
The Performance Penalty of XML for Program Intermediate Representations

Paul Anderson
GrammaTech, Inc.
317 N. Aurora St.
Ithaca, NY 14850

paul@grammatech.com

Abstract

XML has been proposed as a file format for represent-
ing program intermediate forms such as abstract syntax
trees (ASTs), and dependence graphs. Although XML of-
fers many advantages over custom binary representations
of the same information, there is an associated performance
cost. This paper reports on the results of experiments aimed
at quantifying this cost. Two representations are studied:
the abstract syntax tree, and the system dependence graph
(SDG). The performance penalty for using XML is found
to be very significant for ASTs, and crippling for the SDG.
The tradeoff between the performance and flexibility is dis-
cussed.

1. Introduction

XML is a data format designed for describing tree-
structured documents. Recently there have been several
publications describing the use of XML as a data format
for persistently storing program representations such as
abstract-syntax trees (ASTs), control-flow graphs (CFGs),
and dependence graphs [1, 3, 9, 10, 11]. Although XML of-
fers great advantages including standards compliance and
interoperability, its use as a persistent representation for
forms such as abstract syntax trees and semantic graphs has
a cost: they are notoriously space and time inefficient com-
pared to custom binary representations.
This paper describes the results of a set of experiments

aimed at quantifying the expense of XML-based represen-
tations relative to custom binary representations. For an
XML-based representation to be worthwhile, the benefits
of XML must outweigh the costs. We discuss this tradeoff
and conclude that any such advantages depend strongly on
the details of the application.
The remainder of this paper is structured as follows. Sec-

tion 2 compares and contrasts XML formats with two differ-
ent custom binary formats. Section 3 describes the design of

an experiment aimed at measuring the relative performance
of the formats. Section 4 gives the results of the experi-
ment on a range of programs. Section 5 discusses whether
the benefits of using XML in this domain outweigh the per-
formance disadvantages. Finally, Section 6 describes some
related work, and Section 7 presents a summary of conclu-
sions.

2. File Formats

This section describes the details of the file formats. Sec-
tion 2.1 describes options for encoding program representa-
tions in XML. Section 2.2 describes alternative custom bi-
nary representations. Section 2.3 compares these.

2.1. XML formats

Primitives Any program representation will have to rep-
resent primitive values such as strings, numbers, and
booleans. In XML, strings and numbers can be easily rep-
resented by their image. However, XML does not have a
built-in boolean type, so the following are all possible ways
of representing true:

<booleanTrue/>
<boolean>True</boolean>
<True/>
1

For the purposes of brevity in the representation the en-
coding of 1 for true was used. In all such cases the con-
text allows this to be distinguished from the integer value
1. There was no need to have an explicit representation for
false as this is the default value of boolean-valued terms.

ASTs Abstract syntax trees lend themselves very natu-
rally to being described in an XML format. There can be
a one-to-one mapping between nodes in the AST and XML
elements. For example, a simple expression x+1 could be
represented by the XML term:



<expr>
<add>
<variable>x</variable>
<constant>1</constant>

</add>
</expr>

In any serious source-code analysis tool however, ASTs
are never so simple. For example, names are usually stored
in a symbol table associated with each scoped region, and
name references are then encoded as references to the entry
in the symbol table.
Furthermore, it is normal for attributes to be associated

with nodes in the abstract syntax tree. An attribute might
encode the storage class of a variable, or the type of an ex-
pression. Some of these attributes will refer to other nodes
in the tree.
It should be noted that the XML mechanism for spec-

ifying attributes associated with tree nodes is not suitable
for specifying attributes of the ASTs. This is because XML
does not permit attribute values to be anything other than
the primitive string type. In an AST the attributes are them-
selves often tree-structured terms.
For these reasons it is important to associate unique iden-

tifiers with AST nodes. If an AST node is referenced by
another, then that unique identifier is given as an XML at-
tribute.
The representation of ASTs chosen for this experiment

reflects this. The simple expression x+1 is represented as
follows. First the scope in which the variable is declared
contains an entry for the variable x. A slightly abbreviated
version of this is the following:

<cc:variable id="14">
<source-correspondence>x
</source-correspondence>

<type><node id="11"/></type>
<initializer><node id="7"/></initializer>
<storage-class>unspecified</storage-class>
<alignment>0</alignment>

</cc:variable>

The XML representation for the expression itself con-
sists of a node with the following structure:

<cc:iadd id="218">
<operands>
<cc:expr-variable id="219">
<variable><node id="14"/></variable>
<type><node id="11"/></type>

</cc:expr-variable>
<cc:expr-constant id="220">
<constant>1</constant>
<type><node id="11"/></type>

</cc:expr-constant>
</operands>

<type><node id="11"/></type>
</cc:iadd>

This defines a node of kind cc:iadd whose unique
identifier is 218. The one child encodes the list of operands.
A type attribute gives the type of the expression.

SDGs The second program representation chosen for the
experiment was the system dependence graph. In this rep-
resentation nodes represent program points such as expres-
sions, call-sites, parameters, and the like. There are typ-
ically two kinds of edge in a dependence graph: control
dependence and data dependence.
The CodeSurfer platform [6] was used to create the de-

pendence graph for this experiment. Before describing how
to represent this in XML, it is useful to discuss the informa-
tion content of the graph. CodeSurfer offers a wide range
of options for the generation of dependence graphs for a
program. A user can choose to omit certain phases such
as global-variable analysis or summary-edge calculation, or
can tune the pointer analysis along many axes. The settings
used for this experiment can be summarized as follows:

• Global-variable analysis was turned on, and the infor-
mation generated was retained. This means that at
each point in the program, the set of all variables used,
killed, or conditionally killed is available.

• Control-flow edges are retained in the final dependence
graph

• Both data-dependence and control-dependence edges
are computed.

• Both intraprocedural and interprocedural edges are
generated.

• Summary edges are computed [8].
• The Andersen [2] pointer analysis algorithm was used,
with some custom extensions to exclude nonsensical
points-to sets. This is a context- and flow-insensitive
algorithm. A single abstract location was used to rep-
resent all string constants.

• SSA form and π-nodes were not computed.
• The representation of the original abstract-syntax tree
was not retained. This choice was made so that the
results of this experiment would be independent of the
results of the experiment comparing the AST represen-
tations.

These settings yield a very large dependence graph for
some programs. For this experiment a decision was made to
err on the side of completeness, as the goal was to compare
representations of the same information content.

2



The actual settings that an end user might choose de-
pends on the application. An application that does not need
the full dependence edges will result in a much smaller de-
pendence graph.
To represent any directed graph in XML is simple. Each

node is assigned a unique id. Edges in the graph are repre-
sented as an attribute associated with a term that encodes the
target of the edge. The concrete XML representation cho-
sen for the experiment used a variant of this technique. In
this representation, the SDG is a collection of Program De-
pendence Graphs (PDGs), one for each subprogram. Each
PDG is assigned a unique integer identifier, and each node
in the PDG is assigned a unique integer within its PDG. In
the case where the edge is intraprocedural, the pdg attribute
is omitted.
As mentioned above, the SDG representation includes

information about abstract memory locations in the pro-
gram (ABS LOCs). Each variable gives rise to a location,
as does heap memory allocated through allocators such as
malloc. Individual fields of variables of structured types
also give rise to such locations. Each program point may
have up to four sets of these variables: used indicates those
that may have their value taken at the point; killed indicates
those whose value is changed at the point; cond-killed indi-
cates those whose value is conditionally killed (e.g., through
an indirect reference) at the point; and decl-used indicates
those whose names occur at that point.
In the XML representation chosen, each ABS LOC is

also given a unique integer identifier. A section of the XML
representation lists all of these, and references to them at
program points is done using the identifier.
The following is an abbreviated representation of a node

that represents an expression.

<pdg-vertex id="3" kind="expression">
<uses><abs-loc id="2"></uses>
<killed><abs-loc id="2"></killed>
<cfg-targets>
<edge target="7"/>

</cfg-targets>
<inter-targets>
<edge target="77" pdg="22" kind="data">

</inter-targets>
</pdg-vertex>

2.2. Custom Binary Formats

One alternative to using an XML format is to use a cus-
tom format. Binary formats are particularly attractive from
a performance point of view because they can be read in
from disk more quickly than textual formats. Two tech-
niques are common:

1. When the representation is first constructed, it is writ-
ten into a table in memory. This is then written to disk

in large chunks using the write system call. Recov-
ering the representation involves positioning a pointer
into the file using seek, and invoking the read sys-
tem call. If the original representation involved point-
ers, then these are typically adjusted after the chunk
has been recovered.

2. The representation is constructed using a custom heap
memory allocator that maps blocks of memory directly
to a file. Recovery of the representation is as simple
as mapping the file back into memory. The operat-
ing system takes care of mapping specific blocks into
memory whenever they are accessed. If the represen-
tation maintains pointers, then the file must be mapped
back into memory at the same address it was originally
created with.

This section describes the two custom file formats used
in this study. These are both used in commercial products,
and have both been highly engineered for speed and effi-
ciency. As such they are likely to represent close to the best
performance that could be hoped for a custom binary for-
mat.

CIL The CIL format is a format for storing ASTs for C
and C++ programs. It is the native format used by the
C/C++ front end published by the Edison Design Group
(EDG) [5]. This front end is widely used by many com-
mercial compilers and software engineering tools, including
CodeSurfer.
Each compilation gives rise to a single CIL file. The

file is arranged as a set of scopes. An outer scope is used
to represent the scope of the entire file. Each procedure
has its own scope contained entirely within the file scope.
The library for recovering the AST represented by the CIL
file allows a user to recover the scope for each procedure
independently.
The CIL format allows individual nodes to be addressed

externally. A node address consists of a triple: the first item
is the name of the procedure in whose scope the item re-
sides. The second item is a byte offset into the file. The
third item encodes information about the kind of the node,
and allows the reader to know how to interpret the bytes
found at that offset.
To recover the AST for a file, the reader uses read to

input large chunks of the file at once, then traverses the rep-
resentation translating external pointers to native pointers as
necessary.

SDG The SDG format is a format for storing a whole-
program system dependence graph to a file. It is the format
used by CodeSurfer.
When the SDG is built, it is created in memory using

a custom heap memory allocator. This has functionality

3



roughly equivalent to malloc, except that the memory al-
located is mapped directly to a file. Recovering the SDG
involves a simple mapping of the file back into memory us-
ing the mmap system call. This must be done to the same
address with which it was originally mapped. Once the file
has been mapped in, pointers to elements within the file
are valid. A reference to a particular element can thus be
achieved through a native pointer.

2.3. Comparison

The XML and custom binary representations can be
compared according to the following aspects:

File Size XML representations usually consume much
more space than binary representations with the same in-
formation content. Much of the overhead of an XML rep-
resentation goes to the element tags. Binary representations
do not need such tags, as the naming of elements is implicit.
However as discussed below, this does not always hold.
There are two aspects of an XML representation that give

it an advantage over binary representations. First, default
values can be used to eliminate the need for some elements
to be present. As mentioned earlier, if an element is of
boolean type and it is not present in the XML representa-
tion, then it can be assumed to be false. This confers only
modest savings however, unless the structure being repre-
sented is very uniform.
Second, XML is better suited to the efficient representa-

tion of elements of widely varying sizes than binary encod-
ings. Binary encodings often require that a buffer of a fixed
size be allocated for such elements. In the CIL representa-
tion, names are stored in a buffer of a fixed size. Storing
a variable named x will use only two of these bytes, and
the remainder are wasted. XML does not have this same
wastage problem.
There are more opportunities for compacting data with

binary representations. For example, it is common for
boolean-valued elements to be multiplexed into a single
word. Both the SDG and CIL representations use this tech-
nique.
Similarly, the SDG file format wastes some space be-

cause the memory allocator does not guarantee 100% uti-
lization of allocated memory.

Memory Consumption The cost in memory to read a
term into memory and reconstruct it would be expected to
be high for XML representations because XML parsers typ-
ically must construct a generic in-memory representation of
each term before it can be converted into an internal format.
Binary representations do not suffer from this disadvantage.

Speed The time required to read in an XML term would
be expected to be much higher than for binary representa-
tions. The tag must first be parsed, then checked for valid-
ity, then the data within the tag must be recursively parsed
as well. Once the parsing is done, a conversion must be
done to create the internal representation.
XML is particularly ill-suited to methods for reading in

subsets of the terms. An XML file is required to contain
only a single term. If a program needs to access any sub-
term, then the entire top level term must be read in.

Interoperability The greatest advantage of XML is its in-
teroperability with other tools. Custom binary representa-
tions on the other hand are weak in this area. In order to
achieve a similar interoperability, the entire file format must
be published, or an API for accessing it must be made avail-
able.

3. Experimental Design

The goal of the experiment was to quantify the difference
in performance between XML formats and the two custom
binary formats CIL and SDG.
CodeSurfer was used as the infrastructure for these ex-

periments. For each of the binary formats, a script was writ-
ten to write out the information in the file in XML format.
Care was taken to ensure that the resulting XML file had the
same information content as the corresponding binary file.
To measure the performance of the XML format, an off-

the-shelf DOM parser from the Apache Xerces project was
used [15]. DOM parsers read in the entire XML term and
create an in-memory representation of that term [17]. This
was instrumented so that statistics about its performance
could be collected.
To measure the performance of the binary formats two

new programs were written, one for CIL and one for SDG.
Each of these was designed to read in the entire file and
then conduct a traversal over all elements that were read in.
This traversal was considered necessary to ensure that all of
the elements were fully resolved and that the data had been
completely converted into the internal format. In the case
of the SDG format, the traversal ensured that all pages had
been mapped into memory. This allows the performance of
the reader to be fairly compared to the performance of the
DOM parser.
The following metrics were collected for each sample:

Nodecount the number of distinct elements in the repre-
sentation.

Size the size of the file in bytes.

4



Used the number of bytes in use in the file. This metric
is only relevant for the SDG file format, as the XML
format has 100% utilization.

Utime the time spent in user code reading and reconstruct-
ing the representation.

Stime the time spent in system code during the read pro-
cess.

Memory the high water mark of memory consumption af-
ter the read was completed.

The experiment was designed to be run for a number of
different benchmark projects. CIL data was collected for
each file in each project, and SDG data was collected for
each project.
These experiments were run on a 650MHz notebook PC

with 384Mb of memory running a standard distribution of
Linux with version 2.4.20 of the kernel.

4. Experimental Results

The experiments were run on the benchmarks shown in
Table 1. In this table, #LOC indicates the number of lines of
code in the project,and Files indicates the number of source
files (not counting header files).

Program #LOC Files Language
tiny 3 1 C
compress 1,980 2 C
flex 13,318 13 C
hello++ 8 1 C++
eLib 941 10 C++

Table 1. Benchmarks used in the experiments.

tiny is the smallest possible valid C program, consist-
ing of a main with an empty body. This serves as a
baseline. hello++ is a very small C++ program that uses
the iostream package to write "Hello world" to the
console.

4.1. XML versus CIL

Table 2 shows the results of running the experiment com-
paring the performance of an XML AST reader with a CIL
reader for a small set of benchmarks.
It should first be noted that although the file tiny.c con-

tains only three lines, it gives rise to 1,821 AST nodes. The
majority of these nodes come not from the program text it-
self, but from definitions that are predefined by the front
end. For example, the front end creates ASTs for predefined

types and predefined macros. This is common practice, as
all modern languages have such predefined names.
Table 3 above shows the average of the collected metrics.
The first notable result is that the size of the XML repre-

sentation on disk is consistently better: the size of the XML
file is on average 60% of the size of the CIL file. This is a
result of the fact that XML is better at representing variable-
sized structures compactly than the CIL representation. In
this case, the bulk of this space is taken up by strings rep-
resenting program variables. For C++ programs, the CIL
representation is worse. This is because of name mangling.
The AST stores names of items such as classes and methods
in a mangled form. As a result proportionally more of the
storage goes toward representing names, and so the penalty
for not having a compact representation for names is greater.
The difference in time and space to re-import the rep-

resentations is very significant however. For C programs,
it took on average of twenty-three times longer to read an
XML AST as it did to read the same AST in CIL format.
On average, importing the XML representation consumed
five times as much memory.
The performance penalty for using XML to represent

ASTs is significant, but it is certainly not unreasonable for
all applications. Several projects have using XML for ASTs
with success for many years [14]. In many cases, the time
and space cost is dwarfed by much more expensive subse-
quent phases. In others, the analysis is very lightweight, so
the cost is negligible. These results simply represent a data
point that will help an engineer make a rational decision
about whether to use XML.

4.2. XML versus SDG

Figure 4 shows the results of running the experiment
comparing the performance of an XML dependence graph
reader with the SDG reader.
It should be noted that for tiny, the size of the SDG files

is approximately two megabytes, and that only one twenti-
eth of this is actually used. This is because the SDG for-
mat is designed to be fast for much larger projects. A large
cache is allocated when the dependence graph is first cre-
ated. This is subsequently freed, but the allocator does not
subsequently reduce the size of the file, so it remains at its
high water mark. Larger projects can consume this freed
space however, so they may have better utilization.
The amount of memory needed to read in the XML rep-

resentation of the SDG is enormous.
Drawing conclusions about the scalability of the SDG

representation from the SDG raw metrics for these bench-
marks is not especially useful. As discussed above, the high
startup cost of the SDG representation completely domi-
nates most of these benchmarks. It is much more instructive
to look at the marginal costs of the representation. That is,

5



file sizes utime stime memory
File #LOC #nodes XML CIL XML CIL XML CIL XML CIL
Project tiny
tiny.c 3 1,821 71,891 45,902 0.06 0.01 0 0 624,720 65,640
Project compress
harness.c 254 9,615 383,161 1,645,286 0.25 0.01 0.02 0.02 3,221,312 1,705,232
compress95.c 1,169 13,738 473,547 391,218 0.36 0.01 0.02 0 4,191,072 394,656
Project flex
misc.c 773 17,875 632,316 462,702 0.47 0 0.02 0.01 5,371,888 526,432
skel.c 1,232 26,425 889,111 725,294 0.7 0 0.04 0.02 7,955,328 787,168
main.c 988 24,451 820,740 607,982 0.63 0.02 0.04 0 7,350,608 656,240
ccl.c 149 12,683 477,445 369,206 0.33 0 0.01 0.02 3,843,744 394,016
gen.c 1,461 24,992 831,253 657,462 0.72 0.01 0.04 0.02 7,543,792 722,336
parse.c 1,706 18,866 658,569 670,562 0.51 0.01 0.01 0 5,708,528 722,512
nfa.c 709 16,958 601,372 449,970 0.46 0.01 0.03 0.01 5,103,200 460,144
tblcmp.c 888 16,884 590,354 456,570 0.43 0.02 0.03 0 5,108,928 459,856
sym.c 262 14,036 520,068 391,982 0.38 0.01 0.01 0 4,242,352 394,240
dfa.c 1,085 20,260 688,495 520,250 0.56 0.02 0.03 0 6,098,992 590,880
yylex.c 199 12,937 486,225 377,326 0.33 0.01 0.03 0 3,907,888 393,904
ecs.c 225 13,100 487,662 373,822 0.34 0 0.02 0 3,976,848 394,016
scan.c 2,723 21,931 765,851 1,530,406 0.65 0.02 0.02 0.01 6,692,768 1,575,152
Project hello++
hello.cpp 8 43,179 1,595,183 3,870,998 1.21 0.04 0.08 0.03 12,882,832 3,948,960
Project eLib
journal.cpp 9 28,251 1,021,501 2,133,710 0.77 0.02 0.01 0.01 8,388,240 2,171,584
user.cpp 73 49,354 1,803,982 4,344,894 1.39 0.04 0.04 0.04 14,749,472 4,308,880
common.cpp 51 28,159 1,018,915 2,135,966 0.76 0.03 0.03 0.01 8,388,736 2,170,608
loan.cpp 30 46,439 1,700,937 4,239,474 1.25 0.04 0.04 0.03 13,878,096 4,244,912
main.cpp 240 59,142 2,135,545 5,267,270 1.62 0.06 0.05 0.04 17,625,152 5,294,592
document.cpp 95 47,744 1,745,437 4,268,646 1.28 0.04 0.07 0.05 14,274,704 4,310,656
technical report.cpp 26 45,274 1,664,828 4,096,438 1.23 0.04 0.07 0.03 13,552,592 4,113,664
book.cpp 14 27,391 994,554 1,995,762 0.7 0.01 0.06 0.02 8,189,216 2,039,328
library.cpp 189 40,982 1,473,435 3,214,402 1.11 0.03 0.06 0.03 12,463,888 3,158,864
internal user.cpp 14 28,339 1,024,407 2,137,110 0.71 0.01 0.1 0.03 8,460,688 2,171,648

Table 2. XML vs CIL

Metric XML CIL Ratio
File size/node 35.93 58.44 0.61
Time(µs)/node 28.26 1.22 23.08
Memory/node 302.17 59.9 5.04

Table 3. Average metrics for the XML and CIL representations of the AST.

what is the incremental cost of the representation after the
initial startup cost has been paid.

This comparison in turn would have been more worth-
while on larger benchmarks, in which the effect of the large
startup cost would be amortized. However, the exceedingly
high cost of reading in an XML representation meant that
this experiment could only be run on very small programs.
As can be seen from the table, reading in the XML repre-
sentation of a 13,000 line program consumed over 229 mil-
lion bytes of memory. Unfortunately the same experiment
on ctags (a project of approximately 16,000 lines) failed —
the process simply ran out of memory after consuming over
300 Mb. The SDG file format however used only about
23 Mb.

Table 5 shows the size of the SDG file and the amount
of memory used in it for a set of larger programs. One of
the striking aspects is the non-linear cost of representing
the system dependence graph. The high cost of creating

a dependence graph for sendmail stems from the fact that
it is a highly-complicated program with a large number of
global variables and many indirect function calls.

It should be pointed out that less conservative and more
precise build settings for CodeSurfer would have resulted
in a smaller dependence graph. It is unlikely however that
the nature of the smaller graph would be so significantly
different as to make the XML format competitive with the
SDG format.

Again, these results do not mean that the use of XML
for all graphs is a bad idea. The nature of interprocedu-
ral dependence graphs is that they are fine-grained, highly-
connected and large. It appears to be the combination of
these attributes that makes them unsuited to an XML repre-
sentation.

6



Size utime stime memory
Benchmark #nodes XML SDG SDG used XML SDG XML SDG XML SDG
tiny 152 4,718 2,162,688 101,408 0.01 0 0 0 85,184 2,162,688
compress 35,085 1,100,910 2,686,976 566,064 1.37 0 0.06 0 13,955,520 2,686,976
flex 546,749 18,285,774 8,126,464 6,121,936 21.73 0 1.24 0 229,629,216 8,126,464
hello++ 1,224 40,240 2,195,456 128,912 0.05 0 0 0 551,552 2,195,456
eLib 157,454 5,035,057 5,505,024 3,369,152 5.39 0 0.34 0.01 61,667,168 5,505,024

Table 4. XML vs SDG

Benchmark #LOC SDG size SDG used
ctags 16,021 23,986,176 17,812,880
espresso 22,050 22,478,848 17,127,296
sendmail-8.7.5 40,943 197,328,896 175,655,352

Table 5. The size of the SDG for some other programs.

5. Discussion

It is clear from the results shown above that using an
XML representation incurs an enormous and potentially
crippling performance penalty relative to a custom binary
representation.
It should be noted that these are all very small pro-

grams. If the use of XML to represent ASTs and depen-
dence graphs is so inefficient, even for very small programs,
why would a designer of an industrial-strength source code
analysis system decide to use it?

5.1. Interoperability

The best answer is that XML enables interoperability
with other tools. It might thus be possible for a reverse-
engineering tool to be tightly integrated with a refactoring
editor from another vendor. However, this noble and ambi-
tious goal can only be easily achieved if the two tools agree
to use exactly the same schema.
In practice, ASTs from different tools are quite differ-

ent, and to date there is no widely-recognized standard on
schemas. However, there have recently been efforts aimed
at addressing this. Al-Ekram and Kontogiannis have re-
cently proposed a language-neutral XML format for ASTs
and PDGs [1].
There is also an ongoing industrial effort to standardize

on a metamodel for abstract syntax trees through the Object
Management Group (OMG), and even to define a “univer-
sal” AST for several languages [12]. This effort is named
GASTM (Generic Abstract Syntax Tree Metamodel), and
is part of the ADM (Architecture Drive Modernization)
project [13]. The RFP for ASTM was formally issued in
February 2005, and the deadline for proposals is May 30th

2005. Whether researchers and vendors flock to this stan-
dard remains to be seen.
For dependence graphs, there is even less agreement on

schemas. Standards for graph file formats such as GXL
exist and are highly useful [7]. However, these are meta-
models, and there are few widely-recognized standards for
schemas for particular graphs.
If different schemas are in use, then it is certainly pos-

sible to write tree-to-tree converters, and technologies such
as XSLT make it relatively easy to write simple convert-
ers [19]. However, if the schemas are quite different, writ-
ing a converter can be a highly time-consuming and dif-
ficult task. Simple languages such as XSLT are attractive
for small transformations, but they are not designed to be
general purpose programming languages, so even simple
tasks such as iteration are difficult to implement. They lack
many of the modern features of programming languages,
such as strong static typing, that are considered essential in
any good modern language.
Even when using a DOM library in a high-level language

such as C++ or Java, the typing model is very weak, thus
making programming difficult and error-prone.
The best argument for XML interoperability is exempli-

fied by the approach taken by GXL [7]. As its name implies,
GXL was designed for exchanging graphs between tools —
a tool with a GXL writer can exchange a graph with another
tool with a GXL reader, regardless of any local formats that
each may use. GXL is an XML sublanguage, but unlike the
formats described in [1, 10], it does not prescribe schemas
for specific graphs. As such, the designer of tool can choose
the granularity and quantity of information that is converted
to GXL. GXL works best when used to exchange relatively
small chunks of data between tools for very specific pur-
poses.
As a result, GXL has been very successful. The results

7



presented here should serve as a warning that a designer
should avoid using GXL to exchange large, fine-grained,
highly-connected graphs all at once.

5.2. Binary XML

Some of the performance disadvantages of XML may be
overcome by a binary XML format. There are several such
formats available, but there is no official standard yet. A
binary standard is being developed, but it is unlikely to be
finalized before 2007 [18]. Until a binary format is stan-
dardized and widely implemented, the interoperability ar-
gument does not apply.

5.3. Alternative DOM parsers

It is possible that Xerces-C++, the DOM parser cho-
sen for this experiment displays pathological behavior when
used to represent highly-connected graphs, such as the sys-
tem dependence graph, and that an alternative DOM parser
would have much better performance characteristics. It
seems unlikely that Xerces is particularly badly imple-
mented, as it is very widely used in industry, and many
open-source projects.
It is certain that a custom DOM parser could be written

that would be able to read the SDG format more efficiently,
but this would severely undermine one of the reasons for
using XML at all — the availability of generic tools.

6. Related Work

Several authors have proposed representing intermediate
forms for language processors in XML.
The idea was first discussed in the literature by Badros

in 2000 [3], who introduced JavaML for representing ASTs
for Java programs. Other systems include XMLizer [11],
srcML [14], CppML [9], and O2XML [16].
Maruyama and Yamamoto describe XSDML — their

system for generating and analyzing an XML representa-
tion of ASTs and PDGs [10]. Some measurements of the
performance of their system were reported in that paper,
and they acknowledge that the time taken to generate the
XML is unacceptable. They propose that existing compiler
technologies be extended to generate files in XSDML, but
do not address the much more serious performance penalty
— the subsequent processing of the files.
Applications of these systems vary. The original JavaML

system was used to produce source code documentation and
simple metrics extraction. srcML has been used by Collard
et al to build a system for extracting simple facts from C++
programs [4]. Wiharto and Stanski propose using O2XML
for retargeting applications to different languages.

Al-Ekram and Kontogiannis argue that their framework
is suitable for a wide variety of software analysis tasks [1].
A language-independent layer named FactML is proposed
to unify XML representations for particular languages, such
as JavaML and PascalML. Additional XML sub-languages
are defined for representing control-flow graphs, the call
graph, and the dependence graph. They propose using XML
transformers to translate between these layers. Their paper
presents some rudimentary statistics on the time taken to
perform some key tasks, but no information is presented on
how much memory the transformations require. Although
they show that slicing of a single PDG can be made to work
using this system, the evidence presented herein suggests
that their framework would have trouble scaling to large
programs with a fully-featured interprocedural dependence
graph.

7. Conclusions

An experiment to compare the performance of XML rep-
resentations of ASTs and dependence graphs against cus-
tom binary representations was described. The experiment
was run against a number of small benchmarks. It was
found that the use of XML representations carries a large
performance penalty for ASTs: on average, reading the
AST in XML format requires approximately five times as
much space and twenty-three times as much time. In con-
trast, the XML file size is about 60% of the size of the cus-
tom binary representation.
The performance penalty of using XML to represent the

program’s system dependence graph is crippling. For the
cases where it was possible to read in the XML represen-
tation using the DOM parser, the amount of memory con-
sumed was enormous. For slightly larger benchmarks, the
experiment failed because the process exhausted the mem-
ory available on the host machine. As the largest bench-
mark to succeed was only 13,318 lines of code, this argues
that the use of XML for this kind of graph is infeasible for
all but the smallest programs. It was not possible to reli-
ably compare times for these experiments as the time taken
to read the custom binary representation was consistently
below the measurement threshold.
The cost of XML was weighed against its potential ben-

efits. The best argument for using XML is still its interoper-
ability, especially for exchanging relatively small amounts
of information between tools for specific purposes.

8. Acknowledgements

The author wishes to thank Chi-Hua Chen for her help
understanding the details of the CIL file format, and for out-
standing technical support.

8



References

[1] R. Al-Ekram and K. Kontogiannis. An XML-based Frame-
work for Language Neutral Program Representation and
Generic Analysis. In Proceedings of the Conference on Soft-
ware Maintenance and Re-engineering (CSMR’05), pages
42–51. IEEE CS Press, 2005.

[2] L. O. Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, DIKU, Univ. of
Copenhagen, May 1994. (DIKU report 94/19).

[3] G. J. Badros. JavaML: A Markup Language for Java Source
Code. In Proceedings of the Ninth International World Wide
Web Conference, pages 159–177, May 2000.

[4] M. Collard, H. Kagdi, and J. Maletic. An XML-Based
Lightweight C++ Fact Extractor. In Proceedings of the
IEEE International Workshop on Program Comprehension
(IWPC03), pages 134–143, Portland, OR, May 2003.

[5] Edison Design Group. Compiler Front Ends for the OEM
Market. http://www.edg.com/.

[6] GrammaTech, Inc. CodeSurfer.
http://www.grammatech.com.

[7] R. C. Holt and A. Winter. A Short Introduction to the GXL
Software Exchange Format. In WCRE 2000: Working Con-
ference on Reverse Engineering, pages 162–171, Brisbane,
Australia, Nov 6 2000.

[8] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. Trans. on Prog. Lang. and Syst.,
12(1):26–60, January 1990.

[9] E. Mamas and K. Kontogiannis. Towards Portable Source
Code Representations Using XML. In Proceedings of IEEE
Working Conference on Reverse Engineering (WCRE00),
pages 172–182, Brisbane, Australia, November 2000.

[10] K. Maruyama and S. Yamamoto. A case tool platform us-
ing an xml representation of java source code. In Source
Code Analysis and Manipulation (SCAM’04), pages 158–
167, Chicago, IL, September 2004.

[11] G. McArthur, J. Mylopoulos, and S. Ng. An Extensible Tool
for Source Code Representation Using XML. InNinth Work-
ing Conference on Reverse Engineering (WCRE’02), pages
199–210, Richmond, VA, October 2002.

[12] OMG. Abstract Syntax Tree Metamodel ASTM (ASTM)
final RFP. http://www.omg.org/cgi-bin/doc?admtf/2005-02-
02.

[13] OMG. Architecture-Driven Modernization (ADM).
http://www.omg.org/adm.

[14] Software Development Laboratory. srcml.
http://www.sdml.info/projects/srcml.

[15] The Apache XML Project. Xerces C++ Parser.
http://xml.apache.org/xerces-c/.

[16] M. Wiharto and P. Stanski. An Architecture for Retargeting
Application Logic to Multiple Component Types inMultiple
Languages. In Fifth Australasian Workshop on Software and
System Architectures, April 2004.

[17] World Wide Web Consortium (W3C). Document Object
Model (DOM). http://www.w3.org/DOM/.

[18] World Wide Web Consortium (W3C). XML Binary
Characterization. http://www.w3.org/TR/2005/NOTE-xbc-
characterization-20050331.

[19] WorldWideWeb Consortium (W3C). XSL Transformations
(XSLT), Version 1.0. http://www.w3.org/TR/xslt.

9


