
Measuring the Impact of Friends on the Internal Attributes of Software Systems

Michael English,
�

Jim Buckley,
�

Tony Cahill,
�

and Kristian Lynch
�

�
Department of Computer Science and Information Systems, University of Limerick, Ireland.�

Dept of Clinical Sciences, Lund University, Sweden.�
Michael.English, Jim.Buckley, Anthony.Cahill � @ul.ie

Kristian.Lynch@med.lu.se

Abstract

Differing views have been expressed on the appropriate-
ness of the friend construct in the design and implementa-
tion of object-oriented software in C++. However, little em-
pirical analysis of its usage in the development of systems
has taken place. This paper describes an empirical study
of the top 100 most downloaded open-source software sys-
tems from sourceforge.net, to assess the design implications
of the use of the friend construct.

On a larger cohort of systems our results provide fur-
ther evidence that classes declared as friends are coupling
hotspots. Our findings also indicate that class size does not
seem to have the confounding effect on this relationship that
has been suggested in previous research. In addition, there
seems to be no indication that friendship is used as an al-
ternative to inheritance although a small number of systems
seem to use friendship as an alternative to multiple inheri-
tance and vice versa.

1 Introduction

In [4], many of the empirical studies of software systems
that have taken place are summarized. Most of these studies
focus on predicting external quality attributes from internal
object-oriented design measures. The external character-
istics assessed are fault-proneness, effort, productivity and
maintainability. The internal measures can be classified as
variations of coupling measures, cohesion measures, inher-
itance measures and size measures. In this paper the friend
construct of C++ is examined in depth by studying its effect
on other internal design measures.

Briand et al., [5], have pointed out that empirical stud-
ies of systems’ structure and quality are needed to provide
actual evidence of what constitutes good object-oriented de-
sign and several studies have been performed which apply a
set of design measures to systems and investigate relation-
ships between these measures, [1, 9, 15].

A friend of a class has been defined as a function “that is
not a member of the class but is permitted to use the private
and protected member names from the class”, [13]. A class�

, can also be defined as a friend of another class, � . This
makes all member functions of

�
friends of class � .

Little analysis exists of friend usage in systems or on its
impact on internal or external quality attributes, (notable ex-
ceptions being [9, 15]). This seems surprising given the dia-
metrically opposing views on its appropriateness which ex-
ist in the literature. For example, [8, 18, 16], claim that the
encapsulation provided by the protected and private mecha-
nisms is violated by friendship. In contrast Stroustrup, [19],
defends the friendship mechanism, describing it as “one
protection domain granting a read-write capability to an-
other”. On the middle ground, Meyers, [17], and Booch,
[3], suggest that friends should be chosen wisely.

2 Related Studies

One study that did assess friendship with respect to other
design measures was Counsell and Newson, [9]. They per-
formed a case-study on the use of friends in four C++ soft-
ware systems. From five initial hypotheses, they found that
“classes containing friends that engage in inheritance have
less descendants than other classes engaged in inheritance”.
This suggests that friends are more likely to be found deep
in the inheritance hierarchy, thus obtaining access to ex-
tra functionality. They also found that “classes that do not
engage in any inheritance have more friends than classes
that do engage in inheritance”, suggesting that classes use
friends as an alternative to inheritance.

A subsequent study, [15], refined the study of Counsell
and Newson by:

� Omitting all overloaded operators defined as friends,
from the measurements taken, since such usage is en-
forced by the syntactic restrictions of C++.

� Refining the statement of some of the hypotheses;

System Number KLOC Stand Inh. Avg Max Mult More Fr Fr Fr Fr Cls Classes %Fr %FrCl
Name of Alone Trees Classes DIT Inh. than rels Cls. Fcns. Ops declared declaring

Classes Classes per 1 as Fr
Tree Parent Fr

Abiword 1336 420 256 85 12.7 5 26 26 186 182 4 0 86 147 13.9 13.6
Audacity 190 166 58 12 11.0 3 5 3 30 26 4 0 22 23 15.8 13.7
Bzflag 431 106 171 28 9.3 3 1 1 59 58 1 1 36 50 13.7 13.5
Dc++ 205 114 51 35 4.4 3 118 0 28 27 0 0 12 24 13.7 13.2
Emule 381 135 103 22 12.6 6 26 20 84 72 12 11 53 42 22.0 18.9
Emulemorph 401 180 121 15 18.7 6 18 18 98 79 19 18 60 45 24.4 19.7
Emuleplus 227 98 53 6 29.0 3 15 15 40 34 1 1 26 22 17.6 15.0
Licq 342 71 56 12 23.8 5 5 5 86 65 21 1 28 38 25.1 19.0
Scummvm 403 463 134 45 6.0 8 10 10 38 38 0 0 27 29 9.4 9.4
Shareaza 401 129 131 9 30.0 8 0 0 96 96 0 0 76 61 23.9 23.9
Ultravnc 134 95 91 7 6.1 2 0 0 17 16 1 0 12 11 12.7 11.9
Winscp 228 129 18 10 21.0 4 3 3 33 30 3 0 20 15 14.5 13.2
Wxwidgets 1628 280 349 68 18.8 6 18 18 328 120 206 203 75 90 20.1 7.4
Gnucleas 35 11 9 0 0 1 0 0 4 4 0 0 4 1 11.4 11.4
Lame 21 30 7 1 14.0 2 3 1 7 5 2 2 5 3 33.3 23.8
Filezilla 132 61 31 6 16.8 2 4 4 8 8 0 0 7 6 6.1 6.1
Firebird 202 1103 35 13 12.8 3 1 1 14 14 0 0 7 9 6.9 6.9
Celestia 234 136 91 18 7.9 2 5 5 15 2 13 12 1 2 6.4 0.9
Wdm 122 32 25 23 4.2 4 15 7 8 6 2 2 3 6 6.6 4.9
Cdex 160 91 24 4 34.0 4 1 1 2 2 0 0 2 1 1.2 1.2
Virtualdub 591 154 152 91 4.8 6 53 44 7 6 1 1 6 5 1.2 1.0
CVSGUI 387 69 75 22 14.2 5 13 12 12 10 1 0 7 9 3.1 2.6
7zip 434 77 186 31 8.0 4 215 115 7 7 0 0 6 7 1.6 1.6
AC3filter 32 19 13 6 3.2 2 5 4 0 0 0 0 0 0 0.0 0.0
Flaskmpeg 115 76 53 17 3.6 3 4 4 3 0 1 0 0 0 2.6 0.0
VBA 113 77 13 8 12.5 2 16 14 4 3 1 0 2 3 3.5 2.7
Dscaler 69 140 13 2 28.0 6 65 30 2 2 0 0 0 1 2.9 2.9
Bo2k 34 20 10 0 0 1 0 0 1 0 1 0 0 0 2.9 0.0
Mynapster 137 46 34 3 34.3 2 1 1 4 3 1 0 3 3 2.9 2.2
Tuxracer 4 32 4 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
Eraser 97 33 13 3 28.0 2 2 2 4 3 1 0 3 3 4.1 3.1
Stepmania 309 88 83 13 17.4 6 3 3 5 3 2 2 2 3 1.6 1.0
Dosbox 119 69 21 17 5.8 2 0 0 2 0 2 0 0 0 1.7 0.0
Bochs 91 113 13 5 15.6 4 0 0 0 0 0 0 0 0 0.0 0.0
Ypops 12 6 11 0 0 1 0 0 1 0 1 1 0 0 8.3 0.0
Genesis3d 48 186 10 0 0 2 0 0 1 0 1 0 0 0 2.1 0.0
Doomlegacy 3 110 3 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0

Table 1. Summary Metrics for the 37 Software Systems

� Refining the measurements used in some hypotheses;

� Using a more rigorous approach to the statistical anal-
ysis;

This study found that:

� Classes declared as friends of other classes have more
non-friend coupling than classes which are not de-
clared as friends, implying that classes declared as
friends are coupling hotspots in systems.

� The more declared friends of a class, the more private
and protected members in that class. This is as ex-
pected since friends are only necessary to access the
protected and private members of a class.

� Classes that do not engage in any inheritance have
more friends than classes which do engage in inheri-
tance, suggesting again that the friend mechanism is
used as an alternative to inheritance.

Our results clearly supported the first two hypotheses.
A variation of the second hypothesis indicated that a cor-
relation didn’t exist between the number of inherited pro-
tected members and the number of friends declared in a
class. This seemed to indicate that friends are only used
to access protected and private members in a class and not
any inherited protected members. This outcome was also
supported by the absence of a link between the Depth of In-
heritance, (DIT), for classes engaged in inheritance which
contain friends and those engaged in inheritance which do
not contain friends. There was no evidence to suggest that
classes declared as friends of other classes have less inheri-
tance than other system classes but there was some support
for the third hypothesis outlined above.

3 Empirical Study

In order to enlarge our previous study, [15], we chose
to examine the top 100 most downloaded projects from
www.sourceforge.net. While download statistics do not di-
rectly reflect the usefulness of software, it does give some
indication that the products have reached a quality thresh-
old acceptable to users. Of these systems, 37 were at least
partially developed in C++. Summary statistics of all 37
systems is given in table 1.

Of the 37 systems, 33 systems contained some usage of
the friend construct and 28 contained classes declared as
friends. Previous analysis, [14], [15], indicated consider-
able usage of friendship to facilitate operator overloading,
where it was reported that up to 50% of all friend relation-
ships were used for this purpose. In this analysis, the friend
construct is used to facilitate operator overloading in 12 of
the 37 systems. However, there are just 4 systems where the

mechanism is used more than twice. Only one system con-
tains considerable usage of friendship to facilitate operator
overloading, suggesting that this is not, in fact, a common
practice in the systems studied.

Sourceforge.net allows system developers to supply in-
formation in relation to the topic and intended audience of
each system hosted by Sourceforge. The 37 systems ana-
lyzed here have been categorized as word processors, mul-
timedia tools, networking tools for file sharing, backup and
instant messaging, games and mail transport agents.

In [15] a large quantity of friendship was found in a study
of library-based systems. The proportion of friend relation-
ships relative to the number of classes ranged from 40% to
200% for the four systems analysed. This is not surprising
given that friends may be used to support interface design
and for efficiency purposes in libraries. Counsell et al., [11],
have highlighted the large proportion of friend declarations
in library-based systems and showed that library-based sys-
tems have a lack of other forms of coupling. Bieman and
Zhao, [2], have suggested that developers put more effort
into the design of libraries than into the design of applica-
tion software, implying that such extensive usage of friend-
ship is based on design rationale. Based on our analysis
in this study of the end-user profile supplied by source-
forge, 34 systems could be described as application-based
systems and 3 as library-based systems. In systems gen-
erally, friendship usage is lower than previously reported,
ranging from 0% to 33%. Surprisingly in 2 of the 3 library-
based systems friendship usage was low too. However,
the final library-based system has 230 friend relationships,
the largest number of friend relationships of any system in
this study. This system is also one of the 4 systems men-
tioned previously which uses friendship consistently to fa-
cilitate operator overloading. In fact 45% of all friend rela-
tionships correspond to overloaded operators, (105 operator
overloads, compared to 18 for the system with the next most
frequent usage of operator overloading). For this library-
based system it is clear that the friend construct is used ex-
tensively, especially to facilitate operator overloading, in a
similar way to 3 of the library-based systems of the previous
study, [15].

The properties detailed in table 1, may provide insight
into the rationale underlying the decision to use the friend
construct or may highlight trade-offs that had to be consid-
ered in its usage. For example, friendship has been sug-
gested as an alternative to inheritance, [9, 10]. Thus, it
might be expected that systems which declare friend classes
may use less inheritance and hence may have a lower over-
all depth of inheritance, a smaller proportion of classes en-
gaged in inheritance or a smaller average number of classes
per hierarchy. It might also be the case that classes are de-
clared as friends to avoid the use of multiple inheritance.

In addition, given the data in table 1, it seems worthwhile

to consider if the systems which contain classes declared as
friends are bigger than the systems which do not declare
friend classes.

3.1 Statement of System Hypotheses

We have formulated the following hypotheses to estab-
lish if any of the relationships described above can be es-
tablished between the systems analyzed from the data pre-
sented in table 1.

� System Hypothesis 1: Systems with classes declared
as friends are bigger than systems without declared
friend classes.

If the size difference between systems is found to be
statistically significant then it should be considered in
the interpretation of the analysis of the other system
variables. For the purposes of this hypothesis the size
of the systems is measured in terms of the number of
classes in them.

� System Hypothesis 2: Systems with declared friend
classes have less inheritance than systems without de-
clared friend classes.

To establish if there is any indication that friendship
is used as a substitute for inheritance, we studied how
the maximum depth of inheritance, the percentage of
classes engaged in inheritance and the average number
of classes per inheritance hierarchy, varied between the
two groups of systems.

� System Hypothesis 3: Systems with classes declared
as friends have less multiple inheritance than systems
without classes declared as friends.

Alternative measures of multiple inheritance are pro-
vided in the columns ’More than 1 Parent’ and ’Mult
Inh’ in table 1. The ’More than 1 Parent’ column
returns the number of classes which have more than
one parent in each system. The column entitled ’Mult.
Inh.’ is an alternative measure of multiple inheritance
and counts the number of parents, greater than one
which the classes in a system have, i.e. a class with
� parents contributes ����� to this measure.

3.2 Statement of Class Hypotheses

Based on the work of Counsell and Newson, [9], and
English et al., [15], the effect of class friendship on coupling
at a class level within systems needs to be investigated.

We are interested in studying systems with habitual use
of the friend construct, the longer term goal being to ex-
amine the architectural trade-offs involved in its use. Thus,
in examining the class hypotheses we will consider systems

which contain at least 5% friend class relationships, avoid-
ing systems with less friendship since such usage may be
of a random nature. Some of the 37 systems developed in
C++ had a very small number of references to the friend
construct. Thus we will apply the class hypotheses outlined
below to 17 systems.

In section 2 we discussed the 3 hypotheses statistically
supported in the findings of [15]. These hypotheses were:

� Class Hypothesis 4: Classes declared as friends
of other classes have more non-friend coupling than
classes which are not declared as friends.

� Class Hypothesis 5: The more declared friends of a
class, the more private and protected members in that
class.

� Class Hypothesis 6: Classes that do not engage in any
inheritance have more friends than classes which do
engage in inheritance.

However, this evaluation was on a small pool of systems, of
a predominantly library nature. In this study we repeat class
hypotheses 4, 5 and 6 for a larger, more general cohort of
systems. In addition to this we consider the size of classes
as a confounding factor.

El Emam et al., [12], have shown a confounding effect
of class size on the validity of some object-oriented metrics.
Therefore we apply hypothesis 7 outlined below to establish
if classes which are declared as friends tend to be larger than
other classes in software systems.

� Class Hypothesis 7: Classes declared as friends are
bigger than other system classes.

This hypothesis has been evaluated based on two mea-
sures of size, Weighted Methods per Class, (WMC) and
Lines of Code, (LOC).

In addition, to investigate the confounding effect of size,
we have carried out a multivariate analysis to determine if
CBO is significantly different for classes declared as friends
than for classes not declared as friends, when controlling for
size.

4 Results

4.1 Statistical Techniques

To evaluate the system hypotheses an analysis of the
summary system variables is presented in table 2. In each
case we applied the Mann-Whitney statistic to determine if
any differences between the two groups of systems are sta-
tistically significant. If the p-value is statistically significant
then the 25, 50 and 75 percentiles along with the minimum

Variable p-value Systems with Classes: Percentiles
Size 25 50 75 Min Max

.000 Not Declared as Friends 8 34 103 3 119
(No. of Classes) Declared as Friends 132.5 227.5 401 21 1628

Max DIT .002 Not Declared as Friends 0.5 2 2.5 0 4
Declared as Friends 2 4 6 1 8

% Inheritance-based .076 Not Declared as Friends 2 61.5 81.25 0 86
Classes Declared as Friends 67.75 75 81 32 92

Avg. No. Classes � .001 Not Declared as Friends 0 0 4.7 0 15.6
per inh. tree Declared as Friends 7.9 13.4 23.1 0 34.3

Multiple .001 Not Declared as Friends 0 0 2 0 5
Inheritance Declared as Friends 1.25 5 18 0 215

Table 2. Comparison of System-level characteristics for systems with and without friend classes

and maximum values of the two groups for each variable
are used to illustrate the nature of the differences.

The Pearson Chi-Square Test of Association was used
to evaluate class hypotheses 4, 5, 6 and 7. The results are
presented in table 3. Class hypothesis 2 was tested using
the Spearman correlation coefficient and the results of this
test are shown in table 4. Finally a multivariate regression
was performed to assess the influence of class size, with the
results presented in table 5.

4.2 Discussion of Results

In this section the results of the statistical analysis for
each of the hypotheses are discussed. In addition the results
of the multi-variate analysis, controlling for size, are also
discussed.

4.2.1 Evaluation of System Hypotheses

System Hypothesis 1: Systems with classes declared as
friends are bigger than systems without declared friend
classes

The p-value presented in table 2 for this analysis is statis-
tically significant, (��� ��� �). In fact, each of the percentiles
and the minimum and maximum values for systems with
classes declared as friends are considerably larger. There-
fore, we can conclude that systems which declare friend
classes are significantly larger than other systems.

System Hypothesis 2: Systems with declared friend
classes have less inheritance than systems without de-
clared friend classes

The maximum DIT and average number of classes per
hierarchy both returned significant p-values, (see table ??),
both indicating that systems with declared friend classes

have a significantly higher maximum DIT and average num-
ber of classes per hierarchy. Given this result for either of
these variables, the same result would be expected for the
other. However, given that we have already shown that sys-
tems which contain classes declared as friends are bigger
than other systems, the larger values for the maximum DIT
and average number of classes per hierarchy may be be-
cause these systems are bigger than systems which do not
contain classes declared as friends. The p-value for the
percentage of inheritance-based classes in systems is not
significant, indicating that any difference in the percentiles
or minimum and maximum values between the two groups
may be down to chance. Thus, we cannot confirm that the
use of friendship is inversely related to the use of inheri-
tance.

System Hypothesis 3: Systems with classes declared as
friends have less multiple inheritance than systems with-
out classes declared as friends

It is possible that friendship is used instead of multi-
ple inheritance in systems. Table 2 illustrates that systems
which declare friend classes use multiple inheritance sig-
nificantly more than systems which do not declare friend
classes, suggesting that friendship is not used as an alterna-
tive to multiple inheritance. However, it is worth noting that
a small number of systems which have a lot of multiple in-
heritance have very little friendship. Table 1 illustrates that
one system has 115 classes with more than one parent, ap-
proximately 26% of all classes in the system. This system
has by far the most usage of multiple inheritance of all the
systems irrespective of size but only 1.6% of its classes are
declared as friends. Two other systems with little use of the
friend construct also make considerable use of multiple in-
heritance. In addition, there are a number of systems which
have a high number of friend classes and a small amount of
multiple inheritance. For example, one class has 96 friend

classes and no multiple inheritance, another has 182 friend
classes and 26 classes involved in multiple inheritance.

However, these systems are not in line with the statisti-
cal findings and illustrate an inconsistency in design con-
siderations with respect to multiple inheritance and friends
across systems. Most systems which use multiple inheri-
tance often, also seem to use friendship relatively consis-
tently. In most systems where multiple inheritance is used
classes tend to have just two parents with about three excep-
tions in this analysis.

A Spearman correlation was also performed to investi-
gate further how multiple inheritance and friendship are re-
lated. However, the Spearman statistic returned a significant
positive correlation, indicating that in general as the use of
multiple inheritance increases so does the use of friendship.
The system size may have a confounding effect in this anal-
ysis since we have already seen that systems without friend
classes are much smaller than other systems. In other words
the small systems tend to have less multiple inheritance than
larger systems.

The final consideration in relation to friendship and in-
heritance is whether or not a class is also a friend of its
parent class. This type of usage could not impact multiple
inheritance but may illustrate alternative uses of the friend
construct. This scenario arises very seldom, with one sys-
tem showing 3 occurrences and 3 systems with just one oc-
currence of this characteristic.

From this analysis we can conclude that while there
seems to be some systems which use friendship instead of
multiple inheritance or systems which have considerable
multiple inheritance but do not use friendship, this associa-
tion is not statistically significant for the systems analyzed
in this study. There are also systems which use both multi-
ple inheritance and friendship consistently.

If coupling to existing class hierarchies in a system is
required, then system maintainers may consider it unwise
to alter these existing hierarchical structures. Therefore, it
may be the case that the friend construct is used to facilitate
coupling with classes within these inheritance hierarchies.
Further analysis is required to determine if this is actually
the case.

4.2.2 Evaluation of Class Hypotheses

Class Hypothesis 4: Classes declared as friends have
more non-friend coupling than classes not declared as
friends

Of the 17 systems under study, this hypothesis was ac-
cepted for 13 of the systems, with ��� � � � , (see ta-
ble 3). This lends further support to our original findings
that classes which are declared as friends have higher class
couplings than other system classes (using CBO as our cou-
pling metric). The possible reasons why this hypothesis

System H4 H6 H7(a) H7(b)
1 � .001 .505 � .001 � .001
2 � .001 .097 .003 .061
3 .004 .066 .002 .005
4 .002 .402 .227 .028
5 � .001 .005 � .001 � .001
6 � .001 .003 � .001 � .001
7 � .001 .709 � .001 � .001
8 � .001 � .001 � .001 � .001
9 .220 .405 .001 .190
10 .044 .004 .016 .005
11 .010 .463 .874 .082
12 .004 .423 .419 .002
13 .019 � .001 � .001 � .001
14 .024 .731 .170 .031
15 .271 .146 .003 .144
16 .490 .551 .376 .454
17 .292 .417 .852 .808

Table 3. P-values for the Chi-Square Statistic

Hypothesis 5
System p-value Spearman

1 .800 .007
2 � .001 .340
3 � .001 .234
4 � .001 .464
5 � .001 .218
6 � .001 .211
7 .028 .149
8 .064 .100
9 .041 .107

10 .967 .002
11 � .001 .306
12 .161 .094
13 .258 .029
14 .001 .280
15 .002 .222
16 .092 .289
17 .454 -.173

Table 4. Spearman Statistics for Hypothesis 5

fails for four of the systems are as follows:

� Two of these systems have only four and five classes
declared as friends. These systems are very small,
with 35 and 21 classes respectively. The next small-
est system studied, in terms of the number of classes,
has 132 classes. These two systems are outliers, (in
terms of size), of the group of systems which declare
friend classes. While the analysis in section 3 showed
that systems with classes declared as friends are sig-
nificantly bigger than systems without classes declared
as friends, it is clear from table 2 that the size of these
systems is much closer to the median size, (34), of sys-
tems which do not declare friend classes.

� It is difficult to achieve a statistically significant dif-
ference between two groups when one of the popula-
tions is very small, as is the case for both these sys-
tems, with 4 and 5 classes declared as friends. The
chi-square statistic calculates the difference between
the expected and observed frequency for each cell in
the cross tabulation. If one row total is very small then
differences calculated between observed and expected
frequencies will also be small. Therefore it is more
difficult to achieve a statistically significant outcome.

� These systems also contain very little inheritance, with
just one inheritance hierarchy in one system and none
in the other. Therefore it may be inappropriate to ex-
pect the same conclusions to hold for these small sys-
tems as the larger systems in the study. It may be
the case that design considerations, such as informa-
tion hiding, may not have received much consideration
prior to coding and thus coupling in this system may
specifically be facilitated by the use of the friend con-
struct. The next system for which the hypothesis didn’t
hold has 202 classes but only 7 classes are declared as
friends, corresponding to 3.5% of classes in the sys-
tem, the smallest percentage of all systems studied.

� There is one remaining system which is of a reasonable
size, and has a significant amount of declared friend
classes for which this hypothesis does not hold. This
system also contains a relatively small proportion of
friend relationships. In addition, the number of classes,
inheritance trees, average number of classes per tree
and the maximum DIT give an idea of the shape of
the inheritance trees in the system. There are 45 in-
heritance trees, with an average of six classes per tree,
which is relatively small. The maximum DIT of 8 in-
dicates that while the hierarchies may be deep they
are quite narrow. These measures indicate that there
is much potential for members to be inherited through
each hierarchy. However, our coupling metric does not
take inheritance into account in the evaluation of CBO,

possibly resulting in a relatively lower CBO value for
this system than for the remaining systems.

Class Hypothesis 5: The more declared friends of a
class, the more private and protected members in that
class.

The statistical results for this hypothesis are shown in ta-
ble 4. A significant correlation exists between the declared
friends of a class and the number of private and protected
members in the class, for 10 of the 17 systems under study.
While the Spearman statistic illustrates a positive correla-
tion in all but one case, this correlation is weak, with only 1
of the 10 systems illustrating a correlation greater than 0.4.

To gain a better understanding of this result, it is inter-
esting to study the distribution of the “declared friends of a
class” variable, for each system. The distribution of this
variable illustrates that the 25, 50 and 75 percentiles are
zero, for all 17 systems. Having such a large proportion
of classes with no declared friends is bound to influence
the search for a linear correlation, by mapping the number
of private and protected members of these classes to a zero
value, corresponding to no declared friend classes. Further-
more, for all but one system more than 85% of classes in
each system do not declare any friends. For the systems
which did not show any correlation for this hypothesis, this
percentage tended to be over 90% is most cases.

There are two variations of this hypothesis which may
provide more meaningful results. The distribution consid-
ered above, suggests that it might be more appropriate if
this hypothesis is only considered for classes which declare
at least one friend, thus eliminating all zero values from the
correlation. However, another consideration in this analysis
must be the distribution of the variable, the number of de-
clared friends of a class. This variable has between 1 and
5 distinct non-zero values across 16 of the 17 systems. The
remaining system has 7 distinct non-zero values and this
system rejected the original hypothesis. El Emam et al.,
[12], have suggested that variables with less than six non-
zero values should be excluded from further analysis, since
as Briand et al., [5], state, such measures with low variance
do not differentiate classes very well. Therefore, with at
most 5 distinct points for the number of declared friends of
a class, attempting to identify a linear correlation may not
be statistically worthwhile.

The other possible refinement of this hypothesis might
try to establish if classes which declare friends have more
private and protected members than classes which do not
declare friends, thus checking to see if a difference exists
between two groups as opposed to looking for a linear cor-
relation.

Class Hypothesis 6: Classes that do not engage in any

inheritance have more friends than classes which do en-
gage in inheritance.

This hypothesis is only supported by 5 of the 17 systems.
Thus there is no evidence to support this hypothesis in gen-
eral. In the original study, this hypothesis held for 3 of the
4 systems considered. It uses the same variable as hypothe-
sis 5, (the number of declared friends of a class). The large
number of zero values and the low variance of this variable
have already been suggested as possible contributory factors
in making this variable unsuitable for this type of analysis.
A more appropriate approach might split this variable into
just two groups, i.e. classes which declare friends and those
that do not.

This approach would be closer to that of Counsell
and Newson, who compared the proportion of stand-alone
classes containing at least one friend with the proportion
of inheritance-based classes containing at least one friend.
However, when we compared the population of stand alone
classes that had friends to those classes engaged in inheri-
tance that had friends, there was only a significance differ-
ence in 5 of the 17 systems. Thus relaxing the hypothesis in
this way did not result in any change in the outcome of the
analysis.

Class Hypothesis 7: Classes declared as friends are big-
ger than other system classes

We have evaluated this hypothesis using 2 measures of
size, Lines of Code, (LOC), and Weighted Methods per
Class, (WMC), [7]. In this instance the weights assigned
to the methods are all set to 1 and thus WMC counts
the number of methods per class. The 2 sub-hypotheses
which have been formed are outlined and their results are
discussed below:

Class Hypothesis 7(a): Classes declared as friends
have a higher WMC than other system classes

Class Hypothesis 7(b): Classes declared as friends have
a higher LOC than other system classes

Hypotheses 7(a) and 7(b) are both supported by 11 of
the 17 systems, with 8 systems supporting both hypotheses.
We cannot state that classes declared a friends tend to be
bigger than other system classes. However, at least one of
these hypotheses holds for 14 of the 17 systems. Two of
the remaining 3 systems are the small systems discussed in
hypothesis 4.

The results of El Emam et al., [12], may have an impact
here. They found that the ability of existing object-oriented
metrics to be associated with fault-proneness diminished
when controlling for size. An association between classes
declared as friends and high coupling has been shown in

this paper and in previous work, [15]. We have also shown
that for about 66% of systems, classes which are declared
as friends are bigger than classes which are not declared as
friends. El Emam et al., have highlighted a number of stud-
ies which have shown a correlation between coupling and
size, e.g. [5, 6].

Considering these findings the relationship between
classes declared as friends and coupling may have been
overestimated due to the effect of size. However, if classes
declared as friends are shown to have high coupling after
controlling for size then it may be the case that classes de-
clared as friends would be better predictors of external qual-
ity attributes, than existing object-oriented metrics.

4.2.3 Multivariate Analysis Controlling for Size

To investigate if size does have a controlling effect, a multi-
variate analysis controlling for size has been undertaken. In
particular we investigate if classes declared as friends have
higher CBO values when we control for size.

Table 5 illustrates the results of this analysis. For com-
pleteness the results of a linear regression with one and two
independent variables is provided. In this analysis the de-
pendent variable corresponds to CBO. In the bivariate anal-
ysis, the independent variable is the boolean variable which
determines whether or not a class is declared a friend. When
controlling for size, two different size measures are added
separately as independent variables to the regression model.

The results presented when controlling for size should
be similar to those in table 3 for hypothesis 4. With
� � � � � , 15 systems returned a significant p-value for CBO,
(compared with 13 supporting hypothesis 4), indicating that
CBO is significantly different for classes which are declared
as friends compared with those classes which are not de-
clared as friends. Hypothesis 4 did not hold for either of the
two systems which do not show significance here.

When controlling for size, only the systems which show
a significant p-value in the bivariate analysis need to be con-
sidered. In this case, 11 of the 15 systems which showed
significance without controlling for size are still significant
when controlling for size with both the WMC and LOC
metrics.

The results presented here do not support the confound-
ing effect of size to the same extent as reported in [12].
This suggests that while El Emam et al. have concluded
that size has a confounding effect on other object-oriented
metrics, in attempting to predict fault-prone classes, the re-
sults presented here suggest that classes which are declared
as friends still tend to have high coupling even when size
is taken into account. It may follow from this that classes
which are declared as friends may be better predictors of
fault-proneness than existing object-oriented metrics.

Without Size Control With Size Control
WMC LOC

System CBO CBO CBO
1 � .001 .003 .083
2 � .001 � .001 .005
3 .010 .014 .022
4 .019 .019 .105
5 � .001 � .001 � .001
6 � .001 � .001 � .001
7 � .001 .001 .011
8 � .001 .011 .089
9 .191 .487 .746

10 .040 .424 .862
11 .005 .003 .008
12 .002 .003 .033
13 .469 .269 .218
14 .707 .706 .712
15 .142 .206 .965
16 .285 .750 .763
17 .697 .693 .695

Table 5. Regression Model with and without
controlling for size

5 Threats to Validity

This section reports on the threats to the validity of the
study reported in this paper. The systems under analysis in
this study are all open-source systems and were all down-
loaded from sourceforge.net. These systems were at least
partially developed in C++ and are in the top 100 most
downloaded systems from sourceforge.net, all of which
were downloaded more than 1 million times. This down-
load statistic is the only quality measure which we have
used and can only be used as an indication of the quality
of the systems concerned.

It is not possible to generalize the results presented here
to commercial systems, since no evidence exists to sug-
gest that commercial systems have similar characteristics
to open-source systems. Another variable yet unquantified
factor is that these systems may have been developed by
many individuals located across a wide geographical area
or may have been developed by a single individual. In
addition, the experience of the developers involved is not
known. These variables may have a confounding effect on
the analysis performed here.

For many of the systems studied in this paper, multiple
languages have been used in their development. The ex-
tent to which C++ is the development language used may
impact the results presented here. In some cases C++ may
be used for a complete project, whereas in other cases C++

might only be used to build certain components of the sys-
tem. There is also a huge variation in system size which
may impact the results. However, the size of the systems
presented in table 1 only refer to the parts of the system
developed in C++.

The projects analyzed in this paper may also vary with
regard to their maturity level. For example, some projects
may have gone through many iterations of changes whereas
others may be relatively immature. The systems analyzed
come from many and widely different application domains.
Systems from different domains may also vary in terms of
the different design alternatives applied in system develop-
ment.

6 Concluding Remarks

In this paper we have performed an empirical study of a
large cohort of open-source software systems to investigate
the use of the friend construct in C++ software and to estab-
lish to what extent the friend relationship is exploited in the
development of systems.

We have confirmed previous findings that classes which
are declared as friends have higher coupling than other sys-
tem classes. Classes declared as friends have also been
shown to be bigger than classes not declared as friends.
However, when controlling for the size variable, classes de-
clared as friends still had higher coupling than other sys-
tem classes. Thus the confounding effect of size on object-
oriented metrics in predicting fault-proneness of classes
does not hold in this instance.

We have found no statistically significant results which
suggest that friendship is used as an alternative to inheri-
tance or multiple inheritance. However, in a subset of the
systems where multiple inheritance is popular, there seems
to be little use of friendship and in other systems where
friendship is used extensively there seems to be a relatively
small amount of multiple inheritance. In general, this is not
the case as the analysis has shown. If the friend construct
is introduced into the system after the inheritance hierarchy
has been constructed, then it may be the case that friend-
ship is used instead of altering the inheritance structure, to
facilitate coupling.

The systems analyzed in this study were mainly appli-
cation based systems. Our analysis showed that operator
overloading is used considerably less in these systems com-
pared with its usage in the library-based systems of a previ-
ous study. The relationship between the number of private
and protected members in a class and the number of friends
declared in the class was supported to a much lesser extent
in this analysis although overall it has been supported by 13
out of 21 systems.

Our results also show that friend classes seem to be used
more frequently than friend functions. Given Stroustrup’s

definition of friend classes, one might expect that their us-
age suggests that all methods in the class utilize the friend
relationship. This is one example of a widespread phenom-
ena in C++ whereby existing software metrics cannot estab-
lish the level of actual usage of the friend class mechanism.

In general the C++ language provides a huge number of
structuring alternatives and simple measures do not high-
light the interplay between design possibilities. There-
fore more sophisticated metrics must be defined for explor-
ing the tradeoffs between different structuring alternatives.
Analysis of systems using these metrics should illustrate
more accurately, ideally in an automated fashion, in particu-
lar the extent to which friendship is responsible for coupling
between classes and in general for exploring the features of
design decisions expressed in product structure. Our future
work direction is to define metrics for exploring tradeoffs in
the types of structuring alternatives used in software prod-
ucts.

References

[1] F. Abreu, M. G. ao, and R. Esteves. Towards the Design
Quality Evaluation of Object-Oriented Software Systems. In
Fifth International Conference on Software Quality, Austin,
Texas, USA, October 1995.

[2] J. M. Bieman and J. X. Zhao. Reuse Through Inheritance: a
Quantitative Study of C++ Software. In SSR ’95: Proceed-
ings of the 1995 Symposium on Software reusability, pages
47–52, New York, NY, USA, 1995. ACM Press.

[3] G. Booch. Object Oriented Design with Applications. The
Benjamin/Cummings Publishing Company Inc., 1991.

[4] L. Briand and J. Wüst. Empirical Studies of Quality Mod-
els in Object-Oriented Systems. Advances in Computers,
59:97–166, 2002.

[5] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter. Explor-
ing the relationships between design measures and software
quality in object-oriented systems. The Journal of Systems
and Software, 51(3):245–273, 2000.

[6] M. Cartwright and M. Shepperd. An Empirical Investigation
of an Object-Oriented Software System. IEEE Transactions
on Software Engineering, 2000.

[7] S. R. Chidamber and C. F. Kemerer. A Metrics Suite
for Object Oriented Design. IEEE Trans. Software Eng.,
20(6):476–493, 1994.

[8] J. O. Coplien. ”Advanced C++ Programming Styles and Id-
ioms. Addison-Wesley Longman Publishing Co., Inc., 1992.

[9] S. Counsell and P. Newson. Use of Friends in C++ Soft-
ware: An Empirical Investigation. Journal of Systems and
Software, 53(1):15–21, 2000.

[10] S. Counsell, P. Newson, and E. Mendes. Architectural Level
Hypothesis Testing through Reverse Engineering of Object-
oriented Software. In Proceedings of the 8th International
Workshop on Program Comprehension (IWPC 2000), pages
60–66, Limerick, Ireland, 2000.

[11] S. Counsell, P. Newson, and E. Mendes. Design Level Hy-
pothesis Testing Through Reverse Engineering of Object-
Oriented Software. International Journal of Software Engi-
neering, 14(2):207–220, 2004.

[12] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. The
Confounding Effect of Class Size on the Validity of Object-
Oriented Metrics. IEEE Trans. Softw. Eng., 27(7):630–650,
2001.

[13] M. A. Ellis and B. Stroustrup. The Annotated C++ Refer-
ence Manual. Addison-Wesley Longman Publishing Co.,
Inc., 1990.

[14] M. English, J. Buckley, and T. Cahill. Applying Meyer’s
Taxonomy to Object-Oriented Systems. In Third IEEE In-
ternational Workshop on Source Code Analysis and Manip-
ulation, pages 35–44, September 2003.

[15] M. English, J. Buckley, T.Cahill, and K. Lynch. An Em-
pirical Study of the Use of Friends in C++ Software. In
International Workshop on Program Comprehension, May
2005.

[16] R. Harrison, S.Counsell, and R. Nithi. An Overview of
Object-Oriented Design Metrics. In International Con-
ference on Software Technology and Engineering Prac-
tice,(STEP), pages 230–234. IEEE Computer Society Press,
July 1997.

[17] S. Meyers. Effective C++. Addision-Wesley, 1998.
[18] M. Page-Jones. What Every Programmer Should Know

About Object-Oriented Design. Dorset House Publishing,
1995.

[19] B. Stroustrup. The Design and Evolution of C++. ACM
Press/Addison-Wesley Publishing Co., 1994.

