
sition relation. For an infinite path π = q0, q1, ... of a Kripke
structure, we use π(i) to denote the i-th element of π. For
a state q of Kripke structure M and a formula f , we write
q |= f to mean that q satisfies f . We will make use of for-
mulas of the form EXf and E[fUg] whose semantics is
defined below.

• q |= EXf iff for some path π such that π(i) = q for
some i ≥ 0, we have that π(i + 1) |= f .

• q |= E[fUg] iff for some path π such that π(i) = q
for some i ≥ 0, we have that there is j ≥ i such that
π(j) |= g and π(k) |= f for every i ≤ k < j.

We will also make use of past modal operators X− (yes-
terday) and U− (since) that are the duals of X and U,
respectively[13].

• q |= EX−f iff for some path π such that π(i) = q for
some i > 0, we have that π(i − 1) |= f .

• q |= E[fU−g] iff for some path π such that π(i) = q
for some i ≥ 0, we have that there is 0 ≤ j ≤ i such
that π(j) |= g and π(k) |= f for every j < k ≤ i.

For a Kripke structure M and a formula f , the model
checking problem is to find the set of states satisfying f :
{q | q |= f}. Symbolic model checking finds the set of
states satisfying a formula by computing the least (or great-
est) fixpoint of a predicate transformer. For example, con-
sider EFv which is the abbreviation of E[trueUv] express-
ing that v is reachable. The set of states satisfying EFv is
equivalent to the least fixpoint of τ(Z) = v ∨ EXZ. The
fixpoint computation requires standard boolean operations,
quantification over variables, and substitution of variables
which can all be performed efficiently on binary decision
diagrams (BDDs).

3 Abstract Slicing

Abstract slicing uses as the program model an abstract
state graph rather than a flow graph. We first describe how
we lift the affect relation from a flow graph to an abstract
state graph. We then introduce three forms of abstract slic-
ing.

It is straightforward to lift the direct data-affect relation
from a flow graph to an abstract state graph. For two nodes
(v, σ) and (v′, σ′) of an abstract state graph, we say that
(v, σ) directly data-affects (v′, σ′) if there is a variable x
such that x is defined at v, x is used at v′, and there is
a path (v, σ), (v1, σ1), ..., (vn, σn), (v′, σ′) such that for
every 1 ≤ i ≤ n, x is not defined at vi. In Figure 3.(a), we
observe that (v1, 〈1〉) does not directly data-affect (v4, 〈1〉)
since they are intervened by (v3, 〈1〉). We also observe that
(v1, 〈0〉) directly data-affects (v4, 〈0〉). These two observa-
tions enable us to infer that v1 directly data-affects v4 only
when the predicate y > x is not satisfied.

In contrast to the direct data-affect relation, it is impos-
sible to lift the direct control-affect relation. Recall that v
directly control-affects v′ if v′ postdominates one of v’s suc-
cessors but v′ does not postdominate the other successor.
This definition cannot be lifted to an abstract state graph
because a node (v, σ) of an abstract state graph does not
necessarily have two successors depending on the valua-
tion σ. Rather, we adopt the following definitions intro-
duced by Podgurski and Clarke[30]: v′ is a postdominator
of v if v′ postdominates v. In addition, if v′ �= v, v′ is a
proper postdominator of v. The immediate postdominator
of v, denoted by ipd(v), is the first proper postdominator



of v that occurs on every path from v to vf . v control-
affects v′ (or equivalently, v′ is control-dependent on v) if
there is a path from v to v′ not containing ipd(v). In Fig-
ure 2, v2 control-affects v3 since the path v2v3 does not
contain ipd(v2) = v4. In [30], it is shown that the control-
affect relation is the transitive closure of the direct control-
affect relation. We lift the control-affect relation from a flow
graph to an abstract state graph. We say that (v, σ) control-
affects (v′, σ′) if there is a path (v, σ), (v1, σ1), ..., (vn, σn),
(v′, σ′) such that v �= ipd(v), v′ �= ipd(v), and for every
1 ≤ i ≤ n, vi �= ipd(v). In Figure 3.(a), (v2, 〈1〉) control-
affects (v3, 〈1〉).

We define the affect relation for an abstract state graph
as the transitive closure of the union of the direct data-affect
relation and control-affect relation. We overload the affect
relation for program points. v affects (v′, σ′) if there is a
node (v, σ) such that (v, σ) affects (v′, σ′). (v, σ) affects v′

if there is a node (v′, σ′) such that (v, σ) affects (v′, σ′). v
affects v′ if there are two nodes (v, σ) and (v′, σ′) such that
(v, σ) affects (v′, σ′).

We define three forms of abstract slicing: abstract back-
ward slicing, abstract forward slicing, and abstract chop-
ping that extend their static counterparts with predicates
{p1, ..., pn} and constraints {c1, ..., cm}. A slicing criterion
for abstract backward slicing and abstract forward slicing is
a triple (v, {p1, ..., pn}, {c1, ..., cm}). The abstract back-
ward slice with respect to (v, {p1, ..., pn}, {c1, ..., cm})
consists of the reachable nodes of G

{c1,...,cm}
{p1,...,pn} that

affect v. The abstract forward slice with respect
to (v, {p1, ..., pn}, {c1, ..., cm}) consists of the reach-
able nodes of G

{c1,...,cm}
{p1,...,pn} that are affected by v. A

slicing criterion for abstract chopping is a quadruple
(v, v′, {p1, ..., pn}, {c1, ..., cm}). The abstract chop with
respect to (v, v′, {p1, ..., pn}, {c1, ..., cm}) consists of the
reachable nodes of G

{c1,...,cm}
{p1,...,pn} that are affected by v and

affect v′.
As with other program analysis techniques based on ab-

stractions, abstract slicing is sound (but not complete) in
the sense that if a program has an execution along which
an affection occurs, then its abstract state graph has a corre-
sponding execution along which the affection occurs. For-
mally, if a program has an execution (v1, σ

′
1), ..., (vn, σ′

n)
such that (v1, σ

′
1) affects (vn, σ′

n), then its abstract state
graph has an execution (v1, σ1), ..., (vn, σn) such that
(v1, σ1) affects (vn, σn) and for every 1 ≤ i ≤ n, σi is
an abstraction of σ′

i.
Let V = {v1, ..., vl} be the set of program points. We

partition the abstract backward slice ABS into the tuple
(ABS1, ..., ABSl) such that for every 1 ≤ i ≤ l, ABSi ⊆
ABS is the set of nodes whose program point is vi. Each

ABSi shows the values of p1, ..., pn under which vi affects
v through the executions constrained by c1, ..., cm. For ex-
ample, in Figure 3.(a),

ABS1 = {(v1, 〈0〉)},

ABS2 = {(v2, 〈1〉)},

ABS3 = {(v3, 〈1〉)},

ABS4 = {(v4, 〈0〉), (v4, 〈1〉)}.

In Figure 3.(b),

ABS1 = ∅,

ABS2 = {(v2, 〈1〉)},

ABS3 = {(v3, 〈1〉)},

ABS4 = {(v4, 〈1〉)}.

Abstract forward slices and abstract chops can also be par-
titioned in the same way.

More refined slicing criteria may be used, e.g.,
(v, pn + 1, {p1, ..., pn}, {c1, ..., cm}) where pn+1 is a
predicate over the program’s variables. The abstract
backward slice then consists of the reachable nodes
that affect (v, σ) such that σ satisfies pn+1. We
note that the abstract backward slice with respect to
(v, pn+1, {p1, ..., pn}, {c1, ..., cm}) is equivalent to that
with respect to (v, {p1, ..., pn}, {c1, ..., cm} ∪ {(v, pn+1)})
in which we have a new constraint (v, pn+1) that imposes
the precondition pn+1 on v.

4 Abstract Slicing as Symbolic Model Check-
ing

A widely-used method for perfoming static slicing is to
use a program dependence graph[29] whose nodes corre-
spond to program points and arcs correspond to the union
of the direct data-affect relation and direct control-affect
relation. Analogously, abstract slicing may also be per-
formed using a program dependence graph. In this case,
nodes of a program dependence graph correspond to nodes
of an abstract state graph and arcs correspond to the union
of the direct data-affect relation and control-affect relation.
However, the explicit construction of a program dependence
graph for abstract slicing is impractical for large and com-
plex programs due to the state explosion problem, that is,
the size of an abstract state graph grows exponentially in the
number of predicates. To control the state explosion prob-
lem, we reduce abstract slicing to a least fixpoint computa-
tion over CTL formulas2 so that symbolic model checkers
for CTL can be used as an efficient computation engine for
abstract slicing.

2Or equivalently, abstract slicing can be reduced to the model checking
problem of µ-calculus[25] since a least fixpoint over CTL formulas is a
µ-calculus formula. In this paper, we use CTL for the sake of presentation
and implementation.



We reduce abstract backward slicing to a least fixpoint
computation over future CTL formulas. Let Z be a set of
nodes of an abstract state graph G

{c1,...,cm}
{p1,...,pn} . Define predi-

cate transformers dda and ca by

dda(Z) =
∨

x∈X

def (x) ∧ EXE[¬def (x)U(use(x) ∧ Z)]

where X is the set of variables of the program,

ca(Z) =
∨

v∈V

v ∧ E[¬ipd(v)U(¬ipd(v) ∧ Z)].

For example, in Figure 3.(a),

dda({(v4, 〈1〉)}) = {(v3, 〈1〉)} and

ca({(v3, 〈1〉)}) = {(v2, 〈1〉)}.

It is not hard to see that a node is in dda(Z) (resp. ca(Z))
if and only if the node directly data-affects (resp. control-
affects) some node in Z.

Define a predicate transformer affect[v] by

affect[v](Z) = v ∨ dda(Z) ∨ ca(Z).

It is not hard to see that the least fixpoint of affect[v] is the
set of nodes that affect v. By intersecting the least fixpoint
and the set of reachable states, we obtain the abstract back-
ward slice with respect to (v, {p1, ..., pn}, {c1, ..., cm}).

The size of dda(Z) is linear in the number of variables
and can be reduced using the simple observation that it is
only necessary to consider the set XDU of variables that are
both defined and used by the program:

dda(Z) =
∨

x∈XDU

def (x)∧EXE[¬def (x)U(use(x)∧Z)].

The size of ca(Z) is linear in the number of program points
and can be reduced using the simple observation that only a
branch condition may control-affect a node:

ca(Z) =
∨

v∈Vbranch

v ∧ E[¬ipd(v)U(¬ipd(v) ∧ Z)].

We reduce abstract forward slicing to a least fixpoint
computation over past CTL formulas. Define dda−, ca−,
and affect−[v] by

dda−(Z) =
∨

x∈XDU

use(x)∧EX−E[¬def (x)U−(def (x)∧Z)],

ca−(Z) =
∨

v∈Vbranch

E[¬ipd(v)U−(¬ipd(v) ∧ v ∧ Z)],

affect−[v](Z) = v ∨ dda−(Z) ∨ ca−(Z).

A node is in dda−(Z) (resp. ca−(Z)) if and only if the
node is directly data-affected (resp. are control-affected) by
some node in Z. The least fixpoint of affect−[v] is the set
of nodes that are affected by v. By intersecting the least fix-
point and the set of reachable states, we obtain the abstract
forward slice with respect to (v, {p1, ..., pn}, {c1, ..., cm}).

Abstract chopping is a combination of abstract backward
slicing and abstract forward slicing. The intersection of the
least fixpoints of affect−[v] and affect[v′] is the set of
nodes that are affected by v and affect v′. By intersecting
the two least fixpoints of affect−[v] and affect[v′] and the
set of reachable states, we obtain the chop with respect to
(v, v′, {p1, ..., pn}, {c1, ..., cm}).

We say that the above fixpoint computation is monolithic
in the sense that the set Z is manipulated as a single entity.
An alternative to the monolithic fixpoint computation is to
partition Z into (Z1, ..., Zl) according to the program points
V = {v1, ..., vl} and manipulate each Zi separately during
the fixpoint computation. This partition leads to the new
definition of affect[v]:

affect[v](Z1, ..., Zl) =
(v1 ⇔ v, ..., vn ⇔ v)∨
(dda1(Z1, ..., Zl), ...,ddal(Z1, ..., Zl))∨
(ca1(Z1, ..., Zl), ..., cal(Z1, ..., Zl))

where for every 1 ≤ i ≤ l,

• ddai(Z1, ..., Zl) =
∨

1≤j≤l ddaij(Zj)

where for every 1 ≤ j ≤ l,

ddaij(Zj) = vi ∧
∨

x∈DEF (vi)

def (x) ∧ EXE[¬def (x)U(use(x) ∧ Zj)]

where DEF(vi) is the set of variables defined at vi.

• cai(Z1, ..., Zl) =
∨

1≤j≤l caij(Zj)

where for every 1 ≤ j ≤ l,

caij(Zj) = vi ∧ E[¬ipd(vi)U(¬ipd(vi) ∧ Zj)]

For example, in Figure 3.(a),



dda3(∅, ∅, ∅, {(v4, 〈1〉)}) = {(v3, 〈1〉)} and

ca2(∅, ∅, {(v3, 〈1〉)}, ∅) = {(v2, 〈1〉)}.

A node is in ddaij(Zj) (resp. caij(Zj)) if and only if the
node has vi as its program point and directly data-affects
(resp. control-affects) some node in Zj . It follows that a
node is in ddai(Z1, ..., Zl) (resp. cai(Z1, ..., Zl)) if and
only if the node has vi as its program point and directly data-
affects (resp. control-affects) some node in Z1∨...∨Zl. The
least fixpoint of affect[v] is the tuple (Zf

1 , ..., Zf
l ) such that

for every 1 ≤ i ≤ l, Zf
i is the set of nodes that have vi as

the program point and affect v.
Since ddaij and caij are only concerned with nodes

whose program point is either vi or vj , they can be op-
timized using the following observations: If vi does not
directly data-affect vj , then (vi, σ) does not directly data-
affect (vj , σ

′). Similarly, if vi does not control-affect vj ,
then (vi, σ) does not control-affect (vj , σ

′). The informa-
tion of whether v directly data-affects (or control-affects)
v′ is statically available from the flow graph of a program.
These observations lead to the new definition of ddaij and
caij :

• if vi directly data-affects vj ,

ddaij(Zj) = vi ∧
∨

x∈DEF (vi)

def (x) ∧ EXE[¬def (x)U(use(x) ∧ Zj)]

otherwise, ddaij(Zj) = false.

• if vi control-affects vj ,

caij(Zj) = vi ∧ E[¬ipd(vi)U(¬ipd(vi) ∧ Zj)]

otherwise, caij(Zj) = false.

5 Implementation and Experimentation

Our prototype implementation of abstract slicing con-
sists of the following three tools.

• MAGIC: For a program written in C and a set of pred-
icates over the program’s variables, we constructed an
abstract state graph using the predicate abstraction ca-
pability of MAGIC[7]. Since we used MAGIC, which
does not accept constraints as input, as a black box, we
considered programs with predicates only. Constraints
are taken into account when translating an abstract
state graph into input to the symbolic model checker
NuSMV[8].

• MAGIC2SMV: We implemented the tool
MAGIC2SMV that translates an abstract state
graph constructed by MAGIC together with a set of
constraints into input to NuSMV.

• NuSMV: For abstract backward slicing, we imple-
mented both the monolithic fixpoint computation
and partitioned fixpoint computation of affect[v] in
NuSMV using the algorithms shown in Figure 4.(b)
and Figure 4.(c), respectively. These algorithms are
extensions of the fixpoint computation algorithm for
the CTL formula EFv shown in Figure 4.(a). In or-
der to compute dda(old), ca(old), ddaij(old[j]),
and caij(old[j]), the algorithms use the capability of
NuSMV to find the set of states satisfying CTL for-
mulas of the form EXf or E[fUg]. For abstract for-
ward slicing and abstract chopping, we do not have
an implementation. To compute the least fixpoint of
affect−[v], we should be able to find the set of states
satisfying past CTL formulas of the form EX−f or
E[fU−g], which is beyond the capability of current
symbolic model checkers.

The goals of our experimentation are twofold. We
wished to evaluate the feasibility of our approach. In ad-
dition, we wished to evaluate the relative performances of
the three fixpoint computations shown in Figure 4. The ex-
perimentation was carried out on a Linux machine with 1
Ghz Pentium III processor and 1.5 Gbyte memory using
program modules selected from the Collected Algorithms
by the ACM (http://www.acm.org/calgo). Table 1
shows the information of the program modules used in the
experimentation.

program loc stmt branch var def use
numforw 14 10 4 5 5 8

adjust 27 20 7 7 17 29
integrate 57 39 18 14 35 41
revolve 103 71 32 22 53 104

Table 2 summarizes the experimental results. The first
column shows program modules. The second column
shows the number of predicates for each program mod-
ule. The third column shows the time usage of MAGIC
to construct abstract state graphs from the program mod-
ules with predicates. The fourth column shows the num-
ber of reachable states of the resulting abstract state graphs.
The remaining columns show the time and memory usage
of NuSMV to perform the three fixpoint computations.

We first used NuSMV to perform abstract slicing with no
predicates. As mentioned earlier, this corresponds to static
slicing. The four rows with 0 predicates in Table 2 show the
results. As expected, only a slight amount of time and mem-
ory was necessary for NuSMV to produce program slices.

We then used NuSMV to perform abstract slicing with
a significant number of predicates. The remaining rows in



old := false;
new := v;
while (old �= new) do begin

old := new;
new := old ∪ EXold;

end while
return new;

(a) EFv

old := false;
new := v;
while (old �= new) do begin

old := new;
new := old ∪ dda(old) ∪ ca(old);

end while
return new;

(b) affect[v], monolithic

for i = 0 to l do begin
old[i] := false;
if (v = vi) then new[i] := true;
else new[i] := false;

end for
while (old �= new) do begin

old := new;
for i = 0 to l do

for j = 0 to l do
new[i] := old[i] ∪ ddaij(old[j]) ∪ caij(old[j]);

end while
return new;

(c) affect[v], partitioned

abstract state graph EFv affect[v], monolithic affect[v], partitioned
program predicates user time reachable user time BDD nodes user time BDD nodes user time BDD nodes

(sec) states (sec) allocated (sec) allocated (sec) allocated

numforw 0 0.02 14 0.010 282 0.013 351 0.011 331
adjust 0 0.04 27 0.005 596 0.018 1386 0.025 788

integrate 0 0.10 57 0.012 1362 0.026 1830 0.035 1423
revolve 0 0.21 103 0.019 2509 0.081 6033 0.132 3592

numforw 16 0.28 216.9 0.051 17.6 (K) 0.06 17.1 (K) 0.06 17.1 (K)
adjust 34 0.81 235.9 0.432 143.7 (K) 0.44 141.6 (K) 0.45 141.7 (K)

integrate 30 3.88 230.3 13.627 1911.8 (K) 13.67 1911.0 (K) 13.76 1908.3 (K)
integrate 35 8.94 234.5 60.010 5756.4 (K) 60.94 5739.2 (K) 61.10 5735.3 (K)
revolve 48 37.83 248.9 7.042 1464.4 (K) 7.43 1415.8 (K) 9.34 1450.2 (K)
revolve 62 41.89 260.9 246.028 14359.5 (K) 251.26 14102.7 (K) 291.09 14461.6 (K)

Table 2 show the results. There are two points of using
such a significant number of predicates. First, we wished
to consider the worst case and evaluate the performance of
abstract slicing in the presence of state explosion, although
we do not believe that programmers want to use so many
predicates when performing abstract slicing. Second, even
though programmers are only interested in a small num-
ber of predicates, additional predicates are helpful and often
mandatory since as the number of predicates increases, the
precision of the resulting abstract state graph also increases,
making abstract slicing more informative.

Abstract slicing with a smaller number of predicates
does not always guarantee a better performance. For exam-
ple, consider the abstract state graphs of integrate with
35 predicates and revolve with 48 predicates. Although
the former is much smaller than the latter in terms of the
number of reachable states, abstract slicing of the former
required more time in one order of magnitude. This is con-
sistent with the general principle of symbolic model check-
ing that it is not the sheer number of reachable states but the
complexity of a system being analyzed that determines the
performance of symbolic model checking. In our case, we
believe that the complexity of a program is strongly depen-

dent on the number of conditional and repetative statements
as well as the nested structure of such statements.

Finally we discuss the relative performances of the three
fixpoint computations. Before carrying out the experimen-
tation, we hypothesized that the monolithic and partitioned
fixpoint computations of affect[v] are much more demand-
ing than that of EFv because the updates of new in Fig-
ure 4.(b) and Figure 4.(c) use very long CTL formulas,
whereas the update of new in Figure 4.(a) uses only one
CTL formula EXold. For example, consider the program
module revolve. There are 53 definitions, 104 uses, and
261 pairs of definitions and uses of the same variable and
hence dda(old) is the disjunction of 261 formulas of the
form def (x)∧EXE[¬def (x)U(use(x)∧ old)]. There are
32 branch conditions and hence ca(old) is the disjunction of
32 formulas of the form v ∧E[¬ipd(v)U(¬ipd(v) ∧ old)].
Our experimentation, however, showed that there were no
big differences among the relative performances of the three
fixpoint computations. To understand this phenomenon, we
collected the number of iterations of the updates of new
as well as the time and memory usage of NuSMV to per-
form the update of new at each iteration. We found out
that the monolithic and partitioned fixpoint computations



for affect[v] are short and thick since dda(old) and ca(old)
introduce many program points into new at each iteration,
while the fixpoint computation for EFv is long and thin
since EXold introduces program points, only in one step
backward from some program point in old, into new.

6 Related Work

A number of different approaches to program slicing
have been proposed in order to remedy the shortcomings of
static slicing. Included are dynamic slicing[1, 24], simulta-
neous dynamic slicing[16], hybrid slicing[15], quasi static
slicing[34], conditioned slicing[6], backward conditioned
slicing[11], and pre/post conditioned slicing[18]. The main
purpose of these approaches is to reduce the size of a pro-
gram slice by limiting the scope of analysis to a single exe-
cution or a set of executions rather than all possible ones.

Dynamic slicing[1, 24] limits the scope of analysis us-
ing a valuation over input variables, which maps every in-
put variable to its value. A program slice is produced with
respect to the execution induced by a valuation. Simulta-
neous dynamic slicing[16] uses a set of valuations over in-
put variables rather than one. Hybrid slicing[15] integrates
information obtained by dynamic slicing into static slic-
ing. Since dynamic slicing exploits run-time information
obtained during the execution of a program, it produces a
program slice that is significantly more precise and smaller
than its static counterpart and is well-suited for program de-
bugging with complex data structures such as arrays and
pointers. However, the analysis result is confined to a sin-
gle execution.

The approaches in [34, 6, 11, 18] lie between static slic-
ing and dynamic slicing. Quasi static slicing[34] limits the
scope of analysis using a partial valuation over input vari-
ables, which maps some input variables to their values while
leaving the others unconstrained. A program slice is defined
with respect to the set of executions induced by a partial val-
uation. Conditioned slicing[6] (resp. backward conditioned
slicing[11]) limits the scope of analysis using a condition
and performs forward symbolic execution (resp. backward
symbolic execution) to identify the set of executions in-
duced by the condition. Pre/post conditioned slicing[18]
is a combination of conditioned slicing and backward con-
ditioned slicing. These approaches have two limitations.
First, the question of “under which variable values does a
program point affect another?” has remained unanswered.
Second, the question of “does a program point affect an-
other if we are only interested in the constrained execu-
tions?” is answered using symbolic execution. To identify
the set of executions induced by a condition, symbolic ex-
ecution should propagate the condition through all possible
executions of the program. The number of possible execu-
tions is often very large or infinite, which makes it neces-

sary to have a bound on the number of iterations of loops
or the size of the input domain[23, 27]. This bound in turn
may lead to a program slice which is not sound in that some
affections between program points are missing.

The approach in [26] addresses the question of “for two
given program points, under which variable values does a
program point affect another?” by performing symbolic
execution through all possible executions between the two
program points. Since this approach is also based on sym-
bolic execution, it may miss some values of variables under
which a program point affects another. Moreover, the ap-
proach is only applicable to two given program points. It is
not clear how the approach can be generalized for backward
slicing and forward slicing where we are given a slicing cri-
terion and want to find, for every program point, the values
of variables under which the program point affects or is af-
fected by the slicing criterion.

7 Conclusions and Future Work

We have presented an approach to program slicing based
on predicate abstraction and symbolic model checking. We
described the notion of abstraction slicing that extends static
slicing with predicates and constraints. We also described
a method for performing abstract slicing that reduces ab-
stract slicing to a least fixpoint computation over CTL for-
mulas. The method was implemented in NuSMV and was
applied to programs with a significant number of predicates,
demonstrating the feasibility of our approach.

We have two main directions for future research. First,
we plan to apply abstract slicing to interprocedural pro-
grams and object-oriented programs. Program slicing of
such programs is more complicated due to global and local
variables, reference parameters, procedure call/return, and
recursion. We are investigating how conventional static slic-
ing methods for interprocedural programs such as [21, 31]
can be combined with predicate abstraction and symbolic
model checking. Second, we plan to apply abstract slic-
ing to requirements specifications written in statecharts[17]
or SDL[3] whose underlying model is extended finite state
machine, that is, finite state machine with data variables.
We are investigating how abstract slicing can be extended
to cope with the language constructs of statecharts and SDL
for modeling hierarchy, concurrency, and communications.
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