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Abstract

Most software for embedded systems, including digital
signal processing systems, is coded in assembly language.
For both understanding the software and for reverse com-
piling it to a higher level language, we need to construct
a control flow graph (CFG). However CFG construction is
complicated by architectural features which include VLIW
parallelism, predicated instructions and branches with de-
lay slots.

We describe an efficient algorithm for the construction of
a CFG, where the parallelism has been eliminated, instruc-
tions are reordered and delay slots have been eliminated.
The algorithm’s effectiveness has been demonstrated by its
use in a reverse compiler for the Texas Instruments C60 se-
ries of digital signal processors.

1 Introduction

Most software for embedded systems processors, espe-
cially digital signals processors, has been coded in assem-
bly language. Such programs are difficult to understand and
hard to maintain. Furthermore, they are not easily ported to
a new processor. If the software can be reverse compiled to
a higher level language such as C, it becomes much easier
to understand and to port.

An important first step in reverse compilation is to con-
struct a control flow graph (CFG) for each subroutine. How-
ever, the task is made complicated if the processor has in-
structions with delay slots, and it is made especially com-
plicated if the delay slots of branch instructions can contain
other branch instructions.

We show how to transform the assembly language to a
form which has no delay slots. From this form, we can
easily generate the CFG.
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2 Computer Architectures with Delay Slots

Most modern general purpose computer architectures
maintain an illusion that the instructions in an assembly
language program are executed in the order in which they
are written. However it is an illusion because (a) different
kinds of instructions may require different numbers of clock
cycles to complete, (b) instructions may have to wait for
operands to become ready, and (c) instructions may have to
wait for an appropriate functional unit to become available.
Modern architectures therefore have complicated logic to
look ahead in the instruction stream to find instructions
which can be executed out of order to keep all the func-
tional units busy while preserving the correct semantics of
the program.

In contrast, some other architectures, especially those for
embedded systems and DSP applications, do not attempt to
maintain such a strong illusion. To reduce the complexity
of the processor (and implicitly, therefore, to reduce power
consumption), instructions may not always produce their re-
sults in the order in which they are fetched. For example, the
Texas Instruments C6000 series [10] requires a single cycle
to complete a simple fixed-point instruction such as addi-
tion (the ADD opcode). That means that if the instruction
begins its execution in cycle ¢, it will read its operands at the
beginning of the cycle and will store the answer in the result
register at the end of the same cycle. However, the multiply
instruction (opcode MPY) cannot complete its execution in
a single cycle; it requires two cycles. That is, if the MPY in-
struction begins execution in cycle ¢ then the two operands
are fetched at the beginning of cycle ¢ but the result register
is not updated with the product of the multiplication until
the end of cycle i + 1. Cycle i + 1 is known as the delay slot
for that MPY instruction. Stated differently, the MPY in-
struction has one delay slot. The programmer can code an-
other instruction to be executed in that delay slot as long the
instruction does not need the result of the MPY instruction
and does not need the same functional unit. Sometimes the
logic of the program will be such that nothing further can be



usefully computed until the result of the MPY is available,
in which case the programmer should place a no-operation
instruction (opcode NOP) in the delay slot.

On the Texas Instruments C6000 series, many fixed-
point instructions, such as the ADD instruction, do not have
any delay slots. Multiply has one delay slot; the various
instructions to load from memory have four delay slots —
i.e. if the load instruction begins execution in cycle ¢ then
the value obtained from memory is not stored into the re-
sult register until the end of cycle 7 + 4. Finally, the various
branching instructions have five delay slots. The effect is
that if a branch instruction is executed in cycle ¢ then the
program counter will keep following its previously deter-
mined sequence for five more cycles. The program counter
will not be updated to refer to the destination of the branch
until the end of cycle ¢ + 5. (Floating-point instructions
on the TT C6000 series have various numbers of associated
delay slots which range between zero and nine.)

The association of delay slots with branch instructions
makes assembly code particularly difficult to read by hu-
mans. A human must remember that the control transfer
does not take place until several instructions later. The prob-
lem is compounded further by another complication — the
delay slots can themselves contain branch instructions.

3 Choices for Removing Delay Slots

In the general case, each instruction / would have an
associated number of execution cycles Ix. As we have
demonstrated above, it can be hard for a human reader to
make sense of the code. Perhaps, more importantly, the de-
lay slots present a major complication to tools which at-
tempt to disassemble the code or to construct a control flow
graph.

The assembler code, as written, shows the instructions
in the order in which they are dispatched. However, for the
purposes of understanding control flow, we need to see the
instructions in the order in which they are completed. It
would be desirable, therefore, to remove the effect of delay
slots from the code. We see two plausible alternatives for
achieving that goal.

1. Transform the code sequence to an equivalent version
where all delay slots are occupied by no-op instruc-
tions. For example, a branch instruction which takes
six cycles and therefore has five delay slots should ap-
pear in the transformed program followed by five no-
op instructions.

2. Transform the code sequence to a version for an ideal-
ized computer which has the same instruction set, but
where all instructions complete execution in a single
cycle.

‘We discuss each one in turn.

3.1 Filling Delay Slots with No-Ops

This approach is appealing because the result should be a
program which is still executable on the same platform, but
where the code is human readable and also easy for tools
to process. Unfortunately, it is impossible to complete the
transformation without imposing some arbitrary instruction
orderings — orderings which are not implied in the origi-
nal program. For example, consider the following group of
three instructions:

instl ;  has two delay slots
inst2 ;  has one delay slots
inst3 ;  has zero delay slots

In this example, all three instructions complete their execu-
tion at the same time (as would be possible if they employ
different functional units on the processor). If we present
the transformed code as follows:

instl ; has two delay slots
NOP

NOP

inst2 ;  has one delay slots
NOP

inst3 ;  has zero delay slots

then we have imposed an ordering which was not implied
in the original code.

3.2 An Ideal Computer with No Delay Slots

Our alternative approach, and the approach adopted in
the remainder of this paper, is to transform the code to a
version where all instructions are assumed to complete their
execution in one cycle and where several instructions may
be executed in parallel. For example, the group of three
instructions shown earlier may be transformed to the fol-
lowing form:

instl || inst2 || inst3

The new code sequence accurately shows all three in-
structions as completing simultaneously. However, the code
can be misleading or, perhaps, wrong because it also shows
the three instructions fetching their operands in the same
cycle, whereas the original code sequence showed them be-
ing fetched in different cycles. It is easy to construct an
example where the timing of an operand fetch is signifi-
cant. Suppose the original program is as follows where we
assume that multiply (MPY) requires two delay slots and
loading a constant (MVK) has no delay slots:

MPY R2, R3, R1 ; Rl= R2*R3
MVK 20, R2 ;i R2 = 20
NOP ;  no delay slots



push <entry point,@> onto Stack;
while Stack is not empty do
<PC,State> = popped value from Stack;
I = instr[PC];
succ = PC+1;
if instr[PC] is a branch then
add <PC,delay, target> to State
// where target = branch destination,
// delay = # delay slots for a branch

£i;
nextSt = 0;
origin = dest = -1;

foreach <i,c,d> € State do
if (c = 0) then
origin = i; dest = d;
if instr[i] is unconditional then

succ = -1
fi
else
add <i,c-1,d> to nextSt

fi

od

if dest>0 and <dest,nextSt> is new then
add <origin, PC,dest> to CFG;
push <dest,nextSt> onto Stack

£i;

if succ>0 and <succ,nextSt> is new then
add <-1,PC,succ> to CFG;
push <succ,nextSt> onto Stack

fi

od

Figure 1. CFG Edge Construction Algorithm

If ordered according to the order in which the instructions
complete their execution (and eliminating the NOP), we
would have

MVK 20, R2
MPY R2, R3, R1

and that is clearly incorrect because R2 is changed before
the MPY instruction has read its value. To preserve correct-
ness, we must insert instructions to make copies of operands
when needed. A correct solution would be

MV  R2, T1
MVK 20, R2
MPY T1, R3, R1

where the idealized architecture is extended with additional
temporary registers to hold operand copies.

4 Constructing the CFG

The CFG construction algorithm has four phases:

1. edge recognition,
2. basic block construction,
3. delay resolution, and

4. data conflict resolution.

Each phase is explained in detail below.
4.1 Edge Recognition

Initially, we create a CFG where each instruction cor-
responds to a node in the graph. Subsequently, groups of
nodes for consecutive statements are coalesced into basic
blocks, resulting in the usual form for a CFG.

The analysis performed by the edge recognition algo-
rithm is equivalent to traversing all paths through the pro-
gram. Whenever the traversal reaches a program point
where a conditional branch is ready to complete execution,
the path forks. The algorithm continues following one path
while stacking the other path for analysis later. While fol-
lowing a path, the algorithm keeps track of program state
which, for the purposes of our analysis, consists of infor-
mation about pending delayed branches (i.e. at the current
point being analyzed in the program they have been initiated
but have not yet completed). The algorithm must remember
which program states have been analyzed at which program
point so that program loops do not cause the algorithm to
repeat work and to never terminate. The result of the algo-
rithm is a set of CFG edges.

For the purposes of describing the edge construction al-
gorithm, we consider the program to be a vector of instruc-
tions which is indexed by a range of consecutive integers
starting at 0. In particular, instr[i] denotes the instruction
at position . We represent each CFG edge by a triple
<1, s, d > where

1 1is either the position of the branch instruction in the
program which causes the control transfer or is -1 if
the control transfer is the result of normal sequential
execution;

s is the source of the edge and is the position of the last
instruction to be executed before the control transfer
occurs;

d is the destination of the edge and is the position of the
next instruction to be executed after the control trans-
fer.

We represent the delayed branch state at a point P as a
set of triples < 4, ¢, d > where

1 is the position of a pending branch instruction (a
branch which has been fetched but has not yet com-
pleted execution);



0 LabA: instl

1 [cond] B LabB // 3 delay slots
2 inst2

3 [cond] B LabD // 3 delay slots
4 inst3

5 inst4

6 B LabA // 3 delay slots
7 B LabC // 3 delay slots
8 inst5

9 insté
10 LabB: inst?7
11 B LabC // 3 delay slots
12 LabC: inst8
13 inst9
14 LabD: instl10
15 instll
16 instl2

Figure 2. Running Example

c is a count of how many instruction cycles must occur
before the control transfer occurs;

d 1is the destination of the control transfer.

The stack used by the algorithm contains entries which are
pairs consisting of a position in the program and a delayed
branch state,

Pseudocode for the program is shown in Figure 1. The
tests of the form <x,nextSt> is new are checks as to whether
that pair has been previously pushed onto the stack.

Consider the sample program shown in Figure 2, where
each branch is assumed to have 3 delay slots. Two of the
branches, as indicated by the [cond] prefix, are conditional.
If this program is processed by the edge construction algo-
rithm, it will explore and discover the control flow paths
as diagrammed in Figure 3. In this diagram, arrows indi-
cate where the algorithm has followed a (delayed) branch.
If there is pair of arrows emanating from a program point,
the branch was conditional. The algorithm stops following
a path when a repeated program point and state combina-
tion is encountered. To stress these repeated points, they
are flagged with superscript asterisks in the diagram.

The CFG edges that are created by the algorithm for this
example should be apparent from Figure 3 too. Each arrow
in that figure corresponds to a CFG edge. In addition, be-
cause we assumed that each instruction in the original pro-
gram represented a node in the CFG, there are many simple
edges that correspond to sequential control flow. For exam-
ple, the sequence of positions 012 3 4 in the figure rep-
resents 5 nodes which are connected by sequential control
flow.

01234 —>56—>789—0—12 13 14 15

\ \14 15 16— 0"

10 11 — 12 13 14— 12*

N\

14 15 16— 12%

Figure 3. Paths Explored in Running Example

4.2 Basic Block Construction

Cooper et al. [5] gave an algorithm for constructing
the CFG for an assembly language program with delayed
branches. Their algorithm produces a different kind of CFG
from ours because the delayed branches remain in the pro-
gram. The program is simply partitioned into basic blocks
with the necessary control flow edges being inserted. The
control flow logic to show which tests cause which changes
in the sequence of execution are hard to discern.

Our approach which generates a program version where
branch instructions do not have delay slots is more
amenable to further program analysis. However, in general,
if we want to translate the program into a version for our
idealized instruction set then we must duplicate some code.

Fortunately the edge construction algorithm can identify
which nodes must be duplicated. Considering again Fig-
ure 3, as an example, the contents of this figure are easily
redrawn as a CFG with basic block nodes and where in-
structions have been duplicated as necessary. The diagram
appears in Figure 4.

The critical observation is that if an instruction in the
program can be executed in more than one branch delay
state (recall that the branch delay state is a set of the pending
delayed branch instructions) then that instruction must be
replicated for each such state. To construct the correspond-
ing CFG, the edge construction algorithm must be modified
in a minor way.

e Whenever a pair of the form <PC, state> is pushed
onto the stack in this algorithm, the algorithm checks
to see if the pair has been pushed previously. If this is
a new pair, then we augment the algorithm to create a
new node in the CFG. (A new node must also be cre-
ated for the initial <entry point, (§ > pair that is pushed
at the start.)

e Whenever a new CFG edge is created, it should be
related to the CFG nodes that are created by the al-
gorithm. Thus the statement add <origin,PC,dest>
to CFG in the algorithm needs to be modified. The
source of the edge is the node corresponding to the
pair <PC,State>, while the destination node corre-

16



P [0 inst1
1
2 inst2
3
4 inst3
5 inst4 10 1inst7
6 11
14 instl0 7
15 instll 8 insts5
16 instl2 9 1insté
12 1inst8 14 1instlo0
13 inst9 15 1instll
0 instl 1 instlo| |16 instl2

4

12 inst8

13 inst9
14 1instl0

15 1instll
16 instl2

Figure 4. CFG for Running Example

sponds to the pair <dest,newState>. The edge can be
labelled with origin to indicate which branch instruc-
tion in the original program causes this control transfer.
The statement add <-1,PC,succ> to CFG is modified
similarly. The edge may be labelled with -/ to indicate
sequential flow of control.

e Any branch instruction should not be listed (or shown
as NOP) when the node containing that instruction is
created in the new CFG.

Finally, we note that the nodes of the CFG correspond to
single statements in the original program. To coalesce these
simple nodes into basic blocks is a simple matter of check-
ing all the edges. If a node A has a unique successor B and if
the edge construction algorithm created an edge of the form
<-1,A,B> (i.e. an edge for sequential flow) then nodes A
and B can be merged.

4.3 Delay Resolution

Once the control flow graph has been created, it is rel-
atively simple to resolve any other instructions which have
delay slots. Nevertheless it may be necessary to move in-
structions across CFG edges and to duplicate code. (Simi-
lar problems arise in global instruction scheduling and have

been described elsewhere [8].)

Consider an instruction [ at position P which has d delay
slots. As discussed in the introduction, / should be moved
to a new position d instructions later, where the instruc-
tion is completed. A NOP instruction is left in place of I
at its original position in order to maintain the instruction
slot structure of the program. The NOP instructions can be
safely removed as the very final step, after delay resolution
and data conflict resolution have been completed.

If the new position occurs within the same basic block,
then the moved instruction is inserted at its new position in
parallel with any other instructions located at that position.

If the new position does not occur within the same basic
block, then I must be inserted in each successor block at the
appropriate position.

If the number of delay slots is sufficiently large and the
length of a successor block sufficiently short, then I might
have to be propagated to successors of the successor, and
so on. Whenever an instruction should be moved to a block
with several predecessors, this block has to be duplicated
and the instruction is moved to the copy. Furthermore,
whenever a instruction [/ traverses a block with several pre-
decessors before reaching its final destination, all blocks
from the one having more than one predecessor until the
destination of I must be copied. The algorithm in figure 5
takes care of this problem.

4.4 Data Conflict Resolution

When moving an instruction to a different position in the
program, it is important to take the possible data depen-
dence conflicts into account and resolve them to maintain
the semantic meaning of the original program.

Let I be an instruction at position p with a delay d > 0.
For now, we assume the destination of I after delay reso-
lution to be in the same block as /. Moving I from p to
p + d will cause a conflict if in the range [p. . . p + d] there
is any instruction which completes a redefinition of any of
the operands of I.

Consider the following example where we assume that
multiplication (opcode MPY) has one delay slot and the
load instruction (opcode LDW) has two.

0 MPY B7, B9, B13 // 1 delay slot
|| ADD A14, B4, B7
1 ADD Al0, A7, Al3
| | LDW *AO++, B9 // 2 delay slots
2 NOP
3 NOP

The new location for the MPY instruction will be posi-
tion 1. This instruction defines register B13 and uses regis-
ters B7 and B9. We find the instruction ADD Al4, B4, B7
at position 0, which redefines B7. In order to preserve the



function processBlock (bb, delaySet,
pred, copySet)
begin
nPreds = number of predecessors of bb;
if nPreds > 1 then
add all instructions of delaySet
to copySet;
fi
if copySet # ( then
copybb = copy of bb;
insert copybb with single predecessor
pred in original CFG;
bb = copybb;
fi
mark bb as visited;
foreach position P in basic block bb do
B = copy of bundle at position P;
foreach instruction I’ in bundle B do
I = copy of instruction I’;
delay = delay of I;
if T is not a NOP instruction then
add triple <I,delay,P> to delaySet;
replace instruction at position P
in original CFG with NOP;
fi
foreach triple <J,d,oP> in delaySet do
if I defines input reg r of J then
handleDataConflict (r, <J,d,oP>);
fi
od
od
newDelaySet = {;
foreach triple <J,d,oP> in delaySet do
if d=0 then
add J at position P in new CFG;
if JccopySet then
remove J from copySet;

fi
else
add <J,delay-1,0P> to newDelaySet;
fi
od
delaySet = newDelaySet;

od
foreach successor S of basic block bb do
if delaySet# () or
S has not been visited yet then
processBlock (S,delaySet,bb, copySet) ;
fi
od
end

Figure 5. Instruction Movement/ Data Conflict
Elimination

function handleDataConflict (reg, <J,d,P>)
begin
t = getNewTemporaryRegister () ;
m = instruction "MOV reg,t";
add m to bundle at position P in new CFG;
if reg is postincremented then
a = instruction "ADD reg,l,reg";
add a to bundle at position
P in new CFG;
remove postincrementing from J;
£i;
Handle other addressing modes similarly
replace reg by t in J;
end

Figure 6. Handling Of Data Conflicts

result of the multiplication, we invent a new temporary reg-
ister temp0, then we add an instruction initializing temp0 at
position 0 (the old position of MPY), and we modify the
MPY instruction to be MPY tempO, B9, B13. Note that
LDW instruction at position 1, which redefines the register
B9, does not create a conflict because it does not change
that register until two instruction cycles later.

The LDW instruction does, however, have a side-effect
other than loading a value into register B9. In this particular
case, register AQ is post-decremented and that side-effect
occurs in the same cycle as when the instruction is initiated.
If we wish to move the LDW instruction two positions later,
we should decrement the AO register immediately (in case
other instructions use A0 as an input operand) while using
the old value for the LDW instruction. We can achieve the
desired effect with a second new temporary register, temp1.
The final version of the code sequence where no instructions
have any delay slots is therefore as follows.

0 MV B7, tempO
|| ADD Al4, B4, B7

1 MPY tempO, B9, B13
|| ADD Al0, A7, AL3
|| MOV A0, templ
|| ADD A0, 1, A0

2 NOP

3 LDW *templ, B9

We propose a simple approach where we make copies of
all input register operands used by the delayed instructions
which cause conflicts. Later passes in the reverse compiler
should include copy elimination to remove the redundant
copy operations.

With our simplification, resolution of the data conflicts
can be conveniently combined with moving instructions to
their final positions in the delay-free version of the code. It
traverses the CFG as produced by the combined edge de-
tection and basic block construction algorithm, and creates



a new CFG.

The algorithm is initiated by making the function call
processBlock (0,0, -1, ), where the number of the
basic block where the program begins execution is as-
sumed to be 0. The second argument to processBlock
is a set of triples of the form <instruction, delay, original
position>, where:

instruction is a copy of an instruction in the original CFG,

delay is the number of instruction cycles which must be
completed after entry into the basic block before the
instruction finishes execution, and

original position is the position where the instruction was
declared. In case of data conflict this is the position
where the temporary variable must be initialized.

The third argument of this function is the predecessor ba-
sic block, the block which which was being processed when
processBlock was recursively called. The fourth argument
is an instruction list. Whenever the algorithm reaches a
block with several predecessors, copyList holds all instruc-
tions whose original position was before this block. These
instructions are the ones which force us to create copies of
blocks, as explained in section 4.3.

The algorithm appears in Figures 5 and 6.

4.5 Sequentialization

After eliminating delays and removing data conflicts, we
have a form of program where several instructions may oc-
cupy the same execution slot. That is, the instructions are
organized into bundles. In order to remove this instruction
level parallelism, the instruction bundles need to be rewrit-
ten in a sequential form. However we need to be careful be-
cause one instruction in the bundle can define a new value
for a register while another instruction uses the same regis-
ter as an input operand.

A simple approach to sequentialize the bundle is to write
the instructions in the same order as they appear in the bun-
dle, but modifying the instructions to use copies of input
registers whenever needed to avoid a conflict. The func-
tion sequentializeBundle shown in Figure 7 implements the
simple sequentialization.

5 Related Work

As far as we know, we were the first to describe a CFG
construction algorithm for delayed branches which removes
delay slots. The work closest to ours is the CFG construc-
tion algorithm by Cooper et al. [5]. They present an algo-
rithm for building a correct CFG from scheduled assembly
code that includes branches in branch delay slots. A signif-
icant difference from our algorithm is that they do not re-
place delayed branches but just insert all control flow graph

function sequentializeBundle (bun)
begin
foreach register r do
registerMap[r] = r;
od;
s = 0;
defRegs = 0;
foreach instruction I in bun do
inRegs = { r | I uses register r };
foreach r € inRegs N defRegs do
// resolve the conflict
if registerMap([r] = r then
t = getNewTemporaryRegister() ;
m = instruction "MOV r,t";
registerMap[r] = t;
S =m+ S;
£i;
replace occurrences of r in I used as
an input register by registerMap[r];

od;
outRegs = { r | I defines register r };
defRegs = defRegs U outRegs;
S =S + I;
od;
return S
end

Figure 7. Sequentialization Algorithm

edges to the existing instructions. This algorithm is helpful
for program understanding. However, if the CFG is used as
the basis for further analyses, the delay slots of instructions
have to be taken into account.

Computing the CFG in a compiler from a function’s in-
termediate representation is straightforward and described
in any compiler book [1, 3]. Computed branches and mix-
ing of code and data make CFG construction more difficult
or even impossible for binary programs or programs written
in assembly language.

Horspool and Marovac [9] state that the separation of
instructions from data for most computer architectures is
equivalent to the Halting Problem and therefore unsolvable
in general. They describe an algorithm that traces the con-
trol flow in a program seeking a disassembled version of the
program with a maximal number of instructions.

Flow graph construction from binaries is also necessary
in binary translators, reverse compilers and link time or bi-
nary optimizers. Sites et al. [14] describe CFG construc-
tion in the Alpha binary translator, Christina Cifuentes [4]
describes in detail CFG construction in her thesis about re-
verse compilation, Debray et al. [6] describe CFG construc-
tion for a binary optimizer, Sutter et al. [15] present tech-
niques for improving analysis of indirect branches and Kiss
et al. [12] discuss slicing of binaries.



#Branches Loo #Block #Bundles | #Bundles #Stmts #Stmts #Tem
Program (Cond) #Loops lengtll)l #Blocks copies #Edges original CFG Original CFG registegs
autcor 2(1) 1 8 4 1 5 30 38 116 211 13
bitrev 1(1) 1 7 4 1 5 25 32 76 129 9
blk_move 3(3) 1 2 7 4 7 33 33 46 51 0
dotprod 6 (5) 1 1 9 6 13 18 25 81 128 0
gouraud 2(2) 1 4 5 2 5 29 29 97 99 3
idct 2(2) 1 11 7 2 10 53 75 202 384 11
iir 2(2) 1 5 6 3 7 37 42 119 179 12
iircas4 2 (1) 1 4 6 3 7 23 27 84 126 3
latanal 2(1) 1 3 6 3 7 21 24 83 121 5
latsynth 3(1) 1 2 5 2 6 14 17 52 55 0
max 2(2) 1 3 6 3 7 25 28 92 145 11
minerror 1(1) 1 9 4 1 5 27 36 99 206 36
vecsumsq 6 (6) 1 1 9 6 13 20 28 86 133 0
w_vec 3(3) 1 2 7 4 7 32 35 88 101 5
dct 2(2) 2 11 7 2 10 48 70 194 368 25
fird 3(3) 2 16 10 4 14 34 56 130 282 18
radix2 3(3) 2 19 10 4 14 41 67 176 355 13

Table 1. Experimental Results

Basic block duplication also occurs at control flow graph
normalization [2]. CFG normalization facilitates program
transformations, program analysis and automatic paral-
lelization. Goto statements can be eliminated and trans-
formed to structured control flow [7]. Janssen and Cor-
poraal minimize the number of duplicated nodes with con-
trolled node splitting [11].

Code motion across basic block boundaries leads to code
duplication. This problem is common in compilers and well
studied. Gupta [8] presents a code motion framework for
global instruction scheduling which eliminates delay slots.

Krall et al. [13] describe an ultra fast compiled emula-
tor for an architecture with delayed instructions. Emulation
of delayed instructions leads to the execution of parts of an
instruction in succeeding basic blocks. To keep code dupli-
cation small a combination of basic block duplication and
conditional execution is used.

6 Experimental Results

This section presents some results obtained by the im-
plementation of the algorithms explained in this paper.
Our evaluations have been performed on hand-written DSP
code.

Table 1 shows the results of the CFG construction al-
gorithm on several test programs. All the programs used
contain at least one branch. Column 1 shows the total num-
ber of branches, and the number of conditional branches in
parentheses. Columns 2 and 3 give the number of loops in
the program and their lengths. Column 4 shows the number
of basic blocks in the constructed control flow graph, and
column 5 states how many of those blocks were caused by
instruction copying while creating the basic blocks of the

CFG or while moving delayed instructions. Column 6 gives
the number of edges in the CFG. Finally, columns 7 to 11
provide a code size comparison between the original assem-
bler code and the code described by the CFG, as well as the
number of variables that have been added in order to resolve
data conflicts while removing the delays.

The following section introduces a concrete example
showing the control flow graph obtained using the tech-
niques presented in this paper as well as a simple form of C
translation of the code.

6.1 Example

Figure 8 shows the assembler code of a lattice filter for
the TIMS320C60x architecture. To simplify the presenta-
tion, the code omits execution unit information.

This example contains 3 delayed branches, all of which
jump to label LOOP. The CFG generated by our program
is shown in figure 9. We can observe that the second and
third blocks of the graph contain the two first iterations of
the loop. They are originated by the first two branches in the
assembler code. The fourth block contains the actual loop
body. Due to the delays associated with the multiplication
and load instructions, the two first iterations of the loop are
not identical to the remaining iterations.

Due to a data conflict between instructions MV A3, A0
and MPYHLA4, A0, A2, temporary variables have been
added when moving the latter instruction.

Finally, figure 10 shows the C code that we would ob-
tain from our CFG after sequentialization of the instruction
bundles using a simple direct translation from our IR into
C. (An optimizing compiler should find many opportunities
for simplifying the code.)



7 Conclusions and Further Work

We have presented an algorithm for computing the CFG
of an assembly language program where instructions may
have associated delay slots. The final version of the CFG is
formed from basic blocks whose instructions have no asso-
ciated delays. This program version is much more amenable
to further analysis and, in particular, to reverse compilation
processing than the original form.

The algorithm has been incorporated into a reverse com-
piler for the TT C60 digital signal processor and applied to
the reverse compilation of some DSP kernels.

The biggest limitation of the algorithm is that the desti-
nations of the branch instructions must be determinable by
simple inspection of the assembler code. An enhancement
to the algorithm so that it performs abstract interpretation,
tracking register contents along execution paths, would en-
able the analysis to handle some uses of indirect branches.
They are commonly used to implement switch statements
and computed goto statements.
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latsynth:

B LOOP
|| ZERO A7
|| ZERO B7

MVK 7, Al

|| ADD B4, B4, Bl
B LOOP

|| ADD Bl, A6, A6

|| ADD B1l, B6, B6
ADD 3, B4, BO

LOOP
[BO] B LOOP
|| SHR A2, 16, A5
|| MPY 1, B1l, BS
|| MPYHL A4, A0, A2
|| MV A3, A0
|| LDH  *--A6, A3
|| LDH  *--B6, B7
[A1] ADD -1, Al, Al
[BO] ADD -1, BO, BO

||

|| [!A1l] STH B4, *+B6[7]

|| ADD A5, B5, B4

|| [BO] SUB A4, A7, A4

|| MPY 1, B7, Bl

|| MPY B7, A3, A7
SHR A4, 16, A6
STH A6, *+B6[6]

Figure 8. Example Assembler Code



A7 = 0;

B7 = 0;

Al = 7;
Bl = B4+B4;
BO = 3+B4;

ZERO A7 || ZERO B7 temp0 = 0;

MVK 7,Al || ADD B4,B4,Bl A5 = A2>>16;
A0 = A3;

ADD Bl, A6, A6 || ADD B1,B6,B6 if (A1) Al = (-1)+Al;

ADD 3,B4,B0 if (BO) BO = (-1)+BO;
B5 = 1*B1;
A2 = (A4>>16)* (tempO0 & OXFFFF) ;

ToonL if (BO) A4 = A4-AT7;
SHR A2,16,A5 || temp0=20 || MV A3,A0 1f (1A1) *(B7+7) = B4;

B4 = A5+B5;

[A1] ADD -1,A1,Al1 || [BO] ADD -1,B0,BO goto LOOP2;

|| MPY 1, B1l, BS5 || MPYHL A4, tempO,A2 LOOP2 :

| R e = 0,

: ! A5 = A2>>16;
|| ADD A5,B5,B4 || B LOOP2 AO = A3;
Bl = 1*B7;
A7 = B7*A3;

LOOP2 : if (Al) Al = (-1)+Al;
SHR A2,16,A5 || templ=A0 || MV A3,A0 if (BO) BO = (-1)+BO;
|| MPY 1,B7,B1 || MPY B7,A3,A7 B5 = 1*B1l;

[Al] ADD -1,A1,Al || [BO] ADD -1,B0,BO A2 = (RA4>>16)* (templ & OXFFFF);

|| MPY 1,B1,B5 || MPYHL A4,templ,A2 if (BO) A4 = A4-AT;

|| [BO]SUB A4,A7,R4 if (!'Al) *(B7+7) = B4;

|| [!Al]l STH B4,*B7[7] B4 = A5+B5;

|| ADD A5,B5,B4 || B LOOP goto LOOP;

LOOP:
temp2 = 0;
A5 = A2>>16;

LOOP: A0 = A3;

SHR A2,16,A5 || temp2=A0 || MV A3,A0 Bl = 1%B7.

MPY 1,B7,Bl1 || MPY B7,A3,A7 B !
LDH *--A6,A3 || LDH *B6,B7 A7 = B7*A3;
A3 = *(--R6);

[A1] ADD -1,A1,Al1 || [BO] ADD -1,B0,BO B7 = *B6;
¥Eg]éﬁglézsAl|ATPYHL A4, temp2,A2 if (A1) Al = (-1)+Al;
[1A1] STH B4,*B7[7] 1f (BO) BO = (-1)+BO;
ADD A5, B5,B4 || [B0O] B LOOP B5 = 1*Bl;

A2 = (A4>>16) * (temp2 & OXFFFF) ;
\\\J) if (BO) A4 = A4-AT7;
if (!Al) *(B7+7) = B4;

SHR A4,16,A6 || MPY 1,B7,Bl B4 = A5+B5;

|| MPY B7,A3,A7 || LDH *--A6,A3 if (BO) goto LOOP;

|| LDH *Bé,B7 A6 = A4>>16;

STH A6, *B6[6] Bl = 1*B7;

LDH *--A6,A3 || LDH *B6,B7 AT = BTFA3;

d d A3 = *(--RA6);
B7 = *B6;
Figure 9. CFG for Figure 8 after Delay Reso- * (B6+6) = A6;
lution A3 = *(--A6);
B7 = *B6;

Figure 10. C Code for Figure 8
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