

Declassification: Transforming Java Programs to Remove Intermediate Classes

Bernadette Power G. W. Hamilton

Computer and Networking Department,

Carlow Institute of Technology, Kilkenny Road,

Carlow, Ireland

School of Computer Applications,

Dublin City University, Glasnevin, Dublin 9,

Ireland

bernadette.power@itcarlow.ie hamilton@compapp.dcu.ie

Abstract

This paper presents an optimisation technique which

automatically inlines certain classes within their enclosing

class. Inlining a class involves inserting the fields and

methods of this class into the body of its enclosing class.

The enclosing class is the class which declared an instance

of the class. The declaration of the inlined class can then

be removed from the program. This technique transforms

Java programs into an equivalent form, which may be less

readable, but is more efficient. The results of the

empirical study showed that few classes were found

suitable for inlining and that the declassification was not

overly successful when optimizing the test programs. One

of the advantages of declassification is that it does not

result in code bloating. It is thought that further extensions

to the declassification technique and an intrinsically

object-oriented set of test programs could greatly improve

it’s effectiveness.

1. Introduction

 Computer programming has undergone phenomenal

growth in recent years. Software applications are

increasingly being written in object-oriented languages

like Java [1] and C++ [7], because they offer simple,

uniform, abstract programming models. This programming

model provides the benefits of increased flexibility,

maintainability and extendibility. Object-oriented

programming encourages the use of small methods and

objects [4]. This style of programming introduces much

overhead as each method call results in a dynamic dispatch

and each field access becomes a pointer dereference to the

heap allocated object.

 Consequently, the run-time performance of object-

oriented languages like Java is behind the most popular

languages today, even with just-in-time compilation

technology. There is an obvious need for more aggressive

optimising techniques for the Java language.

 Object-oriented programs are difficult to reason

about and optimise because of the use of inheritance and

dynamically bound method calls. A number of

optimisation techniques have been researched and

developed to improve the performance of object-oriented

programs. For example [5, 6, 13, 14, 15]. The

declassification technique is a novel approach to

improving the performance of Java programs. Its

inception was motivated by the success of the higher-order

deforestation algorithm proposed in [8]. This algorithm

can eliminate intermediate data structures from higher-

order functional programs. By removing the intermediate

data structures, the performance of the program should be

improved and the heap space required by the program

reduced.

 A detailed discussion of the usage counting analysis

algorithm and the proposed transformation is presented in

an earlier paper [10]. This paper extends this work, by

presenting the transformation technique used and also

analyzing and illustrating the results of an empirical study.

The objective of the declassification technique is to reduce

the number of classes which are instantiated and used in a

program during its execution. The declassification

technique is divided into two parts; analysis and

transformation. Information from the usage counting

analysis algorithm is used to determine how many classes

are suitable for inlining. The transformation involves a

source to source transformation and involves inlining the

fields and methods of the inlinable class into its enclosing

class. The declaration of the inlined class can then be

removed from the program as it is no longer needed. By

inlining the class in this way we are eliminating the need

to create and maintain these ‘intermediate classes’ and

instead we are extending the size of their enclosing class.

This technique will change the hierarchical structure of the

program by eliminating these inlinable classes.

 The optimised program code can then be compiled and

run as normal. We investigate the potential of the

declassification technique by performing the analysis and

transformation on a number of reasonable-sized Java

programs. The remainder of this paper is structured as

follows. In Section 2, we describe the usage counting

analysis which is used to identify classes for inlining. In

Section 3, we describe the declassification transformation.

Section 4 lists the restrictions placed on class inlining and

Section 5 investigates the visibility constraints necessary.

In Section 6 we evaluate the declassification technique. A

number of extensions to the declassification technique are

outlined in Section 7. In Section 8, we compare research in

related areas, and Section 9 concludes.

2. Usage Counting Analysis

 The central goal of the usage counting analysis

technique is to identify classes which are used exactly

once within the program. Examples of possible usages

include a variable, field or parameter declared within the

program which is the same type as the class. Two

variables of this type are two usages of the class. A class

which is used once within the program is considered a

suitable class for transformation.

 The usage counting analysis examines all top-level

classes in the program to establish their suitability for

inlining. A top-level class is a Java class which is not an

inner class. There are four types of inner classes; static

member classes, member classes, local classes and

anonymous classes. Throughout this paper top-level

classes will be referred to as classes and a distinction will

only be made between top-level and inner classes when

extensions to the declassification technique are discussed.

It should be noted that although the enclosing class is the

only class to use the inlinable class, it could instantiate this

class one or more times within the program.

 To aid the exposition of this technique, consider the

example in Figure 1.

(a) (b)

Figure Figure Figure Figure 1111. . . . The Picture and Circle classesThe Picture and Circle classesThe Picture and Circle classesThe Picture and Circle classes

The Picture class has a field which stores an instance of

the Circle class. This is illustrated in Figure 1 (a). The

Circle class is a sub class of Shape. Figure 1 (b) illustrates

the hierarchical relationship between Circle and Shape.

The Circle class is a potential candidate for inlining, if it is

established by the usage counting analysis technique that

this class is used no more than once in the program. The

Picture class is the enclosing class which uses it.

 It is essential for the correct operation of the

declassification technique that accurate information is

available on the usages of the different classes within the

program. This requires a very sophisticated type inference

algorithm as Java programs, like other object-oriented

programs, are difficult to reason about. The usage

counting analysis technique uses the results from the type

inference algorithm [9], which determines for each

variable the set of classes to which it may be instantiated

at run-time. It provides information on different types of

variables; these include fields of objects, local variables,

method parameters and return types. The usage counting

analysis algorithm interrogates the type information

available in the sets and supplements it with information

gathered on the layout and structure of the classes in the

Java programs. From these sources it is able to determine

the usage counts of each class within the program. The

pseudocode for the usage counting analysis algorithm is

illustrated in Figure 2 and specifies the criteria by which

usage counts are calculated for all top-level classes. A

class with a count of one has been determined by the usage

counting analysis as having only one use within the

program.

 It is essential that the declassification technique is safe.

Its safety is assured by the fact that a class I is only inlined

within another class E if the usage counting analysis

algorithm determines that the usage count of the inlinable

class I is one. There is as a result, an instance of the

inlinable class I stored within one of the fields e.f of the

enclosing class E. It is the only variable within the

program that can store a reference to the inlinable class.

This variable e.f could be instantiated to one or more

consecutive instances of the inlinable class. There is,

however, only one use of the inlinable class through the e.f

reference. There are as a result, no alias relationships to

the instance of the inlinable class, which could distort the

sharing semantics of the program. Inlining is greatly

complicated by alias relationships and it is more difficult

to guarantee that such a program transformation will not

result in invalid results. Consequently, the declassification

technique does not have to deal with aliases and its

analysis and transformation is significantly simplified, as a

result.

Initialise all usage counts to zero
Apply Plevyak/Chiens algorithm to determine the set of
classes

to which each variable may be instantiated

Start with the main program class
Count:
Begin
 Add 1 to the usage Count of current class
 If current class not marked
 Begin
 Mark current class.

PicturePicturePicturePicture

CircleCircleCircleCircle

ShapShapShapShapeeee

CircleCircleCircleCircle

For each class in the set determined for
each field perform Count.

For each class in the set determined for
each local variable perform Count.

For each class in the set determined for each
method parameter perform Count.

For each class in the set determined for each
method return type perform Count.

For each class in the set determined for each
anonymous object perform Count.

For each superclass perform Count.
 End
End

Figure Figure Figure Figure 2222. . . . The pseudocode for the usage counting The pseudocode for the usage counting The pseudocode for the usage counting The pseudocode for the usage counting
analysis algorithmanalysis algorithmanalysis algorithmanalysis algorithm

Figure 3 illustrates an example of the Picture and Circle

classes in a simple Java program. There are four classes in

the program; Picture, Circle, Square and Shape. The

Circle and Square classes are subclasses of the Shape

class. Each class has its own associated fields and

methods. Again the Circle is used exactly once by the

Picture class and is a suitable class for inlining. The

Square class is not a suitable class because it is used twice

by the Picture class.

Figure Figure Figure Figure 3333.... Program code Program code Program code Program code

3. Transformation

 The analysis will identify suitable classes for inlining.

The transformation involves inlining the fields and

methods of each ‘inlinable’ class within the enclosing

class that has declared the instance. Any references to the

instance of the inlined class are changed to reference its

inlined fields and methods within the enclosing class

object. Figure 4 illustrates the aggregate association

between the Picture and Shape classes, following

transformation. The circle class has been eliminated and

the Picture class now inlines the Circle class.

Figure Figure Figure Figure 4444. The Picture and Shape classes. The Picture and Shape classes. The Picture and Shape classes. The Picture and Shape classes

The fields radius and count will be added to the Picture

class. The methods getCount() and calArea() will also be

added to the Picture class. In discussing the

transformation, the following term is used; the inlined

class variable is the field which is used to store the

instance of the inlinable class within the enclosing class.

The type of this variable is changed to the inlinable class’s

superclass. The Picture class how creates an instance of

the Circle class’s superclass in the variable myCircle.

Figure 5 illustrates the example program given in Figure 3

following the transformation.

3.1. Fields

 It may be necessary to change a field name in the

inlinable class if there is a name clash. A name clash

occurs when an inlinable field has the same name as one

of the following:

1. One of the fields in the enclosing class;

2. One of the fields in any of the superclasses of the

enclosing class;

3. One of the local variables in an enclosing class

method;

4. One of the field constants of any of the interfaces

the enclosing class or any of its superclasses

implement.

 A compiler error would occur if an inlined field clashes

with a field in the enclosing class. The incorrect execution

of the program could result if it clashes with a field in the

enclosing class’s superclass. Another error could occur if

the inlined field clashed with one of the local variables in

an enclosing class method. This is because local variables

class Picture {
float count;
Circle myCircle = new Circle();
Square redSquare = new Square();
Square blueSquare = new Square();

public void initialPictureCircle() {

 myCircle.radius = 2;
 myCircle.colour = ‘Brown’; }

float getCount() { return count; }
}

class Circle extends Shape {

float radius = 1.0;
int count = 2;

int getCount() { return count; }

public void calArea() { area = Math.PI * (radius *

radius);}
}
class Square extends Shape {

float width;

public void calArea() { area = width * width;}
}

class Shape {

float area;
String colour;

}

PicturePicturePicturePicture

ShapeShapeShapeShape

take precedence over fields. A reference to the inlinable

class’s field could after transformation reference a local

variable if their names clashed. Finally, a clash with a

field constant of one of the enclosing classes’ interfaces,

would result in the inlined field taking precedence over it.

This would cause the incorrect execution of the program.

The resolution of the name clash is achieved by replacing

the variable name by a “gensym”. A gensym is a unique

name and it is implemented by concatenating the variable

name with a random integer. Changes are necessary to

both the inlinable class and the enclosing class to account

for the new field names. If a field name has changed it is

essential that changes are made to the field initializers and

methods of the inlinable class. The fields of the inlinable

class can be added directly if there is no clash between

names.

 Some changes are necessary to the enclosing class to

reference the new fields which has been inlined. The

inlined class variable is not removed, but changed to

declare an instance of the superclass. Any references to

fields belonging to this superclass can remain unchanged.

Any references to fields not belonging to the superclass

must be changed to reference the inlined fields directly.

 The position in the enclosing class where the inlined

fields are placed is important. They must be inlined

immediately after the declaration of the inlined class

variable. This is because these fields may be used in the

inialization of one or more of the enclosing classes’ fields.

The position where the methods are placed is not

important.

3.2. Methods

 Similarly, it is necessary to change a method name in

the inlinable class, if a name clash occurs. A name clash

occurs when an inlinable method has the same name and

number of parameters as one of the following:

1. One of the methods in the enclosing class;

2. One of the methods in any of the enclosing

classes’ superclasses.

 To inline a method which has the same name and

number of parameters could result in the incorrect

execution of the program. The resolution of the name

clash is achieved by renaming each method name to a

unique name not used elsewhere in the program. The

references in the inlinable class must be changed to

reference the new method names. This is done in the same

way as for fields. The amount of work needed to transform

the program is reduced if the inlinable methods do not

change name. The enclosing class must be changed again

to reference the new inlined methods.

Figure Figure Figure Figure 5555. . . . Transformed program codeTransformed program codeTransformed program codeTransformed program code

The pseudocode for the transformation technique is given

in Figure 6. The technique assumes there is a clash of

names between the inlinable and enclosing classes. The

algorithm would be simpler if this was not the case.

For each class with a usage count equal to 1
Begin

For each field of the inlinable class which clashes
 Make the field name unique.

 For each method of the inlinable class which clashes
 Make the method name unique.

 Add inlinable class fields to enclosing class.
 Add inlinable class methods to enclosing class.

Change inlined class variable to be of the superclass
type.
Add call to inlinable class’s changed constructor
method.

Step A

Step B

class Picture {
float count;
Shape myCircle;
{circle35223();}
float radius;
int count45143;
Square redSquare = new Square();
Square blueSquare = new Square();

public void initialPictureCircle() {

radius = 2;
myCircle.colour = ‘Brown’; }

float getCount() { return count; }

int getCount67454() { return count45143; }

public void calArea () {
myCircle.area = Math.PI *
(radius * radius); }

circle35223() {
myCircle = new Shape();
radius = 1.0;

 count45143=2; }
}

class Square extends Shape{
 float width;

public void calArea() { area = width * width;}
}

class Shape {
float area;
String colour;

}

Step C

For each field initializer and method in enclosing class
 Perform ReferencesChangesInEnclosingClass.

 For each field initializer and method in inlinable class
 Perform ReferencesChangesInInlinableClass.

 Perform ChangeConstructorMethods

Combine enclosing class finalize method with inlinable
class finalize method.

Append inlinable interfaces to enclosing class
interfaces.

End

ReferencesChangesInEnclosingClass:
Begin

Change references to inlinable class fields and
methods to reference the new inlined fields and
methods.

References to the inlinable class superclass fields and
methods should remain unchanged.

Change reference to inlinable superclass object to
inlined class variable.

End

ReferencesChangesInInlinableClass:
Begin

Change references to inlinable class fields and
methods to reference the new names of the fields
and methods.

Change references to the inlinable class superclass
fields and methods by referencing the inlined
class variable.

Change reference to inlinable superclass object to
inlined class variable.

End

ChangeConstructorMethods:
Begin
 For each inlinable constructor method
 Begin

Concatenate method name with a random interger
number
Instantiate the inlinable class’s superclass
For each inlinable instance field

Add field body to constructor method body
For each inlinable instance block initializer

Add block initializer body to constructor
method body

 End
End

Figure Figure Figure Figure 6666.... The pseudocode for the transformation The pseudocode for the transformation The pseudocode for the transformation The pseudocode for the transformation

techniquetechniquetechniquetechnique

 A detailed explanation of the pseudocode is given by

explaining how the sample program in Figure 5 is

transformed step by step. Examples used to illustrate the

steps involved, are taken from this sample program also.

Step A. There is a name clash between the field count in

the Circle class and the field count in the enclosing class.

The field name is made unique. For example: int

count45143. All the other inlinable field names remain

unchanged.

Step B. There is also a name clash between the method

name getCount() in the Circle class and the method

getCount() in the enclosing class. The method name is

made unique. For example: getCount67454(). All the

other inlinable method names remain unchanged. The

inlinable classes’ fields and methods are added to the

enclosing class. Some of the inlinable classes’ methods

are not added directly to the enclosing class but are

combined with the enclosing classes’ methods. Examples

of these are the constructor, finalize and instance block

initializer methods.

Step C. In Figure 3 the inlined class variable is of type

Circle and an instance of this class is created. The

transformation process changes the declaration type of the

variable to its superclass Shape. For example: Shape

myCircle. This is done to enable the enclosing class to

access the fields and methods of the Circle classes’

superclasses. The instantiation of the inlinable class is

removed. A call is placed to the inlinable class’s changed

constructor method. This method instantiates the

superclass and initializes the inlinable classes’ fields as

required. For example: circle35223().

Step D. The enclosing class Picture must be changed to

reference its new inlined state. The changes are made to

the enclosing classes’ field initializers and methods.

References to the inlinable class Circle are changed to

reference the inlined field and method names directly. For

example: radius = 2. No changes are necessary to any

references to the fields and methods of the superclass

Shape. For example: myCircle.colour = ‘Brown’. Any

reference to the superclass object must be changed to

reference the inlined class variable myCircle, within the

enclosing class’s inlined state.

Step E. Changes must also be made to the inlinable class

to account for the changes in the names of the fields and

methods. Local variables in methods complicate the

process of identifying field references. Any reference to

the inlinable class’s superclass object or its fields and

methods must be done by referencing the superclass object

stored in myCircle. For example: myCircle.area.

Step F. Each of the inlinable classes’ constructor methods

are changed to create an instance of the superclass and

store it in the inlined class variable myCircle. For

example: myCircle = new Shape(). Each field body of the

inlinable classes’ instance fields are then added. If a call

to an instance block initializer follows, its method body is

added. These additions are added to the start of each

Step E

Step F

Step G

Step H

Step D

constructor method. Static field bodies or static block

initializers are not added to the constructor method.

Step G. The finalize method of the inlinable class must be

combined with that of the enclosing class.

Step H. Any interfaces which the inlinable class

implements must be implemented by the enclosing class.

4. Restrictions

 Five restrictions are placed on class inlining because it

would be unsafe to allow it in these cases. They are as

follows:

1. Class Instaniation
The variable which is used to store the instance of the

inlinable class cannot be used to store an instance of any

other class. For example an instance of the inlinable

class’s superclass is stored in the same variable as the

instance of the inlinable class. To inline in this situation

could result in the distortion of the program.

2. Method Overridding
The inlinable class could have one or more overridden

methods. Dynamic binding occurs at run-time to establish

which method is being called, whether it is the inlinable

classes or the superclasses method. It is necessary,

however, to establish which method is being called during

the transformation process. This is because the sharing

semantics have now changed. A restriction is therefore

placed on class inlining to prevent a class being inlined if

it has an overridden method and there is a reference to one

of the overridden methods in either the enclosing or

inlinable class.

3. Abstract Parent
To inline an inlinable class which has an immediate

abstract superclass would be wrong as this abstract

superclass cannot be instantiated.

4. Self Inlining
It is necessary that the declassification technique places a

restriction on the inlining of a class within itself. This is

because it would have a recursive effect which would

cause the transformation to enter an infinite loop.

5. Reflection
Reflection is not handled by the declassification technique,

but this can be easily checked. The Class.forName()

method could be used in a program to invoke the inlined

class. It is assumed that the code being transformed does

not use reflection.

5. Access Modifiers

 In Java, access modifiers are used to specify the

visibility/access of a class within the program. The

declassification technique should not break the privacy of

objects and change the visibility of the inlined classes’

fields and methods within the enclosing class. To weaken

this visibility would be a change to how the inlined class is

accessed and is considered unsafe. Access modifiers are

only considered in the context of an inlinable class being

inlined within an enclosing class within the same package.

The transformation algorithm does not inline classes from

different packages.

 Access modifiers can be associated with classes, fields,

methods and local variables. The only access modifier that

can be associated with local variables is ‘final’.

Transforming an inlinable method with this access

modifier will not change its visibility. Inlining a class with

the following access modifiers; public, default and final

does not change its visibility. An abstract modifier is not

applicable as an instance of this class cannot be created.

Inlining fields and methods with the following access

modifiers; public, protected, default, private, static and

final do not change their visibility. Any abstract method is

automatically abstract itself and must be declared as such.

Therefore inlining a class with any of the above access

modifiers does not change the visibility of the fields and

methods and is considered safe.

5.1. Other issues

 The inlining of a class within its enclosing class

eliminates the need to instantiate this inlinable class. This

transformation does not only eliminate one instance of the

inlinable class, the number of instantiations eliminated

depends on the number of times the enclosing class is

instantiated within the program. The more times the

enclosing class is instantiated the greater the benefits will

be to the declassification technique. One of the advantages

of declassification is that it does not result in code

bloating. This is supported by the empirical study, which

shows that there is a negligible increase in code size after

optimization. Some programs that had inlining capabilities

show a small but important decrease in code size.

 An inlinable class can be inlined if a static instance of

it is created within the enclosing class. Each of the

inlinable classes’ fields and methods are added to the

enclosing class with a static modifier. The inlinable

classes’ static fields and methods are added unchanged.

The sharing semantics between the inlinable and enclosing

class has not been changed after transformation.

6. Evaluation

 The declassification technique was evaluated by

analyzing and transforming a number of reasonably sized

object-oriented programs in the SPEC98 [SPEC JVM,

1998] benchmark suite. SPEC98 is one of the most

commonly used benchmark suites and a brief description

of each is given below. One other medium sized Java

program is also evaluated. The results of this evaluation

are presented and from these results the benefits and costs

of the technique are assessed. The benefits of the

declassification technique are the run-time performance

gains, reduced memory usage and the fact that there is no

increase in code size. The cost could be the fact that the

performance gain as a result of the optimization is not

substantial enough when measured against the additional

compile-time cost of carrying out the technique.

Test Programs

The industry standard SPEC98 benchmark suite has been

used to conduct this study.

Check benchmark: This is a simple program to test

various features of the JVM to ensure that it provides a

suitable environment for Java programs.

Compress benchmark: This benchmark uses the

modified Lempel-Ziv method (LZW), which finds

common substrings and replaces them with a variable size

code.

DB benchmark: This benchmark performs multiple

database functions on a memory resident database.

Raytrace benchmark: This is a variant of _205_raytrace,

a raytracer that works on a scene depicting a dinosaur,

where two threads each render the scene in the input file

time-test model, which is 340KB in size.

One other medium sized Java program is used as test data;

Declassification (declass) program

The declassification source program has been written

entirely in Java.

6.1. Usage Counting Analysis

 The test programs were analysed to calculate the

number of suitable classes for inlining. Table 1 has three

columns. The first illustrates the programs analysed. The

second illustrates the number of top-level classes in each

program, the third illustrates the number of classes which

are suitable for declassification in each program. It is

obvious from these results that there are few top-level

classes which meet the criteria for inlining. It should be

remembered that even though few examples of inlinable

classes are found, these might still result in a lot less

objects being created at run-time.

Table Table Table Table 1111.... Comparison of the number of inlinable Comparison of the number of inlinable Comparison of the number of inlinable Comparison of the number of inlinable
classes in each programclasses in each programclasses in each programclasses in each program

Programs Classes Inlinable Classes

check 29 1

compress 25 1

db 19 1

raytrace 41 2

Declass 21 3

Check, compress and db have one inlinable class. The

raytrace program has 2 inlinable classes out of 41 (5%).

The declass program was the most suitable for

optimization as it has 3 inlinable classes out of 21 (14%).

6.2. Transformation

 In order to establish the effectiveness of the

declassification technique, it is necessary to compare the

run-time performance and memory consumption of the

unoptimized and optimized versions of each test program.

From these results, we can extrapolate the benefits of the

declassification technique. To measure the effectiveness of

the declassification technique we transformed the source

code of the test programs. Each optimized program was

then compiled using Java 2 SDK standard edition version

1.4. The unoptimized and optimized versions of each

program were measured by the benchmark program

available in SPEC98. Measurements were taken on a

Pentium 200 with 32 megabytes of RAM and are the

average of 10 runs. The percentage improvement (or

disimprovement) is calculated by dividing the difference

between the optimized and unoptimized measurements

(eg. run-time memory usage) by the original unoptimized

measurement. Tables 2, 3 and 4 show the percentage

change. A negative number means the measure has

decreased by that amount. A positive number means the

measure has increased by that amount. A number of 0.00

means no change.

6.2.1. Memory Consumption. The percentage change in

memory consumption of the optimized programs is

illustrated in Table 2.

Table Table Table Table 2222.... Change in memory consumption of the Change in memory consumption of the Change in memory consumption of the Change in memory consumption of the
test programstest programstest programstest programs
Average Average

Memory used Memory used

Programs
(in bytes)

Unoptimized Optimized

%
Memory
Change

check 37084 37115 0.08

compress 6280938 5747851 -8.49

db 8684467 8684594 0.00

raytrace 4339080 4296789 -0.97

Declass 6717439 6243451 -7.06

 It was hoped that the declassification technique would

reduce the number of objects created by the program

because of its ability to inline classes. It could be deduced

that this has occurred in some of the test programs. The

check and db programs in the empirical study show a

negligible change in memory use between the optimized

and unoptimized programs. The raytrace program had

some inlining opportunities but only a small reduction in

memory use after optimization. The declass program

shows an important and significant 7% reduction in

memory use following the inlining of three classes. The

compress program shows a 8.5% decrease in memory use

following the inlining of only one class. It could also be

deduced that if more classes were inlined, the memory

usage of the majority of programs would reduce further.

6.2.2. Run-time Performance. Table 3 shows that there is

very little or no difference in the run-time performance of

check, compress, db, and raytrace programs. It was hoped

that the run-time average of the declass and raytrace

programs would be decreased as a result of class inlining.

This should reduce the number of memory dereferences as

the fields of the inlinable class become local to the

enclosing class. It should also reduce the number of

dynamic dispatches necessary to execute the program.

Table Table Table Table 3333. Changes in the run. Changes in the run. Changes in the run. Changes in the run----time averagestime averagestime averagestime averages
Average Average %

Run-Time Run-Time Run-Time

Programs
(in secs)

Unoptimized Optimized Change

check 54.9 54.9 0.00

compress 105.7 106.1 0.38

db 95.95 95.63 -0.33

raytrace 33.45 33.46 0.03

Declass 30.77 30.63 -0.45

 The empirical study showed a negligible increase in

the run-time average of the optimized compress program

and only a 1% decrease occurred as a result of optimizing

the declass program. It could be deduced from these

results that the fields and methods of the inlinable classes

within the compress and declass programs are not highly

referenced by their enclosing classes. It should be noted

that although there is not much of a change in the run-time

performance for these programs, for longer runs,

there may be more of a change because if there is less

memory consumption as shown in Table 2 for the

compress and declass programs, then less time should be

consumed by garbage collection. It could also be deduced

that the overall poor impact on the run-time performance

is predominately due to the small number of classes found

suitable for declassification.

6.2.3. Program code size. An important feature which can

be attributed to the declassification technique is that there

will be little to no increase in code size. This feature

cannot be attributed to many other optimization techniques

such as object inlining [Dolby, 1997]. This is supported

by the empirical study, which shows that there is a

negligible increase in code size after optimization. Some

programs that had inlining capabilities show a small but

important decrease in code size. The code size of the

declass program reduced by 5% after declassification.

TTTTable able able able 4444. Changes in the run. Changes in the run. Changes in the run. Changes in the run----time averagestime averagestime averagestime averages

Unoptimized Optimized % Code Size Programs

(bytes) (bytes) Change

check 110,671 110,519 -0.14

compress 92,341 92,425 0.09

db 88,130 88,190 0.07

raytrace 131,833 131,100 -0.56

Declass 295,996 281,384 -4.94

7. Further Extensions

 The declassification technique concentrates on top-

level classes which are declared and instantiated as a field

of an enclosing class. The usage counting analysis

algorithm identified other top-level classes that have a

usage count of one. The declassification technique could

be extended to inline these top-level classes, it could also

be extended to inline single usage inner classes.

7.1. Local Objects

 The empirical study found that there are a considerable

number of top-level classes that are instantiated as local

variables in methods. A local object cannot be inlined

successfully if a reference to the local object is returned

from the method or passed as a parameter to another class

instance. Figure 7 illustrates only the local objects which

are used in this way. 11% of the db program classes and

8% of the compress program classes are being used as

local objects. Each of these classes could be inlined

within the method which created them by inlining its fields

and expanding each of its method calls.

0

2

4

6

8

10

ch
ec

k

co
m

pr
es

s db

ra
yt

ra
ce

D
ec

la
ssN

o
 o

f
to

p
-l

e
v

e
l
c

la
s

s
e

s

Figure Figure Figure Figure 7777.... Number of topNumber of topNumber of topNumber of top----level classes created in a level classes created in a level classes created in a level classes created in a

methodmethodmethodmethod

 An anonymous object which is instantiated in a method

could be inlined within the method in a similar way to how

you inline a local object. The information gathered by the

declassification analysis and transformation algorithms

could also be extended to facilitate the inlining of inner

classes, i.e. member, local and anonymous classes. In Java

each inner class is created as a normal top-level class by

the JVM. This results in each inner class requiring space

and time to be created on the heap. Eliminating inner

classes should result in reduced memory consumption by

the program and improved run-time performance.

8. Comparison with Related Work

 There are a number of compile-time techniques that

have been developed to optimise object-oriented

programs. Method specialisation is a technique which is

used to reduce the number of dynamic dispatches

necessary in a program. A selective specialisation

technique is presented in [5], whose central aim is to

replace some of the dynamic calls to methods within a

program with statically bound calls to specialised methods.

The fundamental difference between selective

specialisation and other method specialisation strategies is

that it is selective about which methods it specialises. The

selective specialisation technique in [5] increases the size

of the Java program, the declassification technique does

not. The technique in [5] uses both static and dynamic

information gathered from program profiling. The

declassification technique only uses static analysis. The

complexity of the technique in [5] increases when it needs

to recursively specialize methods, moving up through the

call graph. The declassification technique does not involve

recursion and is a simple and straightforward optimization

technique.

 Other areas of research have concentrated on object

inlining. Object inlining aims to inline object(s) within

another object or method, while the aim of the

declassification technique is similar, it is intrinsically

different because it involves inlining classes within other

classes rather than object instances. For example, an object

inlining technique is presented in [2] which can inline

objects within methods. This technique, differs from the

declassification technique because its central aim is to

identify and inline objects which are created within a

method. These are referred to as local objects. The

declassification technique has the ability to inline top-level

classes. A limitation of [2] is the fact that an object cannot

be inlined if a reference to the inlined object is passed as a

parameter to other objects or methods within the program.

The solution to this problem is to reconstruct the object;

the feasibility of this approach is discussed in [3].

 A more powerful and less restrictive object inlining

optimizing technique is presented in [6] which will

automatically inline objects within container objects. The

adaptive analysis technique also makes use of the precise

information obtained from the algorithm in [9]. It is not

restricted to inlining objects within methods, but has the

considerable drawback that the inter-procedural data-flow

analysis used by this technique is complex. This

complexity is necessary because detailed information is

required on the objects used within a program to enable

program transformation. The declassification technique is

a lot simpler and straightforward as its aim is to identify

classes which are used exactly once in the program. These

classes will then be inlined into their enclosing class.

Complex calculations are not necessary because we do not

need to check and deal with aliases in the analysis and

transformation of each class. The technique in [6] in

comparison needs to find and specialise uses of inlined

objects and to ensure that inline allocation does not change

aliasing relationships.

 [11] states that an empirical study done on the object

inlining technique in [6], revealed that the size of a

program after inlining is almost identical to its original

size. [12] estimates that there is on average a 20% increase

in the size of a program. They cannot guarantee however,

that this will always be the case and it is believed that

there could be a substantially higher increase in the code

size. This is because the inlined object’s fields and

methods are added to one or more container objects

increasing their size and the class declaration of the inlined

object still remains in the program. The declassification

technique in comparison has a negligible increase in the

program size, due to the fact that once the inlined classes’

fields and methods are added to the enclosing class, its

class declaration is deleted from the source code. [12]

discusses a revised algorithm. [13] extends the research on

automatic object inlining in Dolby’s papers and

investigates the possibility of several objects being inlined

within a single field in succession. The declassification

technique is different as it is inlining classes. It has

however, the ability to inline a number of instances of the

same class into the same field in succession.

9. Conclusion

 This paper presents an optimisation technique which

facilitates the automatic declassification of programs.

Declassification involves the identification of suitable

intermediate classes and the transformation of the source

code to inline the fields and methods of each intermediate

class within its enclosing class. The declaration of the

inlined class can then be removed from the source

program. The declassification technique is a lot simpler

and less complicated than other object inlining techniques

such as [6].

 The declassification technique has the potential

benefits associated with object inlining, but unfortunately

few classes were found suitable for declassification. One

of the reasons such a small number of inlinable classes

were found could be the fact that four of the test programs

where taken from the SPEC98 benchmark suite. This

benchmark suite is not particularly object-oriented as some

of the programs are direct translations from the Fortran

language. It would be interesting to see how the results of

the declassification technique would alter if a more

extensive empirical study was conducted that had a set of

test programs which are intrinsically object-oriented. It

should be noted however, that even if few classes are

found suitable for inlining, this still may result in a lot less

objects being created at run-time. This is discussed in

section 5.1.

 The empirical study showed that when suitable classes

are found for inlining it can have a positive effect on the

memory consumption of the program. Two of the

programs in the empirical study showed a significant

reduction of between 7% and 8.5% in memory

consumption, as a result of declassification. The effect of

declassification on the run-time performance of the test

programs is negligible. It could be argued, however, that

this is largely due to the small number of classes found

suitable for declassification.

 There are a number of significant features associated

with this optimization technique. One of these is the fact

that there is a negligible run-time cost associated with the

technique. There is also little to no increase in the code

size of a transformed program, if anything it will shrink in

size. The analysis and transformation algorithms are less

complicated than many other optimization techniques.

Another feature is that it automatically inlines suitable

classes and deletes the original class declaration, without

any programmer intervention. The programmer does not

have to explicitly declare that certain classes should be

inlined.

 Although the declassification technique was not overly

successful in optimizing the test programs, further

extensions to this technique could greatly improve its

success. It was found that there are a number of local

objects suitable for inlining within half of the test

programs. The compress and db programs have two

potential local objects and the check has one, this is an

average of 7% of their overall classes. There are other

further possibilities for extending the technique by inlining

inner classes. These extensions combined with an

intrinsically object-oriented set of test programs could

greatly improve the effectiveness of the declassification

technique.

References

[1] Gosling, J., Joy, B., Steele, G., The Java Language

Specification, Addison-Wesley Longman, Inc, 1996.

[2] Budimlic, Z., Kennnedy, K., Optimising Java: Theory

and Practive, Software: Practice and Experience 9, 6,

June 1997, pp. 445-463.

[3] Budimlic, Z., Kennnedy, K., Static Interproedural

Optimizations in Java, Center for Research on Parallel

Computation, Rice University, Technical Report

CRPC-TR98746, 1998.

[4] Calder, B., Grunwald, D., Zorn, B., Quantifying

differences between C and C++ programs, Technical

Report CU-CS-698-94, University of Colorado,

Boulder, January 1994.

[5] Dean, J., Chambers, C., Grove, D., Selective

Specialization for Object-Oriented Languages, In

Proceeding of the ACM SIGPLAN ’95 Conference on

Programming Language Design and Implementation,

June 1995.

[6] Dolby, J., Automatic Inline Allocation of Objects, In

Proceedings of the 1997 ACM SIGPLAN Conference

Programming Language Design and Implementation,

Las Vegas, Nevada, June 1997, pp. 7-17.

[7] Ellis, M., Stroustrup, B., The Annotated C++ Reference

Manual, Addison-Wesley, 1990.

[8] Hamilton, G. W., Higher-order Deforestation, in

Proceedings of the Eighth International Symposium on

Programming, Logics, Implementation and Programs

(PLILP ’96), Vol. 1140 of Lecture Notes in Computer

Science, pp. 213-227.

[9] Plevyak, J., Chien, A., Precise concrete type inference

of object-oriented programs, In proceedings of

OOPSLA 1994, Object-Oriented Programming

Systems, Languages and Architectures, pp. 324-340.

[10] Power B., Hamilton G.W., Declassification:

Transforming Java Programs to Remove Intermediate

Classes, In the Proceedings of the Workshop on

Intermediate Representation Engineering for the Java

Virtual Machine (SCI2001/ISAS2001), Vol. VII, 2001,

pp. 111-116.

[11] Dolby, j., Chien, A., An evaluation of automatic object

inline allocation techniques, In Proceedings of the

Thirteenth Annual Conference on Object-Oriented

Programming Languages, Systems and Applications

(OOPSLA), Vancouver, British Columbia, October

1998. Available at http://www-

csag.cs.uiuc.edu/papers/oopsla-98.ps.

[12] Dolby, j., Chien, A., An Automatic Object Inlining

Optimization and its Evaluation, Proceedings of the

2000 ACM SIGPLAN Conference on Programming

Language Design and Implementation, Vancouver,

British Columbia, Canada, May 2000, pp. 345 – 357.

[13] Laud, P., Analysis for Object Inlining in Java, JOSES:

Java Optimization Strategies for Embedded Systems,

Genoa, Italy, April 1 2001.

[14] Chilimbi, T., Hill, M., Larus, J., Cache-Conscious

Structure Layout, In Proceedings of ACM

SIGPLAN’99 Conference on Programming Language

Design and Implementation, 1999

[15] Chilimbi, T., Hill, M., Larus, J., Cache-Conscious

Structure Definition, In Proceedings of ACM

SIGPLAN’99 Conference on Programming Language

Design and Implementation, 1999

