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Abstract 
 

This paper presents an optimisation technique which 

automatically inlines certain classes within their enclosing 

class.  Inlining a class involves inserting the fields and 

methods of this class into the body of its enclosing class.  

The enclosing class is the class which declared an instance 

of the class. The declaration of the inlined class can then 

be removed from the program. This technique transforms 

Java programs into an equivalent form, which may be less 

readable, but is more efficient.   The results of the 

empirical study showed that few classes were found 

suitable for inlining and that the declassification was not 

overly successful when optimizing the test programs. One 

of the advantages of declassification is that it does not 

result in code bloating. It is thought that further extensions 

to the declassification technique and an intrinsically 

object-oriented set of test programs could greatly improve 

it’s effectiveness. 

 

 

1.   Introduction 
 

 Computer programming has undergone phenomenal 

growth in recent years.  Software applications are 

increasingly being written in object-oriented languages 

like Java [1] and C++ [7], because they offer simple, 

uniform, abstract programming models. This programming 

model provides the benefits of increased flexibility, 

maintainability and extendibility. Object-oriented 

programming encourages the use of small methods and 

objects [4]. This style of programming introduces much 

overhead as each method call results in a dynamic dispatch 

and each field access becomes a pointer dereference to the 

heap allocated object.   

 Consequently, the run-time performance of object-

oriented languages like Java is behind the most popular 

languages today, even with just-in-time compilation 

technology.  There is an obvious need for more aggressive 

optimising techniques for the Java language. 

 Object-oriented programs are difficult to reason 

about and optimise because of the use of inheritance and 

dynamically bound method calls. A number of 

optimisation techniques have been researched and 

developed to improve the performance of object-oriented 

programs. For example [5, 6, 13, 14, 15]. The 

declassification technique is a novel approach to 

improving the performance of Java programs.  Its 

inception was motivated by the success of the higher-order 

deforestation algorithm proposed in [8]. This algorithm 

can eliminate intermediate data structures from higher-

order functional programs. By removing the intermediate 

data structures, the performance of the program should be 

improved and the heap space required by the program 

reduced.  

 A detailed discussion of the usage counting analysis 

algorithm and the proposed transformation is presented in 

an earlier paper [10]. This paper extends this work, by 

presenting the transformation technique used and also 

analyzing and illustrating the results of an empirical study. 

The objective of the declassification technique is to reduce 

the number of classes which are instantiated and used in a 

program during its execution. The declassification 

technique is divided into two parts; analysis and 

transformation. Information from the usage counting 

analysis algorithm is used to determine how many classes 

are suitable for inlining. The transformation involves a 

source to source transformation and involves inlining the 

fields and methods of the inlinable class into its enclosing 

class.  The declaration of the inlined class can then be 

removed from the program as it is no longer needed.  By 

inlining the class in this way we are eliminating the need 

to create and maintain these ‘intermediate classes’ and 

instead we are extending the size of their enclosing class.  

This technique will change the hierarchical structure of the 

program by eliminating these inlinable classes. 



 The optimised program code can then be compiled and 

run as normal. We investigate the potential of the 

declassification technique by performing the analysis and 

transformation on a number of reasonable-sized Java 

programs.  The remainder of this paper is structured as 

follows. In Section 2, we describe the usage counting 

analysis which is used to identify classes for inlining. In 

Section 3, we describe the declassification transformation. 

Section 4 lists the restrictions placed on class inlining and 

Section 5 investigates the visibility constraints necessary. 

In Section 6 we evaluate the declassification technique. A 

number of extensions to the declassification technique are 

outlined in Section 7. In Section 8, we compare research in 

related areas, and Section 9 concludes. 

 

2.  Usage Counting Analysis 
 

 The central goal of the usage counting analysis 

technique is to identify classes which are used exactly 

once within the program.    Examples of possible usages 

include a variable, field or parameter declared within the 

program which is the same type as the class. Two 

variables of this type are two usages of the class. A class 

which is used once within the program is considered a 

suitable class for transformation.  

 The usage counting analysis examines all top-level 

classes in the program to establish their suitability for 

inlining.  A top-level class is a Java class which is not an 

inner class. There are four types of inner classes; static 

member classes, member classes, local classes and 

anonymous classes. Throughout this paper top-level 

classes will be referred to as classes and a distinction will 

only be made between top-level and inner classes when 

extensions to the declassification technique are discussed. 

It should be noted that although the enclosing class is the 

only class to use the inlinable class, it could instantiate this 

class one or more times within the program.  

 To aid the exposition of this technique, consider the 

example in Figure 1. 
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Figure Figure Figure Figure 1111. . . .     The Picture and Circle classesThe Picture and Circle classesThe Picture and Circle classesThe Picture and Circle classes    
 

The Picture class has a field which stores an instance of 

the Circle class. This is illustrated in Figure 1 (a). The 

Circle class is a sub class of Shape. Figure 1 (b) illustrates 

the hierarchical relationship between Circle and Shape. 

The Circle class is a potential candidate for inlining, if it is 

established by the usage counting analysis technique that 

this class is used no more than once in the program. The 

Picture class is the enclosing class which uses it.  

 It is essential for the correct operation of the 

declassification technique that accurate information is 

available on the usages of the different classes within the 

program. This requires a very sophisticated type inference 

algorithm as Java programs, like other object-oriented 

programs, are difficult to reason about.  The usage 

counting analysis technique uses the results from the type 

inference algorithm [9], which determines for each 

variable the set of classes to which it may be instantiated 

at run-time. It provides information on different types of 

variables; these include fields of objects, local variables, 

method parameters and return types.  The usage counting 

analysis algorithm interrogates the type information 

available in the sets and supplements it with information 

gathered on the layout and structure of the classes in the 

Java programs.  From these sources it is able to determine 

the usage counts of each class within the program. The 

pseudocode for the usage counting analysis algorithm is 

illustrated in Figure 2 and specifies the criteria by which 

usage counts are calculated for all top-level classes. A 

class with a count of one has been determined by the usage 

counting analysis as having only one use within the 

program.  

 It is essential that the declassification technique is safe.  

Its safety is assured by the fact that a class I is only inlined 

within another class E if the usage counting analysis 

algorithm determines that the usage count of the inlinable 

class I is one.  There is as a result, an instance of the 

inlinable class I stored within one of the fields e.f of the 

enclosing class E. It is the only variable within the 

program that can store a reference to the inlinable class.  

This variable e.f could be instantiated to one or more 

consecutive instances of the inlinable class. There is, 

however, only one use of the inlinable class through the e.f 

reference.  There are as a result, no alias relationships to 

the instance of the inlinable class, which could distort the 

sharing semantics of the program. Inlining is greatly 

complicated by alias relationships and it is more difficult 

to guarantee that such a program transformation will not 

result in invalid results. Consequently, the declassification 

technique does not have to deal with aliases and its 

analysis and transformation is significantly simplified, as a 

result.   

 
Initialise all usage counts to zero  
Apply Plevyak/Chiens algorithm to determine the set of 
classes  

to which each variable may be instantiated 
 
Start with the main program class 
Count: 
Begin 
 Add 1 to the usage Count of current class 
 If current class not marked  
 Begin 
  Mark current class. 

PicturePicturePicturePicture    

CircleCircleCircleCircle    

ShapShapShapShapeeee    

CircleCircleCircleCircle    



For each class in the set determined for 
each field perform Count. 

For each class in the set determined for  
each local variable perform Count. 

For each class in the set determined for each 
method parameter perform Count. 

For each class in the set determined for each 
method return type perform Count. 

For each class in the set determined for each 
anonymous object perform Count. 

For each superclass perform Count. 
 End 
End 

  

Figure Figure Figure Figure 2222. . . .     The pseudocode for the usage counting The pseudocode for the usage counting The pseudocode for the usage counting The pseudocode for the usage counting 
analysis algorithmanalysis algorithmanalysis algorithmanalysis algorithm    

 

Figure 3 illustrates an example of the Picture and Circle 

classes in a simple Java program.  There are four classes in 

the program; Picture, Circle, Square and Shape.  The 

Circle and Square classes are subclasses of the Shape 

class.  Each class has its own associated fields and 

methods.  Again the Circle is used exactly once by the 

Picture class and is a suitable class for inlining.  The 

Square class is not a suitable class because it is used twice 

by the Picture class.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
Figure Figure Figure Figure 3333....     Program code Program code Program code Program code    

3.  Transformation 

 

 The analysis will identify suitable classes for inlining.  

The transformation involves inlining the fields and 

methods of each ‘inlinable’ class within the enclosing 

class that has declared the instance. Any references to the 

instance of the inlined class are changed to reference its 

inlined fields and methods within the enclosing class 

object. Figure 4 illustrates the aggregate association 

between the Picture and Shape classes, following 

transformation.  The circle class has been eliminated and 

the Picture class now inlines the Circle class. 
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The fields radius and count will be added to the Picture 

class.  The methods getCount( ) and calArea( ) will also be 

added to the Picture class. In discussing the 

transformation, the following term is used; the inlined 

class variable is the field which is used to store the 

instance of the inlinable class within the enclosing class.  

The type of this variable is changed to the inlinable class’s 

superclass. The Picture class how creates an instance of 

the Circle class’s superclass in the variable myCircle. 

Figure 5 illustrates the example program given in Figure 3 

following the transformation.  

 

3.1. Fields  
 

 It may be necessary to change a field name in the 

inlinable class if there is a name clash. A name clash 

occurs when an inlinable field has the same name as one 

of the following: 

 

1. One of the fields in the enclosing class; 

2. One of the fields in any of the superclasses of the 

enclosing class; 

3. One of the local variables in an enclosing class 

method; 

4. One of the field constants of any of the interfaces 

the enclosing class or any of its superclasses 

implement. 

 

 A compiler error would occur if an inlined field clashes 

with a field in the enclosing class.  The incorrect execution 

of the program could result if it clashes with a field in the 

enclosing class’s superclass.  Another error could occur if 

the inlined field clashed with one of the local variables in 

an enclosing class method.  This is because local variables 

class Picture { 
float count; 
Circle myCircle  = new Circle( ); 
Square redSquare = new Square( ); 
Square blueSquare = new Square( ); 

 
public void initialPictureCircle( )  { 

 myCircle.radius = 2; 
 myCircle.colour = ‘Brown’; } 
 

float getCount( ) { return count; } 
}   
 
class Circle extends Shape { 

float radius = 1.0; 
int count = 2; 

 
int getCount( ) { return count; } 

 
public void calArea( )  { area = Math.PI * (radius * 

radius);} 
} 
class Square extends Shape { 

float width; 
 

public void calArea( )  { area = width * width;} 
} 
 
class Shape { 

float area; 
String colour; 

} 
 

PicturePicturePicturePicture    

ShapeShapeShapeShape    



take precedence over fields.  A reference to the inlinable 

class’s field could after transformation reference a local 

variable if their names clashed.  Finally, a clash with a 

field constant of one of the enclosing classes’ interfaces, 

would result in the inlined field taking precedence over it.  

This would cause the incorrect execution of the program. 

The resolution of the name clash is achieved by replacing 

the variable name by a “gensym”. A gensym is a unique 

name and it is implemented by concatenating the variable 

name with a random integer. Changes are necessary to 

both the inlinable class and the enclosing class to account 

for the new field names. If a field name has changed it is 

essential that changes are made to the field initializers and 

methods of the inlinable class.  The fields of the inlinable 

class can be added directly if there is no clash between 

names. 

 Some changes are necessary to the enclosing class to 

reference the new fields which has been inlined. The 

inlined class variable is not removed, but changed to 

declare an instance of the superclass. Any references to 

fields belonging to this superclass can remain unchanged. 

Any references to fields not belonging to the superclass 

must be changed to reference the inlined fields directly. 

 The position in the enclosing class where the inlined 

fields are placed is important.  They must be inlined 

immediately after the declaration of the inlined class 

variable.  This is because these fields may be used in the 

inialization of one or more of the enclosing classes’ fields.  

The position where the methods are placed is not 

important.   

 

3.2. Methods 
 

 Similarly, it is necessary to change a method name in 

the inlinable class, if a name clash occurs.  A name clash 

occurs when an inlinable method has the same name and 

number of parameters as one of the following: 

1. One of the methods in the enclosing class; 

2.  One of the methods in any of the enclosing 

classes’ superclasses. 

 

 To inline a method which has the same name and 

number of parameters could result in the incorrect 

execution of the program.  The resolution of the name 

clash is achieved by renaming each method name to a 

unique name not used elsewhere in the program. The 

references in the inlinable class must be changed to 

reference the new method names. This is done in the same 

way as for fields. The amount of work needed to transform 

the program is reduced if the inlinable methods do not 

change name. The enclosing class must be changed again 

to reference the new inlined methods. 
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The pseudocode for the transformation technique is given 

in Figure 6. The technique assumes there is a clash of 

names between the inlinable and enclosing classes. The 

algorithm would be simpler if this was not the case. 

 
For each class with a usage count equal to 1 
Begin 
 

For each field of the inlinable class which clashes 
 Make the field name unique. 
 
 For each method of the inlinable class which clashes 
 Make the method name unique. 
 
 Add inlinable class fields to enclosing class. 
 Add inlinable class methods to enclosing class. 
 

Change inlined class variable to be of the superclass 
type. 
Add call to inlinable class’s changed constructor 
method. 

 

Step A 

Step B 

class Picture { 
float count; 
Shape myCircle; 
{circle35223( );}  
float radius; 
int count45143; 
Square redSquare   = new Square( ); 
Square blueSquare = new Square( ); 

 
public void initialPictureCircle( )          { 

radius = 2; 
myCircle.colour = ‘Brown’;    } 

 
float getCount( ) { return count; } 

 

int getCount67454( ) { return count45143; } 
 

public void calArea ( )   { 
myCircle.area = Math.PI *  
(radius * radius); } 

 

circle35223( )  { 
myCircle = new Shape( ); 
radius = 1.0; 

 count45143=2; } 
} 
 

class Square    extends Shape{ 
 float width; 

public void calArea( )  { area = width * width;} 
} 
 

class Shape { 
float area; 
String colour; 

} 

Step C 



For each field initializer and method in enclosing class 
  Perform ReferencesChangesInEnclosingClass.  
 
 For each field initializer and method in inlinable class 
  Perform ReferencesChangesInInlinableClass. 
 
      Perform ChangeConstructorMethods       
 

Combine enclosing class finalize method with inlinable 
class finalize method.  

 
Append inlinable interfaces to enclosing class 
interfaces. 

End 
 
ReferencesChangesInEnclosingClass: 
Begin 

Change references to inlinable class fields and 
methods to reference the new inlined fields and 
methods. 

References to the inlinable class superclass fields and 
methods should remain unchanged. 

Change reference to inlinable superclass object to 
inlined class variable. 

End 
 
ReferencesChangesInInlinableClass: 
Begin 

Change references to inlinable class fields and 
methods to reference the new names of the fields 
and methods. 

Change references to the inlinable class superclass 
fields and methods by referencing the inlined 
class variable. 

Change reference to inlinable superclass object to 
inlined class variable. 

End 
 
ChangeConstructorMethods: 
Begin 
      For each inlinable constructor method 
      Begin 

Concatenate method name with a random interger 
number 
Instantiate the inlinable class’s superclass 
For each inlinable instance field 

Add field body to constructor method body 
For each inlinable instance block initializer 

Add block initializer body to constructor 
method body 

      End     
End 

    
Figure Figure Figure Figure 6666....    The pseudocode for the transformation The pseudocode for the transformation The pseudocode for the transformation The pseudocode for the transformation 

techniquetechniquetechniquetechnique 

 

 A detailed explanation of the pseudocode is given by 

explaining how the sample program in Figure 5 is 

transformed step by step.   Examples used to illustrate the 

steps involved, are taken from this sample program also. 

Step A. There is a name clash between the field count in 

the Circle class and the field count in the enclosing class.  

The field name is made unique. For example: int 

count45143.  All the other inlinable field names remain 

unchanged. 

 

Step B. There is also a name clash between the method 

name getCount( ) in the Circle class and the method 

getCount( ) in the enclosing class. The method name is 

made unique.  For example: getCount67454( ).  All the 

other inlinable method names remain unchanged.  The 

inlinable classes’ fields and methods are added to the 

enclosing class.  Some of the inlinable classes’ methods 

are not added directly to the enclosing class but are 

combined with the enclosing classes’ methods.  Examples 

of these are the constructor, finalize and instance block 

initializer methods. 

 

Step C. In Figure 3 the inlined class variable is of type 

Circle and an instance of this class is created.  The 

transformation process changes the declaration type of the 

variable to its superclass Shape.  For example: Shape 

myCircle. This is done to enable the enclosing class to 

access the fields and methods of the Circle classes’ 

superclasses.  The instantiation of the inlinable class is 

removed.  A call is placed to the inlinable class’s changed 

constructor method.  This method instantiates the 

superclass and initializes the inlinable classes’ fields as 

required.  For example: circle35223( ). 

 

Step D. The enclosing class Picture must be changed to 

reference its new inlined state.  The changes are made to 

the enclosing classes’ field initializers and methods.  

References to the inlinable class Circle are changed to 

reference the inlined field and method names directly.  For 

example: radius = 2.  No changes are necessary to any 

references to the fields and methods of the superclass 

Shape. For example: myCircle.colour = ‘Brown’. Any 

reference to the superclass object must be changed to 

reference the inlined class variable myCircle, within the 

enclosing class’s inlined state.    

 

Step E. Changes must also be made to the inlinable class 

to account for the changes in the names of the fields and 

methods.  Local variables in methods complicate the 

process of identifying field references.  Any reference to 

the inlinable class’s superclass object or its fields and 

methods must be done by referencing the superclass object 

stored in myCircle.  For example: myCircle.area. 

 

Step F. Each of the inlinable classes’ constructor methods 

are changed to create an instance of the superclass and 

store it in the inlined class variable myCircle.  For 

example: myCircle = new Shape( ). Each field body of the 

inlinable classes’ instance fields are then added.  If a call 

to an instance block initializer follows, its method body is 

added. These additions are added to the start of each 

Step E 

Step F 

Step G 

Step H

 

Step D 



constructor method. Static field bodies or static block 

initializers are not added to the constructor method. 

 

Step G. The finalize method of the inlinable class must be 

combined with that of the enclosing class.   

 

Step H.  Any interfaces which the inlinable class 

implements must be implemented by the enclosing class.   

 

4.  Restrictions 
 

 Five restrictions are placed on class inlining because it 

would be unsafe to allow it in these cases.  They are as 

follows: 

 

1. Class Instaniation 
The variable which is used to store the instance of the 

inlinable class cannot be used to store an instance of any 

other class.  For example an instance of the inlinable 

class’s superclass is stored in the same variable as the 

instance of the inlinable class. To inline in this situation 

could result in the distortion of the program. 

 

2. Method Overridding 
The inlinable class could have one or more overridden 

methods.  Dynamic binding occurs at run-time to establish 

which method is being called, whether it is the inlinable 

classes or the superclasses method.  It is necessary, 

however, to establish which method is being called during 

the transformation process.  This is because the sharing 

semantics have now changed.  A restriction is therefore 

placed on class inlining to prevent a class being inlined if 

it has an overridden method and there is a reference to one 

of the overridden methods in either the enclosing or 

inlinable class.   

 

3. Abstract Parent 
To inline an inlinable class which has an immediate 

abstract superclass would be wrong as this abstract 

superclass cannot be instantiated. 

 

4. Self Inlining 
It is necessary that the declassification technique places a 

restriction on the inlining of a class within itself.  This is 

because it would have a recursive effect which would 

cause the transformation to enter an infinite loop.   

 

5. Reflection 
Reflection is not handled by the declassification technique, 

but this can be easily checked. The Class.forName( ) 

method could be used in a program to invoke the inlined 

class.  It is assumed that the code being transformed does 

not use reflection. 

 

 

5.  Access Modifiers 
 

 In Java, access modifiers are used to specify the 

visibility/access of a class within the program. The 

declassification technique should not break the privacy of 

objects and change the visibility of the inlined classes’ 

fields and methods within the enclosing class.  To weaken 

this visibility would be a change to how the inlined class is 

accessed and is considered unsafe.  Access modifiers are 

only considered in the context of an inlinable class being 

inlined within an enclosing class within the same package.  

The transformation algorithm does not inline classes from 

different packages.   

 Access modifiers can be associated with classes, fields, 

methods and local variables. The only access modifier that 

can be associated with local variables is ‘final’. 

Transforming an inlinable method with this access 

modifier will not change its visibility. Inlining a class with 

the following access modifiers; public, default and final 

does not change its visibility. An abstract modifier is not 

applicable as an instance of this class cannot be created. 

Inlining fields and methods with the following access 

modifiers; public, protected, default, private, static and 

final do not change their visibility. Any abstract method is 

automatically abstract itself and must be declared as such.  

Therefore inlining a class with any of the above access 

modifiers does not change the visibility of the fields and 

methods and is considered safe. 

     

5.1. Other issues 
 
 The inlining of a class within its enclosing class 

eliminates the need to instantiate this inlinable class. This 

transformation does not only eliminate one instance of the 

inlinable class, the number of instantiations eliminated 

depends on the number of times the enclosing class is 

instantiated within the program. The more times the 

enclosing class is instantiated the greater the benefits will 

be to the declassification technique. One of the advantages 

of declassification is that it does not result in code 

bloating.  This is supported by the empirical study, which 

shows that there is a negligible increase in code size after 

optimization. Some programs that had inlining capabilities 

show a small but important decrease in code size. 

 An inlinable class can be inlined if a static instance of 

it is created within the enclosing class. Each of the 

inlinable classes’ fields and methods are added to the 

enclosing class with a static modifier. The inlinable 

classes’ static fields and methods are added unchanged.  

The sharing semantics between the inlinable and enclosing 

class has not been changed after transformation. 

 

 

 

 



6.  Evaluation 
 

 The declassification technique was evaluated by 

analyzing and transforming a number of reasonably sized 

object-oriented programs in the SPEC98 [SPEC JVM, 

1998] benchmark suite.  SPEC98 is one of the most 

commonly used benchmark suites and a brief description 

of each is given below. One other medium sized Java 

program is also evaluated.  The results of this evaluation 

are presented and from these results the benefits and costs 

of the technique are assessed.  The benefits of the 

declassification technique are the run-time performance 

gains, reduced memory usage and the fact that there is no 

increase in code size.  The cost could be the fact that the 

performance gain as a result of the optimization is not 

substantial enough when measured against the additional 

compile-time cost of carrying out the technique.   

 

Test Programs 

The industry standard SPEC98 benchmark suite has been 

used to conduct this study.   

 

Check benchmark: This is a simple program to test 

various features of the JVM to ensure that it provides a 

suitable environment for Java programs.  

Compress benchmark: This benchmark uses the 

modified Lempel-Ziv method (LZW), which finds 

common substrings and replaces them with a variable size 

code.  

DB benchmark: This benchmark performs multiple 

database functions on a memory resident database.   

Raytrace benchmark: This is a variant of _205_raytrace, 

a raytracer that works on a scene depicting a dinosaur, 

where two threads each render the scene in the input file 

time-test model, which is 340KB in size.   

 

One other medium sized Java program is used as test data;  

Declassification (declass) program  

The declassification source program has been written 

entirely in Java.   

 

6.1. Usage Counting Analysis 
 

 The test programs were analysed to calculate the 

number of suitable classes for inlining. Table 1 has three 

columns. The first illustrates the programs analysed. The 

second illustrates the number of top-level classes in each 

program, the third illustrates the number of classes which 

are suitable for declassification in each program. It is 

obvious from these results that there are few top-level 

classes which meet the criteria for inlining. It should be 

remembered that even though few examples of inlinable 

classes are found, these might still result in a lot less 

objects being created at run-time. 

 

 

Table Table Table Table 1111....    Comparison of the number of inlinable Comparison of the number of inlinable Comparison of the number of inlinable Comparison of the number of inlinable 
classes in each programclasses in each programclasses in each programclasses in each program    

Programs Classes Inlinable Classes 

check 29 1 

compress 25 1 

db 19 1 

raytrace 41 2 

Declass 21 3 
 

Check, compress and db have one inlinable class. The 

raytrace program has 2 inlinable classes out of 41 (5%). 

The declass program was the most suitable for 

optimization as it has 3 inlinable classes out of 21 (14%). 

 

6.2. Transformation 
 

 In order to establish the effectiveness of the 

declassification technique, it is necessary to compare the 

run-time performance and memory consumption of the 

unoptimized and optimized versions of each test program.  

From these results, we can extrapolate the benefits of the 

declassification technique. To measure the effectiveness of 

the declassification technique we transformed the source 

code of the test programs.  Each optimized program was 

then compiled using Java 2 SDK standard edition version 

1.4. The unoptimized and optimized versions of each 

program were measured by the benchmark program 

available in SPEC98. Measurements were taken on a 

Pentium 200 with 32 megabytes of RAM and are the 

average of 10 runs.  The percentage improvement (or 

disimprovement) is calculated by dividing the difference 

between the optimized and unoptimized measurements 

(eg. run-time memory usage) by the original unoptimized 

measurement. Tables 2, 3 and 4 show the percentage 

change. A negative number means the measure has 

decreased by that amount. A positive number means the 

measure has increased by that amount. A number of 0.00 

means no change.  

 

6.2.1. Memory Consumption. The percentage change in 

memory consumption of the optimized programs is 

illustrated in Table 2. 

 

Table Table Table Table 2222....    Change in memory consumption of the  Change in memory consumption of the  Change in memory consumption of the  Change in memory consumption of the  
test programstest programstest programstest programs    
Average  Average  

Memory used Memory used 

Programs 
(in bytes) 

Unoptimized Optimized 

% 
Memory 
Change 

check 37084 37115 0.08 

compress 6280938 5747851 -8.49 

db 8684467 8684594 0.00 

raytrace 4339080 4296789 -0.97 

Declass 6717439 6243451 -7.06 



 It was hoped that the declassification technique would 

reduce the number of objects created by the program 

because of its ability to inline classes.  It could be deduced 

that this has occurred in some of the test programs. The 

check and db programs in the empirical study show a 

negligible change in memory use between the optimized 

and unoptimized programs. The raytrace program had 

some inlining opportunities but only a small reduction in 

memory use after optimization.  The declass program 

shows an important and significant 7% reduction in 

memory use following the inlining of three classes.  The 

compress program shows a 8.5% decrease in memory use 

following the inlining of only one class.  It could also be 

deduced that if more classes were inlined, the memory 

usage of the majority of programs would reduce further. 

 
6.2.2. Run-time Performance. Table 3 shows that there is 

very little or no difference in the run-time performance of 

check, compress, db, and raytrace programs.  It was hoped 

that the run-time average of the declass and raytrace 

programs would be decreased as a result of class inlining. 

This should reduce the number of memory dereferences as 

the fields of the inlinable class become local to the 

enclosing class.  It should also reduce the number of 

dynamic dispatches necessary to execute the program.   

 

Table Table Table Table 3333. Changes in the run. Changes in the run. Changes in the run. Changes in the run----time averagestime averagestime averagestime averages    
Average Average % 

Run-Time Run-Time Run-Time 

Programs 
(in secs) 

Unoptimized Optimized Change 

check 54.9 54.9 0.00 

compress 105.7 106.1 0.38 

db 95.95 95.63 -0.33 

raytrace 33.45 33.46 0.03 

Declass 30.77 30.63 -0.45 

 

 The empirical study showed a negligible increase in 

the run-time average of the optimized compress program 

and only a 1% decrease occurred as a result of optimizing 

the declass program.  It could be deduced from these 

results that the fields and methods of the inlinable classes 

within the compress and declass programs are not highly 

referenced by their enclosing classes. It should be noted 

that although there is not much of a change in the run-time 

performance for these programs, for longer runs, 

there may be more of a change because if there is less 

memory consumption as shown in Table 2 for the 

compress and declass programs, then less time should be 

consumed by garbage collection. It could also be deduced 

that the overall poor impact on the run-time performance 

is predominately due to the small number of classes found 

suitable for declassification. 

 
6.2.3. Program code size. An important feature which can 

be attributed to the declassification technique is that there 

will be little to no increase in code size.  This feature 

cannot be attributed to many other optimization techniques 

such as object inlining [Dolby, 1997].  This is supported 

by the empirical study, which shows that there is a 

negligible increase in code size after optimization.  Some 

programs that had inlining capabilities show a small but 

important decrease in code size.  The code size of the 

declass program reduced by 5% after declassification.   

 
TTTTable able able able 4444. Changes in the run. Changes in the run. Changes in the run. Changes in the run----time averagestime averagestime averagestime averages 

Unoptimized Optimized % Code Size Programs 

(bytes) (bytes) Change 

check 110,671 110,519 -0.14 

compress 92,341 92,425 0.09 

db 88,130 88,190 0.07 

raytrace 131,833 131,100 -0.56 

Declass 295,996 281,384 -4.94 

 

7.  Further Extensions 
 

 The declassification technique concentrates on top-

level classes which are declared and instantiated as a field 

of an enclosing class.  The usage counting analysis 

algorithm identified other top-level classes that have a 

usage count of one. The declassification technique could 

be extended to inline these top-level classes, it could also 

be extended to inline single usage inner classes. 

 

7.1. Local Objects 
 
 The empirical study found that there are a considerable 

number of top-level classes that are instantiated as local 

variables in methods.  A local object cannot be inlined 

successfully if a reference to the local object is returned 

from the method or passed as a parameter to another class 

instance. Figure 7 illustrates only the local objects which 

are used in this way.  11% of the db program classes and 

8% of the compress program classes are being used as 

local objects.  Each of these classes could be inlined 

within the method which created them by inlining its fields 

and expanding each of its method calls.  
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 An anonymous object which is instantiated in a method 

could be inlined within the method in a similar way to how 

you inline a local object.  The information gathered by the 

declassification analysis and transformation algorithms 

could also be extended to facilitate the inlining of inner 

classes, i.e. member, local and anonymous classes.  In Java 

each inner class is created as a normal top-level class by 

the JVM.  This results in each inner class requiring space 

and time to be created on the heap.  Eliminating inner 

classes should result in reduced memory consumption by 

the program and improved run-time performance.   

 

8.  Comparison with Related Work 
  

 There are a number of compile-time techniques that 

have been developed to optimise object-oriented 

programs. Method specialisation is a technique which is 

used to reduce the number of dynamic dispatches 

necessary in a program. A selective specialisation 

technique is presented in [5], whose central aim is to 

replace some of the dynamic calls to methods within a 

program with statically bound calls to specialised methods.  

The fundamental difference between selective 

specialisation and other method specialisation strategies is 

that it is selective about which methods it specialises. The 

selective specialisation technique in [5] increases the size 

of the Java program, the declassification technique does 

not. The technique in [5] uses both static and dynamic 

information gathered from program profiling. The 

declassification technique only uses static analysis.   The 

complexity of the technique in [5] increases when it needs 

to recursively specialize methods, moving up through the 

call graph. The declassification technique does not involve 

recursion and is a simple and straightforward optimization 

technique. 

 Other areas of research have concentrated on object 

inlining.  Object inlining aims to inline object(s) within 

another object or method, while the aim of the 

declassification technique is similar, it is intrinsically 

different because it involves inlining classes within other 

classes rather than object instances. For example, an object 

inlining technique is presented in [2] which can inline 

objects within methods.  This technique, differs from the 

declassification technique because its central aim is to 

identify and inline objects which are created within a 

method.  These are referred to as local objects. The 

declassification technique has the ability to inline top-level 

classes. A limitation of  [2] is the fact that an object cannot 

be inlined if a reference to the inlined object is passed as a 

parameter to other objects or methods within the program.  

The solution to this problem is to reconstruct the object; 

the feasibility of this approach is discussed in [3]. 

 A more powerful and less restrictive object inlining 

optimizing technique is presented in [6] which will 

automatically inline objects within container objects.  The 

adaptive analysis technique also makes use of the precise 

information obtained from the algorithm in [9].  It is not 

restricted to inlining objects within methods, but has the 

considerable drawback that the inter-procedural data-flow 

analysis used by this technique is complex.  This 

complexity is necessary because detailed information is 

required on the objects used within a program to enable 

program transformation.  The declassification technique is 

a lot simpler and straightforward as its aim is to identify 

classes which are used exactly once in the program.  These 

classes will then be inlined into their enclosing class.  

Complex calculations are not necessary because we do not 

need to check and deal with aliases in the analysis and 

transformation of each class.  The technique in [6]  in 

comparison needs to find and specialise uses of inlined 

objects and to ensure that inline allocation does not change 

aliasing relationships.   

 [11] states that an empirical study done on the object 

inlining technique in [6], revealed that the size of a 

program after inlining is almost identical to its original 

size. [12] estimates that there is on average a 20% increase 

in the size of a program.  They cannot guarantee however, 

that this will always be the case and it is believed that 

there could be a substantially higher increase in the code 

size.  This is because the inlined object’s fields and 

methods are added to one or more container objects 

increasing their size and the class declaration of the inlined 

object still remains in the program. The declassification 

technique in comparison has a negligible increase in the 

program size, due to the fact that once the inlined classes’ 

fields and methods are added to the enclosing class, its 

class declaration is deleted from the source code. [12] 

discusses a revised algorithm. [13] extends the research on 

automatic object inlining in Dolby’s papers and 

investigates the possibility of several objects being inlined 

within a single field in succession.  The declassification 

technique is different as it is inlining classes.  It has 

however, the ability to inline a number of instances of the 

same class into the same field in succession.   

 

9.  Conclusion 
 

 This paper presents an optimisation technique which 

facilitates the automatic declassification of programs.  

Declassification involves the identification of suitable 

intermediate classes and the transformation of the source 

code to inline the fields and methods of each intermediate 

class within its enclosing class.  The declaration of the 

inlined class can then be removed from the source 

program.  The declassification technique is a lot simpler 

and less complicated than other object inlining techniques 

such as [6]. 

 The declassification technique has the potential 

benefits associated with object inlining, but unfortunately 

few classes were found suitable for declassification. One 

of the reasons such a small number of inlinable classes 

were found could be the fact that four of the test programs 



where taken from the SPEC98 benchmark suite.  This 

benchmark suite is not particularly object-oriented as some 

of the programs are direct translations from the Fortran 

language.  It would be interesting to see how the results of 

the declassification technique would alter if a more 

extensive empirical study was conducted that had a set of 

test programs which are intrinsically object-oriented.  It 

should be noted however, that even if few classes are 

found suitable for inlining, this still may result in a lot less 

objects being created at run-time.  This is discussed in 

section 5.1.  

 The empirical study showed that when suitable classes 

are found for inlining it can have a positive effect on the 

memory consumption of the program.  Two of the 

programs in the empirical study showed a significant 

reduction of between 7% and 8.5% in memory 

consumption, as a result of declassification.  The effect of 

declassification on the run-time performance of the test 

programs is negligible.  It could be argued, however, that 

this is largely due to the small number of classes found 

suitable for declassification. 

 There are a number of significant features associated 

with this optimization technique. One of these is the fact 

that there is a negligible run-time cost associated with the 

technique.  There is also little to no increase in the code 

size of a transformed program, if anything it will shrink in 

size.  The analysis and transformation algorithms are less 

complicated than many other optimization techniques.  

Another feature is that it automatically inlines suitable 

classes and deletes the original class declaration, without 

any programmer intervention.  The programmer does not 

have to explicitly declare that certain classes should be 

inlined. 

 Although the declassification technique was not overly 

successful in optimizing the test programs, further 

extensions to this technique could greatly improve its 

success. It was found that there are a number of local 

objects suitable for inlining within half of the test 

programs.  The compress and db programs have two 

potential local objects and the check has one, this is an 

average of 7% of their overall classes.  There are other 

further possibilities for extending the technique by inlining 

inner classes. These extensions combined with an 

intrinsically object-oriented set of test programs could 

greatly improve the effectiveness of the declassification 

technique. 
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