
Specifying Transformation Sequences as Computation on Program Fragments
with an Abstract Attribute Grammar

Markus Schordan
Institute of Computer Languages
Vienna University of Technology

1040 Vienna, Austria
markus@complang.tuwien.ac.at

Daniel Quinlan
Centre for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551, USA
dquinlan@llnl.gov

Abstract

We present a grammar based approach for specifying
a transformation as a sequence of transformation opera-
tions that operate on an intermediate representation. The
transformation sequence is specified in the semantic actions
of an abstract attribute grammar. The mapping between
the object-oriented design of the intermediate representa-
tion and the abstract grammar directly reflects the object-
oriented design in the structure of the grammar. It has prop-
erties that permit utilizing grammar based tools at arbitrary
abstraction levels of the language representation. The pro-
gram fragments can be both source strings and fragments
of the intermediate representation that can be used inter-
changeably in the specification.

We demonstrate the applicability of the approach by us-
ing available attribute grammar tools and the source-to-
source infrastructure ROSE for specifying and performing
transformations of C++ programs. The results of data
flow analysis tools using fixed point algorithms is integrated
as available attributes that can be used for enabling or
disabling transformation sequences. With the abstract at-
tribute grammar the transformation is computed as an at-
tribute value that represents a sequence of restructure op-
erations. The composition of different transformation se-
quences permits the reuse of sub-transformation specifica-
tions. Eventually we discuss the correspondence to rewrite
tools permitting a pattern based restructuring of the pro-
gram representation.

1 Introduction

Our goal is to introduce optimizing transformations on
large scale scientific applications. Our approach is to define
mechanisms to simplify the development of transformations
to support optimizations on such applications where they

are using C or C++. Within our work we have focused
on domain-specific optimizations, where there is significant
potential to leverage the additional semantics of domain-
specific abstractions from libraries or within the applica-
tions directly, and which is unknown to vendor compilers.
As a direct result, our target audience is both library de-
velopers and sophisticated applications people supporting
large scale application development, without specific com-
piler background. Clearly our approach must thus present
as easy and powerful a general mechanism as possible. This
context for our research work has significantly shaped the
mechanisms that we propose for the specification of gen-
eral program transformations.

In order to simplify the specification of transformations
we propose a combination of attribute grammars, rewrite
operators, and the combined use of source fragments and
AST fragments in specifications. Grammars have proven
useful to define the structure of a language. As a result, sev-
eral grammar based tools exist for recognizing languages
and associating actions with the recognition of language
constructs. To make transformations available to different
clients, a transformation is usually applied to some inter-
mediate representation (IR) of a single or multiple input
language. This permits the generation of code from the
intermediate representation for different target languages.
Our approach uses grammars as basis for the specification
of transformations.

The approach presented here, can be applied to any IR
but we focus on the object-oriented design of annotated
ASTs and a mapping that permits to see a direct correspon-
dence of the object-oriented design of the AST, the gram-
mar that defines its language, the abstract grammar, and the
utilization of existing grammar based tools for specifying
transformations. In the semantic actions we compute a se-
quence of powerful transformation operations.

The belief in the practicability of the approach is based
on the experience in transforming C++ programs in source-

1

to-source translators built with ROSE, which we describe in
section 2, and some early experience from [1]. Meanwhile
we have extended this effort in building tools for grammar
transformations of abstract grammars and generate gram-
mars as required by different tools such as ox [2], yacc,
Coco [3], and the program analysis generator (PAG) [4].

In this paper we present the theory on which such map-
pings are based. In particular we shall discuss the con-
straints being placed on the grammars and the object-
oriented design. They permit the presented mappings being
applied such that a direct correspondence of the IR gram-
mar, object-oriented design of the IR, and the source lan-
guage can be established.

In section 2 we describe the ROSE infrastructure that
permits building source-to-source translators for C++ and
which essential features ROSE offers for transforming arbi-
trary C++ programs. The capabilities of the infrastructure
are required to permit the use of transformation operators
that we discuss in section 3. The transformation operators
are used in the semantic actions of our abstract attribute
grammar. In section 4 we present the mapping between
the object-oriented design of the AST and our abstract C++
grammar. Since we permit to use both source strings and
AST fragments in the semantic actions to specify a trans-
formation, it is important to make the relation between the
AST design and the abstract grammar as straight-forward
as possible. In section 6 we present a transformation ex-
ample that shows how the abstract grammar, the transfor-
mation operators, and program fragments can be used to
obtain a compact specification for a parallelization of C++
iterators by introducing OpenMP directives. In section 7 we
discuss the related work of object-oriented grammars and
other transformation frameworks.

2 ROSE Infrastructure

The ROSE project defined a compiler infrastructure
specifically for the development of source-to-source opti-
mizing translators. Full C++ support is proved as required
to compile large laboratory applications at Lawrence Liver-
more National Laboratory exceeding a million lines of code
and using complex templates. ROSE generates an object-
oriented annotated abstract syntax tree (AST) as an inter-
mediate representation. Transformations are performed on
the AST. Several components can be used to build the Mid
End: a predefined traversal mechanism, attribute grammar
tools, transformation operators to restructure the AST, and
pre-defined optimizations. Support for library annotations
is available by analyzing pragmas, comments, or separate
annotation files. A C++ Back End can be used to unparse
the AST and generate C++ code. An overview of the archi-
tecture is shown in Fig. 1). Steps 1-7 are explained in detail
when describing the transformation operators in section 3.

2.1 Front End

We use the Edison Design Group C++ Front End (EDG)
[5] to parse C++ programs. The EDG Front End generates
an AST and performs a full type evaluation of the C++ pro-
gram. This AST is represented as a C data structure. We
translate this data structure into an object-oriented abstract
syntax tree, Sage III, based on Sage II and Sage++[6]. Sage
III is used by the Mid End as intermediate representation.
The AST passed to the Mid End represents the program and
all the header files included by the program (see Fig. 1, step
1 and 2).

2.2 Mid End

The Mid End permits the restructuring of the AST. Re-
sults of program analysis are made available as annotations
of AST nodes and as accessible attributes in the abstract
grammar. ROSE also includes a scanner which operates on
the token stream of a serialized AST so that parser tools can
be used to specify program transformations in semantic ac-
tions of an attribute grammar. The grammar is the abstract
grammar, generating the set of all ASTs.

An AST transformation operation specifies a location
in the AST where code should be inserted, deleted, or re-
placed. In Fig. 1 steps 3,4,5 show how the ROSE archi-
tecture permits the use of source code fragments and AST
fragments in the specification of program transformations.
A fragment is either a source string or an AST. A program
transformation is defined by a sequence of AST restruc-
turing operations. Transformations can be parameterized
to define conditional restructuring sequences. This is dis-
cussed in detail in section 3.

2.3 Back End

The Back End unparses the AST and generates C++
source code (see Fig. 3, steps 6 and 7). It can be speci-
fied to unparse either all included (header) files or only the
source file(s) specified on the command line. This feature
is important when transforming user-defined data types, for
example, when adding generated methods. Comments are
attached to AST nodes and unparsed by the Back End.

3 Transformation Operators

In this section we present the transformation operators
that are used in the semantic actions of the abstract attribute
grammar. A restructuring sequence consists of fragment op-
erators, and as operands are used AST fragments (subtrees),
strings (concrete pieces of code), or AST locations (denot-
ing nodes in the AST).

2

Abstract Attribute Grammars
Attribute Evaluators

Query operators
mode: AST readonly

Transformation operators
mode: AST read/write

Front End

Back End

Middle End

Source fragment
AST fragment

AST fragment

AST fragment
Source fragment

Program (source code)

AST

AST

Transformed Program (source code)

(1)

(2)
(3)

(3)

(4)

(5)
(5)

(6)

(7)

Figure 1. ROSE Source-To-Source infrastructure for parsing C++ programs (steps 1 and 2), generating
C++ code (steps 6 and 7) and handling of code fragments (steps 3-5).

To permit the use of source fragments in specifications
it is required to translate source fragments to AST frag-
ments. We also permit that source strings are computed as
attribute values from other source strings. Therefore source
fragments are completed to valid programs such that the
programs can be parsed by the Front End and then we ex-
tract the corresponding AST fragment. The components
that permit us utilizing the existing Front End for parsing
source-fragments are the Fragment Concatenator and Ex-
tractor. Based on this functionality the fragment operators
are defined.

3.1 Fragment Concatenator and Extractor

In general, a source-fragment cannot be parsed by the
Front End because it is an incomplete program. Therefore
it needs to be extended by a source-prefix and a source-
postfix to a complete program such that it can be parsed
by the Front End. The computation of the prefix and postfix
is automated. The user only specifies the fragment and the
target location of the corresponding IR-fragment. In our IR,
the target location, ����, is a node in the AST. The prefix
and postfix are automatically generated. The source-prefix
consists of all declarations and opening braces of scopes be-
fore the target location, and the function or method headers
for which the target location is specified. The source-postfix
consists of all closing braces of scopes after the target posi-

tion.
The Front End returns a program in IR. From this the

corresponding IR-fragment needs to be extracted. A source
string shall be denoted as � and an intermediate representa-
tion as � . We shall denote any prefix by �, any fragment by
�, and any postfix by �.

A given source-fragment, ��, is translated to an IR-
fragment, ��, by invoking the Front End. The fragment
concatenator concatenates the source-prefix ��, the source-
fragment ��, and the source-postfix ��. Information nec-
essary to extract the IR-fragment, ��, corresponding to the
source-fragment, ��, from the IR of the completed pro-
gram, shall be denoted ����. It represents separators that
are inserted by the concatenator before invoking the Front
End, and used by the extractor to separate the fragment from
the prefix and postfix.

�������� � concatenator���� ��� ���

The completed program � can be parsed by the Front
End

� � frontend���

to obtain the program in intermediate representation � .
From this program � , the IR-fragment, ��, is extracted by
the fragment extractor.

3

�� � extractor��� �����

The fragment extractor strips off the IR-prefix, ��, cor-
responding to �� and �� corresponding to ��. Information
on where these parts are separated, ����, which is returned
by the fragment concatenator, is used to find start and end
points of �� and ��.

We have shown how we can obtain the corresponding
IR-fragment �� for a given source-fragment�� by invoking
the Front End. The inverse operation, by invoking the Back
End, is

�� � backend�����

Since both representations, �� and ��, can always be
translated one to the other, both can be used interchangeably
in the definition of a transformation.

3.2 Fragment Operators

A fragment operator permits performing a basic restruc-
turing operation such as insert, delete, or replace AST frag-
ments. The target location in the AST can be absolute or
relative. The fragment to be inserted can be specified as
source fragment or AST fragment.

Whether a source fragment is valid with respect to an ab-
solute location is determined automatically. From the syn-
tactic context of the absolute location the prefix, ��, is com-
puted such that all declarations, opening scopes, and func-
tion headers are included in the prefix. The postfix, ��, con-
sists of all the syntactic entities of closing scopes (for nested
scopes such as for-loops, while-loops, function definitions,
etc.).

Definition 1 (Valid Source Fragment) A source fragment
�� is valid with respect to an absolute location ���� in an
AST if it can be completed to a legal program from the syn-
tactic and semantic context of the absolute location such
that the completed program has correct syntax and seman-
tics, symb. �� is valid with respect to ���� if ��	
��
����
�� � ��� with �� � ������������, �� � �	�����������
succeeds.

For a valid source fragment �� we can always generate a
corresponding AST fragment, ����. In our C++ infrastruc-
ture the AST fragment ���� has all templates instantiated.

Based on the handling of code fragments, the transfor-
mation operators can be defined as follows. Let ���� de-
note the set of ASTs, ���� the set of relative locations in an
AST, ���� the set of absolute locations, i.e. the nodes in an
AST, and � the set of valid source fragments with respect
to an absolute location in the AST. Then the transformation
operators can be defined as

insert: ���� � ���� ������ ����

Insertion of AST fragment at relative location (step 4
in Fig. 1)

delete : ���� ������ ����

Deletion of AST subtree at absolute location in AST
(step 4 in Fig. 1)

fragment-frontend : ���� ������ � � ����

Translate source fragment with respect to absolute lo-
cation in AST to corresponding AST fragment (steps
3,5 in Fig. 1)

fragment-backend : ���� ������ �

Unparse AST fragment at absolute location in AST to
source fragment (step 5 in Fig. 1)

locate : ���� � ���� ������ ����

Map relative location with respect to absolute location
in AST to absolute location in same AST

replace : ���� � ���� ����������� ����

Replacement of AST fragment at relative location (step
4 in Fig. 1)

replace : ���� ������ � � ����

Replacement of AST subtree at absolute location in
AST by AST fragment corresponding to source frag-
ment (steps 3,4,5 in Fig. 1)

unsafe-replace : ���� ������ � � ����

Replacement of string that is unparsed by the Back End
at absolute location in AST by source fragment (i.e.
the Back End unparses this string instead of the code
that is represented by the AST subtree at the absolute
location)

The fragment operators allow rewriting the AST by spec-
ifying absolute or relative target locations. A relative loca-
tion ���� permits specification of a target location in an AST
relative to an absolute location ����. The operator �	����	

can map a relative location ���� with respect to an absolute
location ���� and a given AST containing the absolute loca-
tion ����, to another absolute location in the same AST ac-
cording to ����. Relative locations are used to simplify the
specification of the target location of a fragment operation.
For example, if a statement can be hoisted out of a loop it
suffices to specify as target location the “statement in outer
scope right before the current loop”. We have defined sev-
eral classifications of such relative target locations which
are useful in making transformations more compact. The
insert-operation is an example of using a relative target lo-
cation. The operator fragment-frontend permits translation
of source fragments to AST fragments as explained above.
It also requires step 5 to compute the necessary prefix and
postfix to complete the source fragment to eventually call

4

the Front End for the completed program. The unparsing
of an AST fragment, fragment-backend requires invoking
the Back End. The second replace operator listed, permits
specification of the new AST fragment, ���, which replaces
an AST subtree at location ���� in this AST, to be speci-
fied by a source fragment, �. This requires all three steps
3,4,5 (see Fig. 1). Step 5 is required to unparse parts of
the AST to form the prefix, ��, and postfix, ��. In Step 3
the completed source fragment is translated to an AST and
the corresponding AST fragment, ���, is extracted. Step 4
is the actual rewriting of the AST and the replacement of
the AST subtree with the new AST fragment is performed.
Based on this basic operations on fragments, transformation
operators can be defined.

The last listed replace operation, unsafe-replace only
“patches” the Back End such that if the unparser is in-
voked, this string is unparsed instead of the AST sub-
tree at the specified location. Consequently, fragments
that are inserted using unsafe-replace are not checked (no
syntactic or semantic analysis). In some transformations
this feature helps to keep a transformation specification
compact because we can decompose a transformation in
sub-transformations where not every single operation is
checked but the concatenated strings (or combined ASTs)
are checked. In our example in section 6 the parameter-
ized sub-transformation derefToIndexBody performs
only an unsafe-replace because we cannot replace the ac-
cess, *i, only but also need to replace the for-loop-header.
Hence, when several operations need to be performed in
“parallel”, some operations may be specified as unsafe, and
at some point, in our example when the subtree represent-
ing a for-statement is replaced, we perform a safe replace
(called replace) that includes all the other unsafely replaced
fragments. Note that a safe operation fails if any syntactic
or semantic error is encountered.

The combination of different source-fragments and AST
fragments is specified in semantic actions associated with
productions of an abstract grammar which we describe in
the next section.

4 Abstract Grammar

We use as intermediate representation an annotated ab-
stract syntax tree (AST). The AST is generated by the Front
End and the transformations are specified as restructure op-
erations on the AST. In this section we shall define a map-
ping between the object-oriented design of the AST and the
abstract grammar such that the abstract grammar generates
the set of all ASTs according to the abstract data types used
for implementing the AST. Then we shall provide mappings
to context free grammars and tree grammars as they are
required by different grammar based tools that we use for
specifying transformation sequences.

SgNode : SgSupport
| SgLocatedNode
...
;

SgLocatedNode : SgStatement
| SgExpression
;

SgStatement : SgExprStatement (SgExpressionRootNT)
| SgReturnStmt (SgExpressionRootNT)
| SgForInitStatement (SgStatement*)
| SgScopeStatement
...
;

SgScopeStatement : SgBasicBlockNT
| SgIfStmt (SgStatement,

SgBasicBlockNT,
SgBasicBlockNT)

| SgForStatement (SgForInitStatementNT,
SgExpressionRootNT,
SgExpressionRootNT,
SgBasicBlockNT)

...
;

Figure 2. Fragment of our abstract C++ gram-
mar used in ROSE. The full grammar consists
of 199 productions.

4.1 Class Hierarchy

Let a class hierarchy,� , with single inheritance and a
single root class, be a set of pairs ���� �� such that � is a
super class (direct base class) of � �. Let �� denote the set
of inner nodes and �� denote the set of leaf nodes of the
hierarchy� . set of all classes be denoted as �	 .

Further, let the children information that is asso-
ciated with a class ��, be represented by a pair
���� ���� � � � � �
�� � � where ��, � � � �
, is the class
of a child of �� where
 � � represents the fact that no
children are associated with class ��. The class hierarchy
is unfolded such that the children information is associated
with the leaf nodes only in the hierarchy.

Property 1: It holds that ����� ���� � � � � �
�� � � �
 � �
implies �� � ��, i.e. children information is only as-
sociated with leaf nodes of the unfolded class hierar-
chy.

We define the object-oriented abstract grammar such that
� � ����� �� �� where the set of terminals represents the
leaf nodes of the class hierarchy, � � ��, the set of non-
terminals represents the inner nodes of the hierarchy, � �
�� , � � � and the productions are defined such that
� � �� � � � � � �� � � � �� � ����� � �� 	

��� ����� � � � � �
� � ��� �� � �� ��� ���� � � � � �
�� � ��
generates the set of all ASTs.

5

The grammar represents the object-oriented design such
that chain productions, � � �, represent inheritance
(class � inherits from class �) and production � �
����� � � � � �
� represents the fact that class � inherits from
class � and ��, � � � �
, are classes of member variables
in class � that hold a reference to an object of class ��.

Property 2: A valid AST consists of instances of classes
� � �� only.

Therefore each concrete class of the class hierarchy in
the AST is represented by a terminal � in the abstract gram-
mar. The non-terminals of the abstract grammar never rep-
resent concrete classes of AST nodes.

A fragment of our abstract C++ grammar with these
properties is shown in fig. 2. The chain produc-
tion SgStatement� SgScopeStatement represents
the fact that class SgScopeStatement inherits from
class SgStatement (is-a relationship). The last pro-
duction in the grammar fragment represents the fact
that SgScopeStatement is the base class of class
SgForStatement. Because SgForStatement is a
terminal, it corresponds to a concrete AST node class. The
list of four non-terminals on the right-hand-side represents
the fact that class SgForStatement has four children in
the AST (has-a relationship).

5 Use of Abstract Grammar

The combination of several different grammar based
tools permits to specify a transformation in the most com-
pact form. In this section we show how we have integrated a
variety of different tools into the ROSE infrastructure. The
design of the abstract grammar, which is a direct conse-
quence of the mapping presented in the previous section,
has proven to be the best format to permit a straight-forward
translation for different grammar based tools. The gener-
ation of the external representation, as required by some
tools, is also specified as attribute computation.

5.1 Attribute Grammar Tools

We now turn attention to LL and LR grammars describ-
ing our abstract syntax to utilize existing parser tools. For
LL and LR grammars several properties must hold such that
no parsing conflicts exist.

A (non-redundant) context-free grammar is ����� iff for
every variable � the set of the corresponding productions
�� � ��� � � � � � � �
� satisfies the following two con-
ditions:

1. ����������
 ���������� � � for � �� �

2. If ��
�

 � then for all � �� � (� � � �
):
����������
 �	��	 ���� � �

Our abstract grammar has only two kinds of produc-
tions. They are represented in LL(1) tools as � � �

and � � ���� � � � �
� where � is a terminal and �,�, ��

are non-terminals. The terminals ’(’ and ’)’ are added to
the token stream, which therefore is called enhanced token
stream. Since each terminal shows up at most once in the
grammar and every right-hand-side of a production that is
not a chain production has such a terminal as first symbol,
the first condition is satisfied and since there are no empty
productions the second conditions is satisfied as well.

If an AST has optional children, for example that a ref-
erence to a child is either null or refers to some object, then
we would have empty productions and condition 2 would
not necessarily be satisfied. This problem can be eliminated
by replacing this node class in the AST with two different
classes, one holding the reference and the other does not.

Our abstract C++ grammar, shown in fig. 2, satisfies
properties 1 and 2. The generation of LR and LALR gram-
mars is straight-forward from this grammar by generating
left-recursive productions for all lists (denoted by �). Be-
side Coco, we also use the LALR tool ox ��	, which is based
on yacc.

5.2 Program Analysis Tools

The Program Analysis Generator (PAG) [4] requires an
abstract grammar as input, so called syn files. The results of
an analysis with PAG is attached as attributes to AST nodes
and can therefore be accessed in the transformation specifi-
cation as attributes, enabling or disabling transformation se-
quences. We use PAG for flow-sensitive analyses requiring
fixed point algorithms and make the results of an analysis
available as information attached to AST nodes. The AST
nodes are accessible in the semantic actions of the abstract
grammar because pointers to the nodes are provided as an
attribute in the grammar. This gives access to all informa-
tion that is attached to AST nodes and permits making an
attribute computation dependent on the results obtained by
PAG or other program analysis components.

5.3 Bottom Up Rewrite Tools

We use burg and iburg [7] for applications of code selec-
tion. Burg requires trees that consist of nodes of arity less or
equal two and null pointers are not allowed. Nodes with an
arbitrary number of children need to be represented by a bi-
nary tree (i.e. a list representation). The grammar only dif-
fers in how we represent lists, because we need to introduce
an auxiliary node to the abstract grammar that acts as a list
separator. We use this grammar to apply semantic actions
according to an optimal selection of instructions based on
a constant that is associated with each production. We use
it for treating overloaded user-defined operators in C++ like

6

built-in operators and optimize them similar to expression
trees for built-in operators.

5.4 Term Rewrite

To permit usual term rewriting of the AST we generate
as external format a Prolog representation of the AST. An
AST is represented by a single term. Using Prolog, users
can specify pattern based transformations and make use of
the more powerful mechanism of unification. After a term-
based transformation is performed, the new Prolog term is
processed and a Sage III AST is created. A similar approach
is used in the JTransformer Framework, a query and trans-
formation engine for Java source code, by using a Prolog
representation of Java programs.

6 Program Transformation Example

In the example source in fig. 3 we show a C++ code be-
fore and after transformation. In the original code a sequen-
tial iteration on a user-defined container is performed. This
pattern is frequently used in applications using C++98 stan-
dard container classes. We parallelize this code by introduc-
ing OpenMP directives and by transforming the loop header
and loop body such that it conforms to the required canon-
ical form of an OpenMP parallel for. After transformation
the code can be executed in parallel. The transformation is
specified as semantic actions of our abstract C++ grammar
which corresponds to the object-oriented AST as discussed
in section 4. In the semantic actions we use the transforma-
tion operators presented in section 3 and compute a trans-
formation sequence consisting of such operations. Eventu-
ally the sequence of transformation operators is applied, the
AST is transformed, and the unparsed AST is unparsed as
C++ program.

In fig. 3 the object a is an instance of the user-defined
class Range. The transformation we present takes into ac-
count the semantics of the type vector<Val> and the se-
mantics of class Range. The transformation is therefore
specific to these classes and its semantics.

For the type vector<Val> we know how the type
iterator is defined in the class vector because it is
one of the C++98 standard classes. For the type Range
we know that the method update is thread safe from a
library annotation. We show the core of a transformation
to transform the code into the canonical form of a for-loop
as required by the OpenMP standard. We also introduce
the OpenMP pragma directive. Note that the variable i in
the transformed code is implicitly private according to the
OpenMP standard 2.0 . If the generated code is compiled
with an OpenMP compiler, different threads are used for
executing the body of the for-loop.

Our abstract grammar covers full C++ and we use a suc-
cessor of Coco/R [3], the C/C++ version ported by Frankie
Arzu, as attribute grammar tool. Coco/R is a compiler
generator that permits to specify a scanner and a parser in
EBNF for context free languages. The grammar has to be
LL(1). We use this tool to operate on the token stream of
AST nodes. Therefore we do not use the scanner generator
capabilities of Coco/R and implemented a scanner to oper-
ate on a token stream of AST nodes.

In the example in fig. 4 the production of
SgScopeStatement is shown. The terminal
SgForStatement corresponds to an AST node of
type SgForStatement. The variable astNode is a
pointer to the respective AST node of the terminal and
assigned by our supporting system when the scanner
accesses the token stream. Note that every terminal in the
grammar corresponds to a node in the AST, except the
parentheses.

Methods of the object transformationSequence
allow to insert new source code and delete sub-
trees in the AST. The transformation object
transformationSequence buffers pairs of tar-
get location and string. The substitution is not performed
before the semantic actions of all subtrees of the target
location node have been performed. This mechanism
allows to check whether substitutions would operate on
overlapping subtrees of the AST (in the same attribute
evaluation). In case of overlapping subtrees an error is
reported.

The object query is of type AstQuery and provides
frequently used methods for obtaining information stored
in annotations of the AST. These methods are also imple-
mented as attribute evaluations.

The inherited attribute loopNestingLevel is used
to handle the nesting of for-loops. It depends on how an
OpenMP compiler supports nested parallelism whether we
want to parallelize inner for statements or only the outer
for statement. In future this decision will be made more
specific to OpenMP compilers on different platforms and
the boolean attribute will be replaced by an object to provide
more information about the context of OpenMP for-loops.

The object query of type AstQuery offers methods
to provide information on subtrees that have proven to be
useful in different transformations. In the example we use it
to obtain the name of the iterator variable and to obtain the
node of the declaration of the iterator variable. Note that
these functions must return valid values because it has been
tested before that the for-loop qualifies for transformation.

The example shows how we can decompose different
aspects of a transformation into separate attribute evalua-
tions. The methods of the query object are implemented
by using the attribute evaluation. For that reason we al-
low to call any method of the recursive descent parser gen-

7

Before transformation

for(vector<Val>::iterator i=l.begin(); i!=l.end(); ++i) {
a.update(*i);

}

After transformation

#pragma omp parallel for
for(int i = 0; i < l.size(); ++i) {

a.update(l[i]);
}

Figure 3. An iteration on a user-defined container l that provides an iterator interface. The object a is
an instance of the user-defined class Range. Object l is of type vector<Val>. In the optimization the
iterator is replaced by code conforming to the required canonical form of an OpenMP parallel for. The
user-defined method update is thread-safe. This semantic information is used in the transformation.

SgScopeStatement<int loopNestingLevel>
= SgBasicBlockNT<loopNestingLevel>
| SgIfStmt

"(" SgStatement<loopNestingLevel>
SgBasicBlockNT<loopNestingLevel>
SgBasicBlockNT<loopNestingLevel>

")"
| SgForStatement

(.
bool isOmpFor = ompTransUtil.isUserDefIteratorForStatement(astNode,loopNestingLevel);

.)
"(" SgForInitStatementNT<loopNestingLevel>

SgExpressionRootNT
SgExpressionRootNT
SgBasicBlockNT<loopNestingLevel+1>

")"
(.

if(isOmpFor) {
string beforeForStmt = "#pragma omp parallel for\n";

string ivarName = query.iteratorVariableName(astNode);
string icontName = query.iteratorContainerName(astNode);
string modifiedBodyString = ompTransUtil.derefToIndexBody(ivarName,icontName);
string newForStmt = "for(int " + ivarName + "=0;"

+ ivarName + "<" + icontName + ".size();"
+ "++" + ivarName + ") " + modifiedBodyString;

transformationSequence.replace(astNode,beforeForStmt + newForStmt);
}

.)
| ...

Figure 4. A part of the SgScopeStatement production of the abstract C++ grammar with the semantic
action specifying the transformation for SgForStatement.

8

erated by Coco to parse a sublanguage, and start an eval-
uation at a certain node in the AST. Multiple grammar
files can also be used for such cases and each file contains
a version of the abstract C++ grammar. In the example,
the method isUserDefIteratorForStatement is a
wrapper function of another attribute evaluation generated
by Coco that starts at a SgForStatement node and imple-
ments a conservative test.

In fig. 3 the generated code is shown. The access uses
the notation for random access iterators. Even if the access
is not of complexity O(1) the parallelization can still pro-
vide speedup. The user who implements the transformation
has to take such trade offs into account in a test function to
decide whether a transformation should be applied or not.

7 Related Work

An object-oriented view on attribute grammars that is
similar to our mapping in some aspects was already pre-
sented by Koskimies [8] in 1991. He used two notions of
non-terminals, so called superclass non-terminals and ba-
sic non-terminals. The concept of superclass non-terminals
and the use of chain productions to express the inheritance
relation is the same in our approach. But we do not use the
concept of basic non-terminals to specify the syntactic com-
position of basic language constructs because our grammar
is an abstract grammar and is normalized in the sense that a
concrete class always corresponds to a terminal in the gram-
mar. A basic non-terminal on the left-hand-side of a produc-
tion and the so called slots in [8] correspond in our grammar
to a terminal and list of non-terminals on the right hand side
of a production. On the left-hand-side of a production our
non-terminals correspond to superclass non-terminals only.

An interesting comparison of concrete and abstract syn-
tax and its use with Stratego can be found in [9]. Eelco
Visser discusses meta programs that manipulate ASTs of
programs and as a case study the addition of concrete syn-
tax to the program transformation language Stratego is pre-
sented. It turns out that the abstract syntax version is much
more verbose and harder to read and write, especially the
definition of large code fragments. Therefore the syntax of
the object language is embedded in the meta-language. We
address this aspect by using source-strings in the seman-
tic actions associated with the productions of the abstract
grammar. This makes the definition of large code fragments
trivial because the code can simply be written in C++ (the
object language) whereas the structure of the program is
represented at the abstract level of an AST.

Stratego/XT [10] is a framework for the development of
transformation systems aiming to support a wide range of
program transformations. The framework consists of the
transformation language Stratego and the XT collection of
transformation tools. Stratego is based on the paradigm

of rewriting under the control of programmable rewriting
strategies. Because rewrite rules can only use information
obtained by pattern matching on the subject term, for trans-
formations that also require information from the context of
a program Stratego also provides an extension of strategies
with scoped dynamic rewrite rules. This functionality can
be achieved in our approach by using attributes for comput-
ing context information and using absolute or relative target
locations for transformations. Stratego can also be used for
instruction selection. For this purpose we use the mapping
of the abstract grammar to a grammar suitable for burg [7],
a tool for code selection, which we utilize for operation on
the AST.

Codeboost [11, 12], a source-to-source transformation
tool for domain-specific optimization of C++ programs, of-
fers the specification of transformations using Stratego or
user-defined rewrite rules embedded within C++ programs.
In [11] is discussed that the use of user-defined rules is ad-
vantageous over using Stratego when the goal is to optimize
calls to specific functions in C++ which may be overloaded.
Therefore the name of the function is not sufficient but the
full signature must be specified. This is reported to be te-
dious and error-prone, particularly when working with the
abstract syntax in Stratego. In our approach we also use an
abstract syntax but provide all type information, including
the signature of functions, as annotations of the AST which
can be accessed as attributes in the semantic actions of the
abstract C++ grammar.

Similar to our approach DMS [13] also provides at-
tribute grammars to determine properties of programs to
decide where to perform transformations for a given pro-
gram. Transformations are specified as source-to-source
rewrite rules where left hand side and right hand side rep-
resent source language patterns with variables to represent
arbitrarily long well formed language substrings. An addi-
tional optional condition can be used to determine whether
a transformation should be applied. In our approach we do
not only use the attribute grammar for analysis but also for
specifying the transformation sequence and combine it with
the use of source strings. Parameters have a special syntax
in DMS, they are preceded by a backslash. We permit to
build source strings by using text concatenation and define
parameters by either using computed attributes or separate
query objects which permit to decompose a transformation
in different objects (see object query in fig. 4).

8 Conclusions

We presented an approach to simplify the specification of
program transformations. We defined an abstract grammar
for C++ such that the object-oriented design of the ROSE
AST is directly represented in the grammar. The transfor-
mation sequences were specified in the semantic actions of

9

our abstract attribute grammar. As example for a grammar
based tool we used Coco for operating on a serialized AST
and performing attribute evaluation. The transformation se-
quence consisted of transformation operations that are sup-
ported by the ROSE infrastructure and we demonstrated the
use of source strings and AST fragments in specifying trans-
formations.

We see advantages in the presented grammar based ap-
proach because of its explicit representation of the struc-
ture of the IR, the high-level specification of computing
attributes, and the use of source fragments and AST frag-
ments in the specification. We leveraged the parsing tech-
nology of an existing Front End and grammar tools and
applied them at the abstract level of the AST. The pre-
sented example was decomposed into two transformations,
the header of the for-loop and the body of the for loop. Fur-
ther work is required regarding the optimization of decom-
posed transformations.

The combination of grammar based tools, program anal-
ysis tools, and the ROSE infrastructure for restructuring
C++ programs, permitted a compact specification, which
we demonstrated in an example by specifying a transfor-
mation sequence for parallelizing C++ programs.

References

[1] Dan Quinlan, Markus Schordan, Qing Yi, and Bronis
de Supinski. Semantic-driven parallelization of loops
operating on user-defined containers. In LCPC’03:
16th Annual Workshop on Languages and Compilers
for Parallel Computing, volume 2958 of Lecture Notes
in Computer Science, pages 524–538. Springer Ver-
lag, 2004.

[2] Kurt M. Bischoff. Design, implementation, use, and
evaluation of ox: An attribute-grammar compiling
system based on yacc, lex, and C. Technical Report
TR92-31, Iowa State University, Department of Com-
puter Science, December 1992.

[3] Hanspeter Moessenboeck. Coco/R - A generator for
production quality compilers. In 3rd Int. Workshop
CC’90, volume 477 of LNCS, pages 42–55. Springer
Verlag, 1991.

[4] Florian Martin. PAG – an efficient program analyzer
generator. International Journal on Software Tools for
Technology Transfer, 2(1):46–67, 1998.

[5] Edison Design Group. http://www.edg.com.

[6] Francois Bodin, Peter Beckman, Dennis Gannon, Ja-
cob Gotwals, Srinivas Narayana, Suresh Srinivas, and
Beata Winnicka. Sage++: An object-oriented toolkit

and class library for building fortran and C++ restruc-
turing tools. In Proceedings. OONSKI ’94, Oregon,
1994.

[7] Todd Proebsting. Burg, iburg, wburg, gburg: so many
trees to rewrite, so little time (invited talk). In RULE
’02: Proceedings of the 2002 ACM SIGPLAN work-
shop on Rule-based programming, pages 53–54, New
York, NY, USA, 2002. ACM Press.

[8] K. Koskimies. Object Orientation in Attribute Gram-
mars. In H. Alblas and B. Melichar, editors, Proc.
International Summer School on Attribute gram-
mars, Applications and Systems (SAGA’91), Prague,
Czechoslovakia, volume 545 of LNCS, pages 297–
329. Springer-Verlag, June 1991.

[9] Eelco Visser. Meta-programming with concrete ob-
ject syntax. In Don Batory, Charles Consel, and Walid
Taha, editors, Generative Programming and Compo-
nent Engineering (GPCE’02), volume 2487 of Lec-
ture Notes in Computer Science, pages 299–315, Pitts-
burgh, PA, USA, October 2002. Springer-Verlag.

[10] Eelco Visser. Program transformation with Strat-
ego/XT: Rules, strategies, tools, and systems in
StrategoXT-0.9. In C. Lengauer et al., editors,
Domain-Specific Program Generation, volume 3016
of Lecture Notes in Computer Science, pages 216–
238. Spinger-Verlag, June 2004.

[11] Otto Skrove Bagge, Karl Trygve Kalleberg, Magne
Haveraaen, and Eelco Visser. Design of the Code-
Boost transformation system for domain-specific op-
timisation of C++ programs. In Dave Binkley and
Paolo Tonella, editors, Third International Workshop
on Source Code Analysis and Manipulation (SCAM
2003), pages 65–75, Amsterdam, The Netherlands,
September 2003. IEEE Computer Society Press.

[12] Otto Skrove Bagge and Magne Haveraaen. Domain-
specific optimisation with user-defined rules in Code-
Boost. In Jean-Louis Giavitto and Pierre-Etienne
Moreau, editors, Proceedings of the 4th International
Workshop on Rule-Based Programming (RULE’03),
volume 86/2 of Electronic Notes in Theoretical Com-
puter Science, Valencia, Spain, 2003. Elsevier.

[13] Ira D. Baxter, Christopher Pidgeon, and Michael
Mehlich. DMS: Program transformations for practical
scalable software evolution. In ICSE, pages 625–634.
IEEE Computer Society, 2004.

10

