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Abstract

A common theme in information security is protection of
trusted software components against unauthorized access
by untrusted users. In the context of distributed object tech-
nologies, such as Enterprise Java Beans, this means pre-
venting leaks of sensitive information to untrusted users, as
well as preventing untrusted users from modifying sensitive
information.

In this paper, we propose an approach for identification
and classification of potentially sensitive information that
can leak out of trusted software components to untrusted
parties. Unlike the current approaches to securing infor-
mation flow by extending the type system, our technique
is based on static points-to, data- and control-dependence,
and object mutability analyses.

1 Introduction

In recent years, distributed object component technolo-
gies such as CORBA, COM, and EJB have received wide
acceptance. Such technologies enable creation of client-
server application that offer developers the convenience of
object-oriented development, where server-side functional-
ity is implemented as distributed objects. At run-time, these
objects can be accessed by both remote and local clients via
remote method calls.

With the explosive growth in the client-server Web ap-
plications and reliance on such applications by businesses
and general public, security of information handled by dis-
tributed object components is becoming increasingly impor-
tant. The majority of system vulnerabilities are caused not
by flaws in communication protocols but rather by exploits
of bugs in software applications. Software vulnerabilities
can be classified into three general categories:

Information leaks occur when the interface between un-
trusted clients and a trusted software component re-

turns information that should remain hidden to clients.

Modification access violations occur when the trusted
component allows untrusted clients to modify sensitive
data controlled by the component.

System resource leaks occur when the trusted component
allows untrusted clients to perform sensitive operations
on the resources of the underlying computer system,
e.g., executing arbitrary commands in a shell.

In this paper, we address the first two vulnerability cate-
gories above. We introduce a framework for statically rea-
soning about potential information leaks from a component
by using the concepts from existing static points-to analysis
and dependence analysis techniques. In particular, we mod-
ify the definitions of data and control dependence to better
suit analysis of secure information flow in a software com-
ponent. Our framework includes algorithms for detecting
potential leaks of sensitive information through the bound-
ary of a component.

We address the modification access violation problem by
proposing a static analysis that combines points-to and de-
pendence analysis with analysis of mutability of the com-
ponent state. For the latter, we augment the mutability
analysis technique of [26] to increase the analysis precision.
To make the discussion concrete, we use the semantics of
Java, although in principle other object-oriented program-
ming languages can be handled as well.

This paper makes the following contributions to the field
of static analysis for security:

• We propose static analysis of secure information flow
based on points-to and dependence analysis, instead of
type analysis on which most existing techniques rely.

• We describe novel semantics for dependence analysis,
necessitated by the application to secure information
flow.



• We introduce an improvement of mutability analy-
sis [26], with application to security of object compo-
nents.

• We propose a taxonomy of information leaks based on
notions of points-to, program dependence, and object
mutability.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 describes the new depen-
dence relationships for security analysis and gives defini-
tions as well as illustrations of escapability and mutability.
Section 4 gives detailed algorithms for computing escape
and mutability information. Section 5 describes a taxonomy
of information leaks based on escape and mutability infor-
mation. Section 6 concludes and discusses future work.

2 Related Work

The related research efforts appear in the areas of secure
information flow, mutability analysis, escape and points-to
analysis, dependence analysis and alias control and confine-
ment. We survey these areas in the following subsections.

2.1 Secure Information Flow

The flow of information between two entities (e.g., vari-
ables) in a program is called secure if both of these entities
have the same trust level. Most approaches to ascertaining
secure information flow developed to date rely on explicitly
or implicitly assigning security levels to program entities.

A recent survey on language-based information-flow se-
curity appears in [29]. [3, 4, 32, 34] present approaches to
information-flow security based on extending the type sys-
tem. [1,33] use the semantics-based security model that for-
malize security in terms of program behavior. The type
system and semantics-based security model approaches are
combined in [28].

Our proposed algorithm for computing information
about values that escape the boundary of a component sig-
nificantly differs from the existing techniques. Instead of
relying on type information, we use points-to graphs for
variables of reference types and dependence information for
variables of primitive types to compute ways in which in-
formation can leak from a component. The main benefit of
this technique is that it does not require annotation of types
used in the program with respect to their security levels and
thus can be used with existing mainstream languages such
as Java. Furthermore, since our approach is not specific to
a particular points-to or dependence analysis, trade-offs be-
tween precision and performance can be exploited for op-
timal (sufficiently precise but not too expensive) results of
the analysis.

2.2 Mutability Analysis

The problem of assuring immutability of objects has
been investigated in the past. ConstJava [5], an extension
to the Java language, is capable of specifying immutability
constraints using the keyword const and verifying them at
compile time. A framework [24] for immutability specifica-
tion consists of a set of immutability assertions expressing
a richer set of immutability properties, which can benefit
code optimization such as load elimination [15], data trans-
formations [13], and global value numbering [27]. Boy-
land et al. [8] discuss capabilities for sharing and generalize
immutability and uniqueness. These capabilities supply an
approximation and simplification of many other annotation-
based approaches. Unlike the annotation-based approaches,
Porat et al. [26] present a static data-flow algorithm to ana-
lyze the mutability of fields and classes in Java components.

The mutability analysis described in this paper improves
on the mutability analysis of [26]. The improvement is in
the area of precision of information computed by this analy-
sis. More specifically, while, similar to [26], our mutability
analysis is conservative in the sense that it never claims that
a field or class is immutable while in fact it can be modi-
fied, there are situations where the analysis [26] determines
that a field or class is mutable, while our analysis correctly
determines that this field or class is immutable. In addition,
unlike [26], we take mutability of static fields into account
when determining class mutability.

2.3 Escape and Points-to Analysis

Our approach needs information about relationships be-
tween references and storage locations in the program, pro-
vided by points-to analyses. A large number of points-to
analysis techniques have been proposed. A survey of these
techniques appears in [17]. Our analysis is not specific to
a particular points-to analysis technique and requires only
that points-to information computed by this technique is
conservative: if a reference can point to a storage loca-
tion during a real run of the program, the points-to analy-
sis should contain a representation of this relationship. That
said, our analysis is sensitive to precision of the points-to
analysis it uses.

Pointer escape analysis computes information describing
how objects created in one region of a program can be ac-
cessed from another region. In the context of our security
analysis, we are interested in computing objects created or
modified by a trusted component that escape to untrusted
clients. A number of escape analysis approaches for object-
oriented programs have been proposed [6, 7, 11, 16, 31, 35].
Many of these techniques rely on points-to analysis.



2.4 Dependence Analysis

Dependence analysis computes relationships between
program variables that capture the way in which values of
these variables depend on one another. A variety of depen-
dence analysis techniques have been proposed. Program
dependence graphs (PDG) [14, 25] have been used in ap-
proaches for debugging, testing, and maintenance for pro-
cedural programs. System dependence graphs (SDG) [18]
extend PDGs for sequential procedural programs with mul-
tiple procedures. Approaches [10, 20] extend SDGs to ap-
ply to object-oriented programming. Zhao [36] extends
the SDG specifically for computing dependence informa-
tion for Java programs.

As described in detail in Section 3.2, the standard de-
pendence information is not sufficient for purposes of our
security analysis, since this information does not capture
covert channels in the information flow. We extend the stan-
dard dependence analysis for object-oriented languages,
e.g. [36], to account for covert channels.

2.5 Alias Control and Confinement

The problem of references to security sensitive objects
escaping to untrusted parties has been considered in the
past. The problem of making sure that no references to a
particular object or object type escape a trusted component
is referred to in literature as pointer confinement [2, 23, 30,
37].

Flexible alias protection [23] is a conceptual model of
inter-object relationships which control potential aliasing
amongst components of an aggregate object. Confined
types and anonymous methods in Java [30] impose a sta-
tic scoping discipline on dynamic references and loosen
confinement to allow code reuse, respectively. Banerjee
et al. [2] present a semantic definition of confinement for
instance-based alias control, which addresses confinement
that is instance-based in that the internal representation
(e.g., private fields of an object as Rep) is confined in an
object of public class. The instance-based confinement is
closely related to the ownership model [12, 21].

Among the approaches above, [2, 12, 21, 37] extend type
systems, and [23, 30] are based on mode checking, where
programmer supplied alias modes are checked to ensure the
protection. In contrast, our approach relies exclusively on
relatively low-cost points-to and dependence static analy-
ses.

3 Definitions

In this section, we give definitions of information flow
and mutability terms we use throughout this paper.

3.1 Escapability Definitions

The existing escape analyses only compute references
that leak outside a program region. In the context of analy-
sis for security, it is important also to track leaks of primitive
data outside the component under analysis (CUA). We over-
load the term escape to refer to both references and primi-
tive data values that are in some way available outside the
CUA. The recursive definitions in this subsection introduce
different ways in which information can escape.

Let set Objects represent the set of all run-time objects
created by a program on a particular execution. Let set
Fields represent the set of fields of a given object that are
accessible by the object. For a given field f , let values(f)
be the set containing the possible values of this field1.

We say that an object (or primitive value) o2 is reachable
from object o1 if there exists a sequence of field references
that starts at o1 and ends at o2. Formally, we define set
ReachableFrom that contains all objects (or primitive val-
ues) reachable from a particular object: ∀o ∈ Objects, p ∈
ReachableFrom(o) if

1. ∃f ∈ Fields(o) : p ∈ values(f)

2. ∃f ∈ Fields(o),∃r ∈ values(f) :
p ∈ ReachableFrom(r)

For any primitive variable2 v, let sets
DataDependentOn(v) and ControlDependentOn(v) be the
sets of all variables that are data-dependent and control-
dependent on v respectively.

Definition: A value of reference or primitive type escapes
if it directly escapes, reference escapes, partially escapes,
data escapes, or control escapes (definitions for these escape
types are given below).

Definition: An object directly escapes the CUA if a refer-
ence to it is made available directly outside the CUA. For
example, a public method in the CUA may return a refer-
ence to this object. Similarly, a variable of primitive type di-
rectly escapes the CUA if the value of this variable is made
available directly outside the CUA.

Definition: An object (or primitive value) o reference-
escapes the CUA if there exists an object o′ that escapes
and o ∈ ReachableFrom(o′).

Definition: An object o partially-escapes if there exists a
variable o′ (either of reference or primitive type) that es-
capes and o′ ∈ ReachableFrom(o).

1Values of a field can be defined either globally or with respect to a
particular point in the program. Practically, this depends on the sensitivity
of the underlying points-to analysis.

2In this paper, variable generally refers to variable as well as field in a
Java program.



Definition: A variable v data-escapes through variable w
if w escapes and v ∈ DataDependentOn(w).

Definition: A variable v control-escapes through variable
w if w escapes and v ∈ ControlDependentOn(w).

Note that the definitions for reference-, partially-, data-,
control-escapes are given with respect to another data that
escapes. Such dependencies naturally define sequences of
escape information, with each sequence starting at an object
or variable that directly escapes. The ideas behind data-
escape and control-escape are directly related to the notion
of covert channels [19].

Consider the code example in Figure 1. According to the
definitions above, int field i data-escapes since i is data-
dependent on variable t1 (additional dependence relation-
ship presented in subsection 3.2 is applied) that is returned
by method getData. boolean field b control-escapes
since b is control-dependent on variable t1 (similarly, ad-
ditional dependence relationship is applied) that is returned
by method controlData. Field v partially escapes since
method addData places an object obtained from outside
the CUA as parameter data to v (the object referred to by
data escapes directly). Information about possible aliases
in the component is essential for conservative computation
of escape information. For example, consider the code frag-
ment (external to the component in Figure 1 but using this
component) below:

...; Sample sa=new Sample();
sa.connectBuffer();
StringBuffer sb=sa.exposeBuffer(); ...;

Since method connectBuffer creates an alias be-
tween fields buffer1 and buffer2 and method
exposeBuffer returns buffer2, field buffer1 es-
capes as well.

3.2 Dependence Relationships for Analyzing Se-
curity

There are two types of dependence relationships between
primitive variables in a program, data dependence repre-
senting data flow between variables and control dependence
representing control conditions on which the execution of a
statement or expression depends [9, 14, 25, 36]. Informally,
a primitive variable u is data dependent on a primitive vari-
able v if the value of v is used to compute the value of u.
Similarly, a primitive variable u is control dependent on v
if the value of v is used in a conditional statement with a
branch on which u is assigned a value. It is important to note
that both data and control dependence are one-way relation-
ships between variables. For example, analysis of statement
u = v + 1 determines that u depends on v, but v does not
depend on u.

public class Sample {
private Vector v;
private StringBuffer buffer1;
private StringBuffer buffer2;
private StringBuffer buffer3;
private int i;
private boolean b;
public Sample(){

this.i = 15;
this.b = true;
this.buffer1 = new StringBuffer("b1");
this.buffer3 = new StringBuffer("b3");

}
public void connectBuffer(){

buffer2 = buffer1;
}
public String returnString(){

return buffer3.toString();
}
public StringBuffer exposeBuffer(){

return buffer2;
}
public int getData(){

int t1 = this.i * 2;
return t1;

}
public int controlData(){

int t1;
if(this.b)

t1=0;
else

t1=1;
return t1;

}
public void addData(Object data){

this.v.add(data);
}

}

Figure 1. Code example

In the context of analysis for security, dependence rela-
tionships between variables take on a new meaning. Con-
sider again statement u = v+1. At the program point where
this statement is executed, if the value of u is known outside
the CUA, the value of v can be computed as v = u − 1.
Therefore, for the purposes of our analysis, v data-depends
on u in statement u = v+1. Similarly, consider a statement
x = y + z. If values of any two of variables x, y, and z are
known to an attacker on the CUA, then the attacker can also
figure out the value of the third variable.

Conservatively, control dependence relationship is di-
rectly transformed into two-way dependence on each other
by our analysis for the purpose of security, i.e., the original
dependence relationship that x is control dependent on y is



TransformDependence()

Input: sets OldDependenceSet, EscapeTuples
Output: set DependenceSet
Steps:

DependenceSet = ∅
for each tuple (v1, v2, v3) ∈ OldDependenceSet

if v3 = CD
add (v1, v2, CD), (v2, v1, CD) to DependenceSet

else if v3 is empty
add (v1, v2, ), (v2, v1, ) to DependenceSet

else if (vi, t, v) ∪ (vj , t
′, v′) ∈ EscapeTuples,

where i, j ∈ {1, 2, 3}, i �= j
add (v1, v2, v3), (v2, v1, v3), (v3, v1, v2)

to DependenceSet
end if

end for

Figure 2. Adding dependence relationships to
account for covert channels

extended into the two-way one that both x and y is control
dependent on each other.

Assume that standard dependence information is com-
puted in the form of tuples (v1, v2, v3), representing state-
ment v1 = bin op(v2, v3), where bin op is any binary op-
eration. In case v1 = unary op(v2), where unary op is any
unary operation, the element v3 of tuple (v1, v2, v3) is left
empty. If the tuple represents control dependence of vari-
able v1 on variable v2, the third value in the tuple is flag CD.
Let OldDependenceSet and DependenceSet represent the
set of standard dependence information and updated depen-
dence information respectively. Set EscapeTuples (see the
algorithms in the subsection 4.1 to compute it) represents
all of the escape information for the CUA. The algorithm
for adding tuples to represent additional dependence infor-
mation for the purposes of our security analysis is given in
Figure 2.

3.3 Mutability Definitions

A component is said to be immutable if, once this com-
ponent is created, it cannot be modified. Porat et al. [26]
propose several simple criteria for determining immutabil-
ity statically: (1) a variable or an object is immutable iff
its state never changes after the corresponding initialization
point; (2) a field is immutable iff all the variables that cor-
respond to that field are immutable; (3) a class is immutable
iff all non-static fields implemented by it are immutable as
the state of a class instance is determined by its non-static
fields. Similar definitions can be found in [5, 24].

In our work, the mutability definition is modified to add

consideration of static fields in the analysis of class muta-
bility since static fields also pose important effect on the se-
curity analysis and refined to analyze field mutability since
fields modifiable outside the CUA are the only focus for the
purpose of security. Therefore, precisely, a class is mutable
iff any one of declared fields including static and non-static
ones is mutable and a field is mutable iff it can be modified
directly or indirectly outside the component.

4 Escape Analysis and Mutability Analysis

4.1 Escape Analysis

We compute escape information for a given compo-
nent by relying on points-to escape analysis and depen-
dence analysis. Specifically, points-to escape analysis is
used to compute information that directly-, reference-, and
partially-escapes. Dependence analysis is used to compute
information about variables that data- and control-escape.

First, we identify points in the CUA where information is
returned outside the CUA. We call such points return points.
There are four kinds of return points, specific to data that
escapes the component:

1. Return statements that return values. The returned
value (whether of reference or primitive type) directly
escapes.

2. Throw statements. The exception object thrown by the
statement directly escapes.

3. For references passed into the component by clients,
any point in the component code is a return point, be-
cause clients can inspect such references at any time.

4. Similarly, public fields (both static and non-static) of
both reference and primitive types can escape at any
point.

We compute escape information as a set of tuples of the
form (v1, t, v2), where

• v1 is the variable, field, or parameter that escapes the
component.

• t identifies the way in which v1 escapes. The possi-
ble values are direct, reference, partial, data, and
control, corresponding respectively to directly-escape,
reference-escape, partially-escape, data-escape, and
control-escape.

• v2 is a variable through which variable v1 escapes. For
example, tuple (v1, data, v2) specifies that v1 escapes
because it data-depends on v2. One or more other tu-
ples in the set will specify the way(s) in which v2 es-
capes. We leave the place-holder for v2 empty if v1

directly-escapes.



ComputeEscape()

Input: points-to graphs and dependence information for each point in the code of the CUA
Output: a set of tuples with escape information EscapeTuples
Steps:

Initialize the set of escape tuples: EscapeTuples = ∅
Populate EscapeTuples with tuples representing directly-escape information.
do

Invoke TransformDependence() to add dependence relationships
Invoke ComputeReferenceEscape() to add tuples describing reference-escape relationships
Invoke ComputePartialEscape() to add tuples describing partially-escape relationships
Invoke ComputeDataEscape() to add tuples describing data-escape relationships
Invoke ComputeControlEscape() to add tuples describing control-escape relationships

while (EscapeTuples changed)

ComputeReferenceEscape()

Input: sets EscapeTuples, Fields(v1), values(f)
Output: updated EscapeTuples
Steps:

for all (v1, t, v2) ∈ EscapeTuples
if (v1 is of reference type) ∧(t �= partial)

for all f ∈ Fields(v1)
for all v ∈ values(f)

add tuple (v, reference, v1) to EscapeTuples
end for

end for
end if

end for

ComputePartialEscape()

Input: sets EscapeTuples, ReachableFrom(v)
Output: updated EscapeTuples
Steps:

for all (v1, t, v2) ∈ EscapeTuples
if (v is of reference type)

for all v: v1 ∈ ReachableFrom(v)
if (t �= partial)

add tuple (v, partial, v1) to EscapeTuples
else add tuple (v, partial, v2) to EscapeTuples
end if

end for
end if

end for

Figure 3. Algorithms for computing escape information for the CUA, part 1

Figures 3 and 4 give our algorithms for computing es-
cape information for a component. The entry point in
the algorithms is function ComputeEscape() that returns a
set EscapeTuples of escape information for the CUA. This
function repeatedly attempts to add new tuples represent-

ing escape information to set EscapeTuples, until a fixed
point is reached, when set EscapeTuples does not change
anymore.



ComputeDataEscape()

Input: set EscapeTuples, function ComputeDataDependsOn(v1)
Output: updated EscapeTuples
Steps:

for all (v1, t, v2) ∈ EscapeTuples
if (v1 is of primitive type)

for all v ∈ ComputeDataDependsOn(v1)
add tuple (v, data, v1) to EscapeTuples

end for
end if

end for

ComputeControlEscape()

Input: set EscapeTuples, function ComputeControlDependsOn(v1)
Output: updated EscapeTuples
Steps:

for all (v1, t, v2) ∈ EscapeTuples
if (v1 is of primitive type)

for all v ∈ ComputeControlDependsOn(v1)
add tuple (v, control, v1) to EscapeTuples

end for
end if

end for

ComputeDataDependsOn(v)

Input: set DependenceSet
Output: set DataDependentOn for variable v in the CUA
Steps:

return {v2|(v, v2, v3) ∈ DependenceSet, v3 �= CD}
∪{v3|(v, v2, v3) ∈ DependenceSet, v3 �= empty, v3 �= CD}

ComputeControlDependsOn(v)

Input: set DependenceSet
Output: set ControlDependentOn for variable v in the CUA
Steps:

return {v2|(v, v2, v3) ∈ DependenceSet, v3 = CD}

Figure 4. Algorithms for computing escape information for the CUA, part 2

4.2 Mutability Analysis

In this section, we describe an improvement to the mu-
tability analysis of [26]. Our mutability analysis will com-
pute sets ImmutableClasses and MutableClasses for hold-
ing all immutable and mutable classes in the CUA it-
self and other components used (e.g., standard Java li-

braries), respectively. UnknownClasses is the set of all
classes in the CUA for which mutability information is
unknown. Set Methods(c) represents the set of all de-
clared public methods in a class c. Let Type(f) represent
the declared type of field f , and Modifiers(f) be the set
of declared modifiers of field f , including visibility (i.e.,



public, private, default and protected modi-
fiers), final, and static modifiers. For example, if
field f is declared as public, static, and final, then
Modifiers(f) = {public,static,final}.

We assume that function ModifiedFields returns the set
of fields in a class modified directly or indirectly by a given
public method in this class (e.g., a public method can call a
private method in which the field is modified). A conserva-
tive algorithm for building this function appears in [22].

Figure 5 contains an algorithm for determining mutabil-
ity of a given field. This algorithm relies on information
about mutability of other classes. Without sufficient class
mutability information, a field may remain unknown.

Let Classes denote the set of all non-abstract classes in
the CUA, function AllFields(c) return the set of all fields
in a given class c, function ImmuFields(c) return the set of
fields that have been classified immutable in a given class c.

Figure 6 contains an algorithm for determining mutabil-
ity of classes in the CUA. This algorithm repeatedly calls
the algorithm from Figure 5 to refine information about in-
dividual fields. Thus, the algorithms in Figures 5 and 6 are
interdependent and applied recursively until a fixed point
is reached and information about mutability of classes and
fields does not change. At this point, all classes that are
still not marked as mutable or immutable are conservatively
assumed to be mutable.

The algorithms in this section are largely based on those
in [26], with two important modifications. While in [26] a
field of a mutable type is automatically marked mutable, we
only mark such field mutable if it can escape the component
and can be modified externally or if public method(s) in the
CUA directly or indirectly modify this field. Therefore, our
approach increases the precision of mutability analysis. In
addition, instead of only considering non-static fields for
determining class mutability in [26], we take mutability of
static fields into account for class mutability since any mod-
ification of information in the CUA is considered important
for security reasons.

For example, refer to code in Figure 1. The approach
of [26] will mark field buffer3 mutable because it is
of mutable type StringBuffer, defined in the standard
Java libraries. However, this field is classified as immutable
in our approach since it can not be modified through the
declared public methods or other ways after initialization.

5 Security Analysis

Security policies require protecting the confidentiality
and integrity of security sensitive information. However,
integrity of mutable objects may be violated by attackers by
modifying the objects illegally. Confidentiality of escaped
objects may likewise be compromised by attackers able to
examine such objects from outside the component.

DetermineMutable(f)

Input: field f , sets MutableClasses, UnknownClasses,
EscapeTuples, Modifiers, Methods, values, Type, and functions
ModifiedFields for each method in the CUA.
Output: classification of mutability of f , one of “mutable”,
“immutable”, “unknown”
Steps:

if ∃m ∈ Methods(c) : f ∈ ModifiedFields(m)
return “mutable”

else if ∃(values(f), t, v2) ∈ EscapeTuples
if public ∈ Modifiers(f) ∧ final �∈ Modifiers(f)

return “mutable”
else if ∃(values(f), partial, v2)∧
Type(v2) ∈ MutableClasses

return “mutable”
else if ∃(values(f), t, v2), t ∈ {reference, direct}∧
Type(f) ∈ MutableClasses

return “mutable”
else if ∃(values(f), partial, v2)∧
Type(v2) ∈ UnknownClasses

return “unknown”
else if ∃(values(f), t, v2), t ∈ {reference, direct}∧
Type(f) ∈ UnknownClasses

return “unknown”
else return “immutable”
end if

else return “immutable”
end if

Figure 5. An algorithm to determine whether
a field is mutable or immutable

We have proposed approaches for statically computing
information about escapability and modifiability of objects
and variables inside of trusted components. To combine the
results of these analyses, Figure 7 presents an algorithm to
perform the static analysis for security. This algorithm de-
termines the level of protection of a given field in the CUA
against accesses from outside the CUA. Access to a field is
classified as safe if the value of the field does not escape
the CUA and the field cannot be modified from outside the
CUA, visible if the value of the field can escape the CUA
but cannot be modified outside the CUA, and modifiable if
the value of the field can be modified outside the CUA.

6 Conclusion and Future Work

This paper proposes a static component security analysis
technique that combines points-to, dependence, and muta-
bility analyses for detecting potential sensitive information
leaks across the component boundary to untrusted clients,
as well as determining the ways in which an untrusted client



DetermineClasses()

Input: set Classes, functions AllFields(c), ImmuFields(c),
DetermineMutable(f)
Output: set ImmutableClasses, MutableClasses
steps:

Initialize ImmutableClasses to contain all known
immutable classes from libraries used by CUA
Initialize MutableClasses to contain all known mutable
classes from libraries used by CUA
Initialize UnknownClasses = Classes
do

for all c ∈ UnknownClasses
for all f ∈ AllFields(c) ∧ f =“unknown”

result = DetermineMutable(f)
if result =“mutable”∧ c /∈ MutableClasses

add c to MutableClasses
UnknownClasses = UnknownClasses − {c}

else if result =“immutable”
add f to ImmuFields(c)

end if
end for
if all f ∈ AllFields(c) ∧ f ∈ ImmuFields(c)

add c to ImmutableClasses
UnknownClasses = UnknownClasses − {c}

end if
end for

while (UnknownClasses changed)
for all c ∈ UnknownClasses

add c to MutableClasses
end for

Figure 6. An algorithm to determine whether
classes are mutable or immutable.

DetermineSecurity(f)

Input: field f , sets EscapeTuples, values, and functions
ImmuFields(c) for each c ∈ Classes
Output: classification of field f as safe, visible, or
modifiable
Steps:

if f ∈ ImmuFields(c),
where c is the class containing f
if ∃(values(f), t, v2) ∈ EscapeTuples

return visible
else

return safe
end if

else
return modifiable

end if

Figure 7. An algorithm to determine whether
a field is safe or not

can modify the state of a trusted component. Furthermore,
we propose a taxonomy of information leaks based on rela-
tionship between fields of a component that represent sensi-
tive data and data that is returned to untrusted clients mak-
ing calls to methods of the component. While our static
technique and taxonomy can be used with any conservative
(safe) points-to, dependence, and mutability analysis, this
technique is sensitive to precision of these analyses.

We plan to provide the proof of algorithms and imple-
ment our technique as a tool with a user interface that al-
lows analysts to specify information in the component that
should be considered security-sensitive by the analysis. For
example, the analyst may specify that all or only a subset of
fields in the component are sensitive.

Once the tool is implemented, we plan to experiment
with a variety of Java components, to evaluate its useful-
ness and efficiency. We will initially concentrate on EJB
components, since in many cases they are developed for
environments where untrusted clients are granted access to
only a subset of functionality and information of a com-
ponent. The tool will be designed in a way that allows
plugging in different points-to, dependence, and mutability
analyses. Using different combinations of these analyses,
we will evaluate trade-offs between precision of underlying
analyses and the rate of false positives (e.g., information
leaks that do not present a problem in practice) reported by
the tool.
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