
Minimal Slicing and the Relationships Between Forms of Slicing

Dave Binkley1 Sebastian Danicic2 Tibor Gyimóthy3 Mark Harman4 Ákos Kiss3 Bogdan Korel5

1Loyola College 2Goldsmiths College 3Institute of Informatics 4King’s College London 5Illinois Institute of Technology
Baltimore MD University of London University of Szeged Strand, London Chicago IL

21210-2699, USA. New Cross, London 6720 Szeged, Hungary. WC2R 2LS, UK. 60616-3793, USA.
SE14 6NW, UK.

Abstract

The widespread interest in program slicing within the
source code analysis and manipulation community has led
to the introduction of a large number of different slicing
techniques. Each preserves some aspect of a program’s
behaviour and simplifies the program to focus exclusively
upon this behaviour. In order to understand the similarities
and differences between slicing techniques, a formal mech-
anism is required. This paper establishes a formal mech-
anism for comparing slicing techniques using a theory of
program projection. Sets of minimal slices, which form the
ideal for any slicing algorithm, are used to reveal the order-
ing relationship between various static and dynamic slicing
techniques.

1. Introduction

Program slicing has been the subject of widespread study
in the literature on source code analysis and manipulation.
Much of this previous work has considered algorithmic de-
tails and the nature of dependence for the particular slic-
ing technique chosen (e.g., static backward slicing, or for-
ward dynamic slicing). As such, previous work has tended
to provide intra-technique study; focusing exclusively upon
one form of slicing technique and the relationships it cre-
ates among code level components. By contrast, this paper
is concerned with the meta-level relationships between slic-
ing techniques. That is, the paper studies inter-technique
relationships.

By focusing on inter-technique relationships, we can ask
questions about which slicing techniques are intrinsically
superior, in the sense that the slices according to one are all
slices according to the other. This relationship is called the
subsumes relationship between slicing techniques. Our pre-
vious work [3] formalised this inter-technique relationship
for static and dynamic slicing, revealing that the subsumes

relationship was more subtle and intricate than previously
thought.

This paper aims to formalize the other fundamental inter-
technique slicing relationship: the rank relationship. At the
level of individual slices, the rank relationship is vital: it
determines whether one slice is better than (that is smaller
than) another. In all applications of slicing, the size of slices
is crucial: the smaller the better. At the meta level of inter-
technique relationships, the rank relationship allows us to
determine whether one definition of slicing leads to inher-
ently smaller slices than another. This puts statements such
as

“dynamic slices are smaller than static slices”

on a firm theoretical footing. We know intuitively what we
mean by such statements, but capturing this formally is non-
trivial. Clearly, not all dynamic slices are smaller than all
static slices. Even for a given choice of program point and
variable, the statement may not be true, because of differ-
ences in slicing algorithm. Furthermore, there is the com-
plication of which particular dynamic slicing definition one
is to adopt; some are incomparable with static slicing.

This paper addresses all of these issues, giving a formal
mechanism for investigation of the rank relationship among
slicing techniques. It uses this to reveal the rank lattice
which depicts the rank relationships for various dynamic
and static slicing techniques. The primary technical contri-
butions are the following.

1. The formalization of a ranking of slicing techniques.

2. The two principal inter-technique relationships of sub-
sumption and rank are shown to be duals of one an-
other.

3. Using this duality a lattice of rank relationships for
static and dynamic slicing techniques is constructed.

The paper makes a contribution to a larger goal: the for-
malization of the theoretical foundations of program slicing.



Clearly such a formalization requires more work than can
reasonably be presented in a single article; the present paper
makes only a small contribution to this overall goal. How-
ever, the authors believe that the practice of slicing is now
sufficiently mature and stable to warrant a unifying formal
theory to underpin further developments and to consolidate
existing practice. To stimulate interest in this larger, high
level, aim the paper sets out a ‘manifesto’ (or programme
of work) needed to provide a formal theory of slicing.

The rest of the paper is organised as follows. Section 2
sets out a manifesto for a research programme in formal-
izing the theoretical foundations of program slicing. This
paper then goes on to make a contribution to this manifesto.
Section 3 summarises our previous work on the program
projection framework and the subsumes relationship in or-
der to make the present paper self-contained. Section 4
presents the first key technical results dealing with sets of
minimal slices. This result is then leveraged in Section 5 to
formally define the rank relationship for slicing techniques
and to reveal the lattice of rank relationships between static
and dynamic slicing techniques. Section 6 briefly presents
related work and Section 7 concludes.

2. A Manifesto

The program projection theory provides a general frame-
work, within which many current approaches to slicing
could be formulated. This section sets out a seven point re-
search agenda for a theoretical formalization of slicing with
the aim of stimulating interest in the wider research com-
munity in tackling some of these problems.

1. Criteria
This paper shows how dynamic forms of slicing can
be brought within the projection theory framework,
allowing relationships between them to be explored.
There are many other forms of slicing, which might
benefit from a similar treatment. For example, condi-
tioned [7], decomposition [14], quasi-static [28], for-
ward [21] and amorphous [18] forms of slicing. There
has been some work in this area, for example amor-
phous static slicing has been expressed within the pro-
jection framework [16], but more work is required to
formulate all forms of slicing within the projection
framework.

2. Minimality
Much work needs to be done to characterise the forms
of program that have minimal slices for each kind of
slicing criterion. The theoretical results which would
accrue form this research endeavor would have far–
reaching implications for the applications of slicing,
since the size of the slice is important in all appli-
cations. Recent work [11] has shown that program

schematology may be useful in the formulation and in-
vestigation of questions of slice minimality.

3. Complexity
The algorithmic complexity of static, syntax preserv-
ing, slicing has been well-known for some time [21,
25], but for other forms of slicing, the bounds on algo-
rithmic complexity are less well understood.

4. Notation
Although a comparatively trivial problem, the issue of
a unified notation for expressing notions of slicing and
their slicing criteria remains important. A common,
widely used and unified notation would help to facili-
tate communication and would assist in expressing the
relationships between forms of slicing.

5. Semantics
Slicing does not preserve the traditional strict seman-
tics of the programming language in which subject
programs and their slices are expressed [8, 12, 15, 19].
It is therefore necessary to define and capture the se-
mantics preserved by slicing algorithms. This is a form
of theory ‘reverse engineering’, since the algorithms
are already in place, and the theory is dragging some-
what behind. Abstract Interpretation [9] would clearly
be useful in this part of the research programme. An
understanding of the semantics preserved by slicing is
crucial to proving correctness. Intra-procedural static,
syntax-preserving slicing has been proved correct [26].
This result was extended to inter-procedural static,
syntax-preserving slicing by Binkley [2] and to pro-
grams with pointers by Horwitz et al.[20]. However,
for other forms of slicing there are no correctness re-
sults.

6. Relationships
This paper shows how formalization of slicing criteria
within the projection framework allows for slices to be
compared using a lattice theoretic approach. The au-
thors have studied two forms of subsumes relationship
in the present paper (and also in a previous paper [3]).
There may be other interesting formulations of slicing
criteria subsumption. The ability to explore the rela-
tionships between slicing criteria is one of the principal
benefits of the theory we advocate. The results should
help us to better understand slicing criteria.

7. Executability
Some forms of slicing are executable. These are easier
to fit into a theoretical framework, such as that pro-
posed in the present paper, because there is an obvi-
ous equivalence between the slice and the original pro-
gram. However, there are non-executable forms of pro-
gram slice [4, 21, 28], and it remains an open challenge



as to how these can be defined formally and compared
to executable forms of slicing.

3. Program Projection Theory

The projection theory is, in essence, a generalization of
program slicing [17, 16]. It is defined with respect to two
relations on programs: a syntactic ordering and a seman-
tic equivalence. The syntactic ordering is simply an order-
ing relation on programs. It is used to capture the syntactic
property that slicing seeks to optimize. Programs that are
lower according to the ordering are considered to be ‘bet-
ter’. The semantic relation is an equivalence relation that
captures the semantic property that remains invariant dur-
ing slicing.

Definition 1 (Syntactic Ordering) A syntactic ordering,
denoted by <∼ , is a computable partial order on programs.

Definition 2 (Semantic Equivalence) A semantic equiva-
lence, denoted by ≈, is an equivalence relation on program
semantics.

Definition 3 ((<∼ ,≈) Projection) Given syntactic ordering
<∼ and semantic equivalence ≈,

program p is a (<∼ ,≈) projection of program q
iff

p <∼ q ∧ p ≈ q.

That is, in a projection, the syntax can only improve
while the semantics of interest must remain unchanged. No-
tice that a program may have several projections for a given
syntactic ordering and semantic equivalence, so we will use
the following notation to represent all of them:

Definition 4 (Set of All Possible Slices) The set of all pos-
sible slices of a program p for a given projection (<∼,≈) is
defined as follows:

Sp(<∼ ,≈) = {q|q ≈ p and q <∼ p}.
In this paper, we consider only syntax-preserving forms

of slicing [16]. Therefore, we will use the following syn-
tactic ordering, which formalizes the oft-quoted remark:
“a slice is a subset of the program from which it is con-
structed”. Note that for ease of presentation, it is assumed
that each program component occupies a unique line. Thus,
a line number can be used to uniquely identify a particular
program component.

Definition 5 (Traditional Syntactic Ordering [16]) Let
F be a function that takes a program and returns a partial
function from line-numbers to statements, such that the
function F (p) maps l to c iff program p contains the

statement c at line number l. The syntactic ordering,
denoted by �, is defined as follows:

p � q ⇔ F (p) ⊆ F (q).

The semantic property that various slicing techniques re-
spect is based upon the concept of a state trajectory. The
following definitions of state trajectory and state restriction
are extracted from Weiser’s definition of a slice [30].

Definition 6 (State Trajectory) A state trajectory is a fi-
nite sequence of line-number × state pairs:

(n1, σ1)(n2, σ2) . . . (nk, σk),

where a state is a partial function mapping a variable to a
value, and entry i is (ni, σi) if after i statement executions
the state is σi, and the next instruction to be executed is at
line number ni.

Definition 7 (State Restriction) Given a state, σ and a set
of variables V , σ | V restricts σ so that it is defined only for
variables in V :

(σ | V )x =
{

σ x if x ∈ V,
⊥ otherwise.

The two auxiliary functions defined below, Proj′∗ and
Proj∗, are the counter parts of Weiser’s Proj′ and Proj,
extended to be able to describe not only static slicing but
other slicing methods, such as Korel and Laski’s dynamic
slicing. Proj∗, with the help of Proj′∗, extracts from a
state trajectory the values of the variables at the point of
interest and, additionally, retains information about the ex-
ecution path. Since not only static slicing is considered, the
point of interest is not only n, a line number, but nk, the kth

occurrence of instruction n in the trajectory.

Definition 8 (Proj′∗) Proj′∗ is defined in terms of 5 pa-
rameters: a set of variables V , a set of line-number × natu-
ral number pairs P , a set of line numbers I , a line-number
× natural number pair nk, and a state σ:

Proj′∗(V,P,I)(n
k, σ) =




(n, σ|V ) if nk ∈ P,
(n,⊥) if nk /∈ P and n ∈ I,
λ otherwise.

Definition 9 (Proj∗) For a set of variables V , set of line-
number × natural number pairs P , set of line numbers I
and trajectory T :

Proj∗(V,P,I)(T ) =
l∏

i=1

Proj′∗(V,P,I)(ni
ki , σi),

where ki is the number of occurrences of ni in the first i
elements of T (i.e., ni

ki is the most recent occurrence of ni

in T [0] . . . T [i]), and l is the highest index in T such that
nl

kl ∈ P .



Using the above functions we can define a unified seman-
tic equivalence relation U capable of expressing multiple
slicing techniques.

Definition 10 (Unified Equivalence) Given programs p
and q, a set of states S, a set of variables V , a set of line-
number× natural number pairs P , and a set of line-numbers
× set of line-numbers → set of line-numbers function X ,
the unified equivalence (U) is defined as follows:

p U(S, V, P, X) q
iff

∀σ ∈ S : Proj∗(V,P,X(p̄,q̄))(T
σ
p ) = Proj∗(V,P,X(p̄,q̄))(T

σ
q ).

In the above definition, the roles of the parameters are
as follows: S denotes the set of initial states for which the
equivalence must hold. This captures the ‘input’ part of the
slicing criteria. The set of variables of interest V is common
to all slicing criteria. Parameter P , just as in Definitions 8
and 9, contains the points of interest in the trajectory and
also captures the ‘iteration count’ component of the crite-
ria. Finally, X captures the ‘trajectory requirement’. It is
a function that determines which statements must be pre-
served in the trajectory (even though they have no affect on
the variables of the slicing technique). The domain of X is
a pair of sets of statement numbers from two programs. For
program p, the set of statement numbers is denoted as p̄.

This definition can be instantiated with different param-
eters. The following eight equivalence relations use Σ to
denote the set of all possible input states, and IN to denote
the set of natural numbers (thus {n} × IN represents all oc-
currences of instruction n). For every set of line numbers,
x and y, E(x, y) = ∅, and ∩ denotes the set intersection
operation.

S (V, n) = U(Σ, V, {n} × IN, E),
Si(V, nk) = U(Σ, V, {nk}, E),
D(σ, V, n) = U({σ}, V, {n} × IN, E),
Di(σ, V, nk) = U({σ}, V, {nk}, E),
SKL(V, n) = U(Σ, V, {n} × IN,∩),
SKLi(V, nk) = U(Σ, V, {nk},∩),
DKL(σ, V, n) = U({σ}, V, {n} × IN,∩),
DKLi(σ, V, nk) = U({σ}, V, {nk},∩).

Two of the eight equivalence relations defined above,
S (V, n) and DKLi(σ, V, nk) capture the semantics of
Weiser’s static and Korel and Laski’s dynamic slicing. The
other six equivalence relations result from other possible pa-
rameterizations of the unified equivalence.

4. Sets of Minimal Slices

To compare slicing techniques, it is important to be
free from algorithmic and implementation details. We are

concerned with the investigation of various definitions for
‘slice’; not the peculiarities which emerge from attempts
to arrive at ‘good’ slicing algorithms. In other words, the
output of idealized algorithms are studied. Any realizable
slicing algorithm must by definition, compute an approxi-
mation to the idealized algorithm. Even with idealized al-
gorithms there is no guarantee of a unique minimal slice.
Therefore, sets of minimal slices are studied. Such a set
includes all the ‘best’ (i.e., smallest) slices.

To formalize the beliefs about the size of slices (more
precisely, about the size of minimal slices), we shall com-
pare sets of minimal slices. To allow such comparison, we
have to extend the syntactic ordering of programs (from
Definition 1) to sets of programs. The extension is, in fact,
more general than required. It addresses sets of incompara-
ble slices. Of interest in Section 5 are sets of minimal slices,
which are also sets of incomparable slices.

In the following, we will use the notation a �>∼ �<∼ b to
denote that a is not comparable to b in the partial order <∼,
i.e., a �<∼ b and b �<∼ a.

Definition 11 (Set of Incomparable Programs) A is a set
of incomparable programs with respect to syntactic order-
ing <∼, iff

∀a, b ∈ A : a �>∼ �<∼ b.

Definition 12 (Syntactic Ordering of Sets of Incompa-
rable Programs) For syntactic ordering <∼ and two sets of
incomparable programs with respect to <∼, A and B,

A <∼ B
iff

∀b ∈ B : ∃a ∈ A : a <∼ b
and
∀b ∈ B : �a ∈ A : b <∼/ a.

Before using sets of incomparable slices in 5 it is first
necessary to show that the syntactic ordering from Defini-
tion 12 is a partial order.

Theorem 1 The syntactic ordering is a partial order over
sets of incomparable programs.
Proof
We have to show that the relation given in Definition 12 is
reflexive, antisymmetric, and transitive.

Reflexivity. We have to show that A <∼ A holds for all
sets of incomparable programs. According to the definition
this involves two things. First, we have to show that ∀a ∈
A : ∃a′ ∈ A : a′ <∼ a. This follows as a <∼ a. Second, we
have to show that ∀a′ ∈ A : �a ∈ A : a′ <∼/ a. Because all
elements in A are incomparable with respect to <∼, no such
a′ exists.

Antisymmetry. We have to show for all sets of incompa-
rable programs A and B, A <∼ B and B <∼ A implies A =



B. From A <∼ B, we know that ∀b ∈ B : ∃a ∈ A : a <∼ b
and from B <∼ A we know that ∀a ∈ A : ∃b′ ∈ B : b′ <∼ a.
Together, this yields b′ <∼ a <∼ b. However, as all elements
in B are incomparable, b′ = b; thus, b <∼ a <∼ b which
implies that a = b. Consequently, ∀b ∈ B : b ∈ A, i.e.,
B ⊆ A. Finally, by symmetry, A ⊆ B, from which follows
that A = B, as required.

Transitivity. We have to show for all A, B and C sets
of incomparable programs that A <∼ B and B <∼ C imply
A <∼ C. This involves showing two things: first, that ∀c ∈
C : ∃a ∈ A : a <∼ c. From B <∼ C we know that ∀c ∈
C : ∃b ∈ B : b <∼ c. Furthermore, from A <∼ B we know
that ∀b ∈ B : ∃a ∈ A : a <∼ b. Together these imply
∀c ∈ C : ∃a ∈ A : a <∼ c as required.

Second, we must show that ∀c ∈ C : �a ∈ A : c <∼/ a,
which is equivalent to ∀c ∈ C : ∀a ∈ A : a <∼ c or a �>∼ �<∼ c.
(Note that the negation of c <∼/ a is a <∼ c or a �>∼ �<∼ c). By
assumption ∀b ∈ B : ∀a ∈ A : a <∼ b or a �>∼ �<∼ b, and
∀c ∈ C : ∀b ∈ B : b <∼ c or b �>∼ �<∼ c. This leads to the
following four cases.

(Case 1) b <∼ c and a <∼ b: Here trivially a <∼ c.

(Case 2) b <∼ c but a �>∼ �<∼ b: We prove Case 2 by contra-
diction. Assume, that (a <∼ c or a �>∼ �<∼ c) is not true.
This assumption simplifies to c <∼/ a. Combined with
b <∼ c this yields b <∼ c <∼/ a from which it follows
that b <∼/ a. However, this contradicts the assumption
a �>∼ �<∼ b.

(Case 3) b �>∼ �<∼ c and a <∼ b: We prove Case 3 by contra-
diction. Assume as in Case 2, c <∼/ a. Combined with
a <∼ b yields c <∼/ a <∼ b from which it follows that
c <∼/ b. This contradicts the assumption b �>∼ �<∼ c.

(Case 4) a �>∼ �<∼ b and b �>∼ �<∼ c: Once again, assume c <∼/ a.
By assumption know that ∃b′ ∈ B : b′ <∼ c and ∃a′ ∈
A : a′ <∼ b′. However, a′ <∼ b′ <∼ c <∼/ a implies a′ <∼/
a, which contradicts the assumption that the elements
in A are incomparable.

�

One might think that there shall be more natural exten-
sions of the syntactic ordering to the domain of incompara-
ble program sets than that given in Definition 12. We could,
for example, define A less than B iff all elements of A are
less than all elements of B. Notice, however, that this def-
inition is not a partial order. Assume that A = {a1, a2},
where a1 �>∼ �<∼ a2. This implies, according to the hypotheti-
cal definition above, that A <∼ A is not true, thus reflexivity
is broken. This shows that we cannot have a too strong re-
quirement on comparability. We shall allow some elements
to be incomparable so long as there is one element which
is comparable. Definition 12 captures the right balance in

this field, and is still an effective extension of the syntactic
ordering, since if given two one-element sets, A = {a} and
B = {b}, then A <∼ B iff a <∼ b.

Now that we have all the necessary definitions we can
turn to minimal slices. Since minimal slices are not neces-
sarily unique, we work with sets of minimal slices, which
are formally defined below.

Definition 13 (Set of All Minimal Slices) The set of all
minimal slices of a program p for a given projection (<∼ ,≈),
denoted by Mp(<∼ ,≈), is defined as follows:

Mp(<∼ ,≈) =
{q|q ∈ Sp(<∼,≈) and �q′ ∈ Sp(<∼ ,≈) : q′ <∼/ q}.

Inspecting the above definition, we can notice that the set
of all minimal slices of a program is a set of incomparable
programs (as defined in Definition 11) and thus we can use
the extended syntactic order relation on them. Below we
state the central theorem regarding the connection between
the sets of slices and sets of minimal slices. Informally,
given a program, if its slices for projection A are valid slices
for projection B as well, then the minimal slices for B are
smaller than the minimal slices for A.

Theorem 2 (Duality of Slices) For any program p, syntac-
tic ordering <∼, and semantic equivalence relations ≈A and
≈B the following holds:

Sp(<∼ ,≈A) ⊆ Sp(<∼,≈B) ⇒ Mp(<∼ ,≈B) <∼ Mp(<∼,≈A).

Proof
Observe that if a ∈ Mp(<∼ ,≈A) then, by definition, a ∈
Sp(<∼ ,≈A), and also a ∈ Sp(<∼ ,≈B), as Sp(<∼ ,≈A) ⊆
Sp(<∼ ,≈B). We have two cases to consider.

(Case 1): We want to show that

∀a ∈ Mp(<∼ ,≈A) : ∃b ∈ Mp(<∼ ,≈B) : b <∼ a.

If a ∈ Mp(<∼ ,≈B), then we are done as a <∼ a,
otherwise (if a /∈ Mp(<∼ ,≈B)), then, by definition,
∃b′ ∈ Mp(<∼ ,≈B) : b′ <∼/ a. In this case, let b = b′.

(Case 2): The second case is to show that

∀a ∈ Mp(<∼ ,≈A) : �b ∈ Mp(<∼ ,≈B) : a <∼/ b.

Let a ∈ Mp(<∼ ,≈A) and assume that b ∈
Mp (<∼,≈B) : a <∼/ b. This contradicts Mp(<∼ ,≈B)
being a set of minimal slices as a ∈ Sp(<∼ ,≈B) would
have to be in Mp(<∼ ,≈B), but then b would not be in
Mp(<∼ ,≈B) as a <∼/ b.

�



1 x=1;
2 x=2;
3 if (x>1)
4 y=1; y=1;
5 else
6 y=1; y=1;
7 scanf("%d",&x); scanf("%d",&x); scanf("%d",&x);
8 if (x<1) if (x<1) if (x<1)
9 z=0; z=0; z=0; z=0;
10 else else else
11 z=x*y; z=x*y; z=x*y;
12 w=z; w=z; w=z; w=z;

Program p q1 q2 q3

σ = 〈0〉, V = {z}, n = 12, k = 1

Figure 1. Example program to show that the reverse of the duality theorem is not true.

Interestingly, the reverse of Theorem 2 is not
true, i.e., Mp(<∼ ,≈B) <∼ Mp(<∼ ,≈A) does not imply
Sp (<∼,≈A) ⊆ Sp(<∼ ,≈B). As a counter example, con-
sider program p in Figure 1. In this case there are two min-
imal static slices, i.e., Mp(�, S (V,n)) = {q1, q2}, while the
set of minimal (Korel and Laski–style) dynamic slices is

of only one element, Mp(�, D(σ,V,nk)
KLi ) = {q3}. Clearly,

Mp(�, D(σ,V,nk)
KLi ) � Mp(�, S (V,n)), since q3 � q1 and

q3 � q2, but Sp(�, S (V,n)) �⊆ Sp(�, D(σ,V,nk)
KLi ), since

q2 /∈ Sp(�, D(σ,V,nk)
KLi ).

5 Slicing Techniques

Section 4 provides the basis for the comparison of slicing
techniques and sets of related techniques, such as static slic-
ing techniques or dynamic slicing techniques. It provides
the necessary machinery to explore the inter-technique re-
lationship: rank and to formalize observations such as ‘dy-
namic slices are smaller than static slices’. This is done for
all possible programs and all possible slicing criteria admis-
sible to a chosen technique.

To facilitate this exploration, we extend the semantic re-
lation and syntactic ordering from Section 4 to apply to
slicing techniques. A slicing technique is essentially a pro-
jection, (<∼ ,≈), in which the syntactic ordering, <∼, is un-
changed same, but the semantic equivalence, ≈, is param-
eterized by four values. These four parameters are suffi-
ciently general to capture the range of possible slicing tech-
niques studied. More specifically, the four parameters that
denote a slicing criterion are (σ, V, n, k), where V is the set
of variables of interest at the kth iteration of instruction n,
for input σ. Not all techniques (equivalence relation classes)
use all four components, e.g., a static slicing criterion com-
poses only of V and n. On the contrary, dynamic slicing
makes use of all four criterion components.

As introduced in Section 3, our previous work formally
defined eight parameterized equivalence relations and eight
corresponding slicing techniques [3]. It has also established
a lattice which describes the subsumption relation between
them. In order to make the present paper self-contained we
repeat the subsumption lattice in Figure 2 and the definition
of subsumption, which informally states that all “B” slices
are also “A” slices:

Definition 14 (Subsumes Relation of Slicing Techniques)
Given syntactic ordering <∼ and semantic equivalence re-
lations ≈A and ≈B , both parameterized by σ, V , n and
k, (<∼ ,≈A)–slicing subsumes (<∼ ,≈B)–slicing, denoted as
(<∼ ,≈B) ⊆ (<∼ ,≈A), iff

∀p, σ, V, n, k : Sp(<∼,≈(σ,V,n,k)
B ) ⊆ Sp(<∼ ,≈(σ,V,n,k)

A ).

To rank techniques (recall that the rank relationship al-
lows us to determine whether one definition of slicing leads
to inherently smaller slices than another) we extend the syn-
tactic ordering definition to slicing techniques (parallel to
the extension of Definition 14) and then show that the du-
ality exists. Moreover, in Figure 3 we show that the rank
ordering of existing slicing techniques results in a lattice
isomorphic (in this case inverted) to that given in Figure 2.
This captures the duality of the relationship between sub-
sumption and rank. The formalization has two parts that are
captured by Theorem 3 and 4.

Definition 15 (Rank Ordering of Slicing Techniques)
For any two slicing techniques, (<∼ ,≈A) and (<∼ ,≈B),

(<∼ ,≈A) <∼ (<∼,≈B)
iff

∀p, σ, V, n, k : Mp(<∼ ,≈(σ,V,n,k)
A ) <∼ Mp(<∼ ,≈(σ,V,n,k)

B ).

Theorem 3 (Duality of Slicing Techniques) For any two
slicing techniques, (<∼,≈A) and (<∼ ,≈B),



�

(�, SKL)

�(�, S) �(�, SKLi)

�

(�, DKL)

�
(�, Si)

�(�, D) �(�, DKLi)

�
(�, Di)

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
���

�
�

��

�
�

�
��

�
�

�
��

�
�

�
��

Figure 2. Slicing techniques ordered by the
subsumes relation as defined in Defintion 14.

�

(�, Di)

�(�, D) �(�, DKLi)

�

(�, Si)

�
(�, DKL)

�(�, S) �(�, SKLi)

�
(�, SKL)

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
���

�
�

��

�
�

�
��

�
�

�
��

�
�

�
��

Figure 3. Slicing techniques ordered by rank
as defined in Defintion 15.

(<∼ ,≈A) ⊆ (<∼ ,≈B) ⇒ (<∼ ,≈B) <∼ (<∼,≈A).

Proof
According to Definition 14, (<∼ ,≈A) ⊆ (<∼ ,≈B) means

∀p, σ, V, n, k : Sp(<∼ ,≈(σ,V,n,k)
A ) ⊆ Sp(<∼ ,≈(σ,V,n,k)

B ).
Theorem 2 proved that ∀p, σ, V, n, k : Mp(<∼ ,≈(σ,V,n,k)

B

) <∼ Mp(<∼ ,≈(σ,V,n,k)
A ), which, by Definition 15, is equiva-

lent to (<∼ ,≈B) <∼ (<∼ ,≈A). �

This theorem establishes that if technique A subsumes
technique B then B has lower rank (the minimal slices of
B will be less than those of A). That is, A will tend to
produce larger slices. However, (<∼ ,≈A) �⊆ (<∼ ,≈B) does
not imply that (<∼ ,≈B) �<∼ (<∼ ,≈A); thus, it must be shown
that those slicing techniques not connected in Figure 3 are
really not related according to the traditional rank ordering.
This is the role of the following theorem.

1 x=1;
2 x=2;
3 if (x>1)
4 y=1; 4 y=1;
5 else
6 y=1; 6 y=1;
7 z=y; 7 z=y; 7 z=y;

Program p q1 q2

σ = 〈〉, V = {y}, n = 7, k = 1

Figure 4. Non–KL (execution path unaware)
minimal slices.

Theorem 4 (Duality of Slicing Techniques (only if))
If two slicing techniques are not connected in Figure 3 then
they are not related according to the traditional syntactic
ordering.
Proof
For each unconnected pair of slicing techniques, (�,≈A)
and (�,≈B), we have to show that (�,≈A) ���� (�,≈B),
in other words that

∃p, σ, V, n, k :
Mp(�,≈(σ,V,n,k)

A ) �� Mp(<∼ ,≈(σ,V,n,k)
B )

and

∃p′, σ′, V ′, n′, k′ :
Mp′(�,≈(σ′,V ′,n′,k′)

B ) �� Mp′(�,≈(σ′,V ′,n′,k′)
A ).

The proof makes use of the three counter examples
shown in Figures 4, 5, and 6. Implication from these counter
examples are combined, as shown in Figure 7, to prove in-
comparable the pairs of slicing techniques that go uncon-
nected in Figure 3.

First, we show that execution path aware (Korel and
Laski–style) slicing techniques, denoted by a subscript KL,
are not smaller than execution path unaware (or non–Korel
and Laski–style) ones, denoted by a subscript KL—. Figure 4
gives p, σ, V , n and k, while the two equations below give
the sets of minimal slices for each slicing technique.

MKL = {q1}
= Mp(�, SKL(V, n))
= Mp(�, SKLi(V, nk))
= Mp(�, DKL(σ, V, n))
= Mp(�, DKLi(σ, V, nk))

MKL— = {q1, q2}
= Mp(�, S (V, n))
= Mp(�, Si(V, nk))
= Mp(�, D(σ, V, n))
= Mp(�, Di(σ, V, nk))



1 x=1; 1 x=1;
2 while (x<=2) { 2 while (x<=2) {
3 y=1; 3 y=1;
4 if (x==1)
5 y=2;
6 z=y; 6 z=y;
7 x++;
8 } 8 }

Program p′ Program q′

σ′ = 〈〉, V ′ = {y}, n′ = 6, k′ = 2

Figure 5. Iteration count aware minimal slice.

1 y=1; 1 y=1;
2 scanf("%d",&x);
3 if (x>1)
4 y=2;
5 z=y; 5 z=y;

Program p′′ Program q′′

σ′′ = 〈1〉, V ′′ = {y}, n′′ = 5, k′′ = 1

Figure 6. Dynamic minimal slice.

From this follows by definition that MKL �� MKL— , since
�q ∈ MKL : q � q2(∈ MKL— ).

Now we prove that iteration count unaware slicing tech-
niques are not smaller than iteration count aware ones. Fig-
ure 5 and the two equations below give p′, σ′, V ′, n′ and k′,
and the minimal slice sets for the slicing techniques.

Mi = {q′}
= Mp′(�, Si(V ′, n′k′

))
= Mp′(�, SKLi(V ′, n′k′

))
= Mp′(�, Di(σ′, V ′, n′k′

))
= Mp′(�, DKLi(σ′, V ′, n′k′

))

M i– = {p′}
= Mp′(�, S (V ′, n′))
= Mp′(�, SKL(V ′, n′))
= Mp′(�, D(σ′, V ′, n′))
= Mp′(�, DKL(σ′, V ′, n′))

Again, by definition, the above equations imply that
M i– �� Mi, since q′(∈ Mi) � p′(∈ M i–).

Finally, we show that static slicing techniques are not
smaller than dynamic slicing techniques. In Figure 6 p′′,
σ′′, V ′′, n′′ and k′′ is given and below the sets of minimal
slices are computed for all slicing techniques.

Incomparability Follows from
(�, D) ���� (�, DKLi) MKL �� MKL— and M i– �� Mi

(�, D) ���� (�, Si) MS �� MD and M i– �� Mi

(�, DKLi) ���� (�, Si) MS �� MD and MKL �� MKL—
(�, DKL) ���� (�, Si) MS �� MD and M i– �� Mi

(�, DKL) ���� (�, S) MS �� MD and MKL �� MKL—
(�, DKL) ���� (�, SKLi) MS �� MD and M i– �� Mi

(�, S) ���� (�, SKLi) MKL �� MKL— and M i– �� Mi

(�, D) ���� (�, SKLi) MS �� MD and M i– �� Mi

(�, DKLi) ���� (�, S) MS �� MD and MKL �� MKL—

Figure 7. Incomparable slicing techniques.

MS = {p′′}
= Mp′′ (�, S (V ′′, n′′))
= Mp′′ (�, SKL(V ′′, n′′))
= Mp′′ (�, Si(V ′′, n′′k′′

))
= Mp′′ (�, SKLi(V ′′, n′′k′′

))

MD = {q′′}
= Mp′′(�, D(σ′′, V ′′, n′′))
= Mp′′(�, DKL(σ′′, V ′′, n′′))
= Mp′′(�, Di(σ′′, V ′′, n′′k′′

))
= Mp′′(�, DKLi(σ′′, V ′′, n′′k′′

))

The implication of these equations is similar to the above
ones, namely MS �� MD, since q′′(∈ MD) � p′′(∈ MS).

Figure 7 shows how the above three counters examples
are used to prove that the slicing techniques unconnected in
the lattice in Figure 3 are not in relation according to the
traditional syntactic ordering. �

Thus, Theorems 3 and 4 form an important result as they
establish the connection between the two fundamental inter-
technique relationships of subsumption and rank. The sub-
sumption relationship tells us when one slicing technique
can be used in place of another, while the rank relation tells
us which produces the best (i.e., smallest) slices. As a re-
sult of duality, the lattice of slicing techniques ordered by
the traditional syntactic ordering is isomorphic to that for
subsumption (in this case inverted), as shown in Figure 3.

6 Related Work

Program slicing was introduced by Mark Weiser in 1979
as a static program analysis and extraction technique [29].
In 1988 Korel and Laski [22] observed that slices would be
more useful as a debugging aid, if they could be constructed



dynamically, taking into account the execution characteris-
tics which led to the observation of erroneous behavior. In
1990 Agrawal and Horgan [1] introduced four algorithms
for constructing dynamic slices based on the Program De-
pendence Graph approach to slicing. However, the ap-
proach to dynamic slicing proposed by Agrawal and Horgan
and that proposed by Korel and Laski differed as shown in
our previous work [3].

Other theoretical work has attempted to lay the foun-
dations of slicing. However, this previous work has been
primarily concerned with static slicing and with intra-
technique relationships rather than inter-technique relation-
ships. For example, Reps and Yang [26] show that the PDG
is adequate as a representation of program semantics, al-
lowing it to be used in static slicing. Reps [24] shows
how interprocedural-slicing can be formulated as a graph
reachability problem, once again focusing on static slicing.
Cartwright and Felleisen [8] show that the PDG seman-
tics is a lazy semantics, because of the demand driven na-
ture of the representation, while Giacobazzi and Mastroeni
[15] present a transfinite semantics to attempt to capture the
behaviour of static slicing. Harman et al. show the slic-
ing is lazy in the presence of errors [19]. Weiser [29] ob-
served that his slicing algorithm was not dataflow minimal
and speculated on the question of whether dataflow minimal
slices were computable. Danicic showed how this problem
could be reformulated as a theorem about unfolding [10]
while Laurence et al. [23] show how the problem can be
expressed in terms of program schematology.

All this work has concerned static slicing. There has
been very little formal theoretical analysis of the proper-
ties of dynamic slicing. The closest prior work to that in
the present paper is the previous work of Venkatesh [28],
who defined three orthogonal slicing dimensions, each of
which offered a boolean choice. A slice could be static or
dynamic, it could be constructed in a forward or backward
direction and it could be either an executable program or
merely a set of statements related to the slicing technique.

Venkatesh therefore considers 23 slicing techniques,
some of which had not, at the time, been thought of be-
fore (for example the forward dynamic slice). As such,
Venkatesh’s work is was the first to attempt to consider
inter-technique relationships. In particular, Venkatesh was
concerned with the subsumes relationship. The present au-
thors [3] also investigated the subsumes relationship using
the projection theory of slicing. By contrast, the present pa-
per is concerned with the rank relationship between slicing
techniques.

There are several surveys of slicing: Tip [27], and Bink-
ley and Gallagher [5] provide surveys of program slic-
ing techniques and applications. De Lucia [13] presents a
shorter, but more up-to-date survey of slicing paradigms.
Binkley and Harman [6] present a survey of empirical re-

sults on program slicing. These papers provide a broad pic-
ture of slicing technology, tools, applications, definitions,
and theory. Harman et al. [17, 16] introduced the pro-
jection theory used in this paper to analyse inter-technique
slicing relationships. In this previous work the projection
theory was used to explain the difference between syntax-
preserving and amorphous slicing, whereas the present pa-
per is concerned solely with syntax–preserving slicing.

7 Conclusion and Future Work

This paper has investigated the rank relationship between
slicing techniques for static and dynamic slicing. Previous
work has concerned the subsumes relationship. The pri-
mary contribution of the present paper is to show that the
rank relationship is a mirror image of the subsumes rela-
tionship, leading to an inverted, but isomorphic lattice of
inter-technique relationships. The paper also shows that the
sets of minimal slices are useful in examining the relation-
ships between slicing techniques.

Future work will extend this work to consider condi-
tioned slicing, forward slicing and amorphous slicing. The
ultimate goal of this research programme is to achieve a the-
oretical treatment of slicing that allows for formal reasoning
about the relationships between slicing techniques in terms
of important inter-technique relationships such as subsump-
tion and rank.

References

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 246–256, New York, June
1990.

[2] D. Binkley. Multi-procedure program integration, August
1991.

[3] D. Binkley, S. Danicic, T. Gyimóthy, M. Harman, A. Kiss,
and L. Ouarbya. Formalizing executable dynamic and for-
ward slicing. In 4th International Workshop on Source
Code Analysis and Manipulation (SCAM 04), pages 43–52,
Chicago, Illinois, USA, Sept. 2004. IEEE Computer Society
Press, Los Alamitos, California, USA.

[4] D. W. Binkley. Precise executable interprocedural slices.
ACM Letters on Programming Languages and Systems, 3(1-
4):31–45, 1993.

[5] D. W. Binkley and K. B. Gallagher. Program slicing. In
M. Zelkowitz, editor, Advances in Computing, Volume 43,
pages 1–50. Academic Press, 1996.

[6] D. W. Binkley and M. Harman. A survey of empirical results
on program slicing. Advances in Computers, 62:105–178,
2004.

[7] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned pro-
gram slicing. In M. Harman and K. Gallagher, editors, Infor-
mation and Software Technology Special Issue on Program
Slicing, volume 40, pages 595–607. Elsevier Science B. V.,
1998.



[8] R. Cartwright and M. Felleisen. The semantics of program
dependence. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 13–27,
1989.

[9] P. Cousot and R. Cousot. Abstract interpretation frame-
works. Journal of Logic and Computation, 2(4):511–547,
Aug. 1992.

[10] S. Danicic. Dataflow Minimal Slicing. PhD thesis, Uni-
versity of North London, UK, School of Informatics, Apr.
1999.

[11] S. Danicic, C. Fox, M. Harman, R. M. Hierons, J. Howroyd,
and M. Laurence. Slicing algorithms are minimal for
programs which can be expressed as linear, free, liberal
schemas. The computer Journal. To appear.

[12] S. Danicic, M. Harman, J. Howroyd, and L. Ouarbya. A
lazy semantics for program slicing. In 1st. International
Workshop on Programming Language Interference and De-
pendence, Verona, Italy, Aug. 2004.

[13] A. De Lucia. Program slicing: Methods and applications.
In 1st IEEE International Workshop on Source Code Analy-
sis and Manipulation, pages 142–149, Florence, Italy, 2001.
IEEE Computer Society Press, Los Alamitos, California,
USA.

[14] K. B. Gallagher and J. R. Lyle. Using program slicing in
software maintenance. IEEE Transactions on Software En-
gineering, 17(8):751–761, Aug. 1991.

[15] R. Giacobazzi and I. Mastroeni. Non–standard semantics for
program slicing. Higher-Order and Symbolic Computation,
16(4):297–339, 2003. Special issue on Partial Evalution and
Semantics-Based Program Manipulation.

[16] M. Harman, D. W. Binkley, and S. Danicic. Amorphous
program slicing. Journal of Systems and Software, 68(1):45–
64, Oct. 2003.

[17] M. Harman and S. Danicic. Amorphous program slicing. In
5th IEEE International Workshop on Program Comprenhe-
sion (IWPC’97), pages 70–79, Dearborn, Michigan, USA,
May 1997. IEEE Computer Society Press, Los Alamitos,
California, USA.

[18] M. Harman, L. Hu, M. Munro, X. Zhang, D. W. Binkley,
S. Danicic, M. Daoudi, and L. Ouarbya. Syntax-directed
amorphous slicing. Journal of Automated Software Engi-
neering, 11(1):27–61, Jan. 2004.

[19] M. Harman, D. Simpson, and S. Danicic. Slicing programs
in the presence of errors. Formal Aspects of Computing,
8(4):490–497, 1996.

[20] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis
for pointer variables. In Proceedings of the ACM SIGPLAN
89 Conference on Programming Language Design and Im-
plementation, pages 28–40, Portland, OR, USA, July 1989.
ACM SIGPLan Notices.

[21] S. Horwitz, T. Reps, and D. W. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions on Pro-
gramming Languages and Systems, 12(1):26–61, 1990.

[22] B. Korel and J. Laski. Dynamic program slicing. Informa-
tion Processing Letters, 29(3):155–163, Oct. 1988.

[23] M. R. Laurence, S. Danicic, M. Harman, R. Hierons, and
J. Howroyd. Equivalence of conservative, free, linear pro-
gram schemas is decidable. Theoretical Computer Science,
290:831–862, January 2003.

[24] T. Reps. Program analysis via graph reachability. In M. Har-
man and K. Gallagher, editors, Information and Software
Technology Special Issue on Program Slicing, volume 40,
pages 701–726. Elsevier Science B. V., 1998.

[25] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding
up slicing. In ACM Foundations of Software Engineer-
ing (FSE’94), pages 11–20, New Orleans, LA, Dec. 1994.
ACM SIGSOFT Software Engineering Notes 19, 5 (Decem-
ber 1994).

[26] T. Reps and W. Yang. The semantics of program slicing.
Technical Report Technical Report 777, University of Wis-
consin, 1988.

[27] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, Sept. 1995.

[28] G. A. Venkatesh. The semantic approach to program slic-
ing. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 26–28, Toronto,
Canada, June 1991. Proceedings in SIGPLAN Notices,
26(6), pp.107–119, 1991.

[29] M. Weiser. Program slices: Formal, psychological, and
practical investigations of an automatic program abstrac-
tion method. PhD thesis, University of Michigan, Ann Ar-
bor, MI, 1979.

[30] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, 1984.


