
Extending Dynamic Aspect Mining with Static Information

Silvia Breu

University of Passau∗

94030 Passau, Germany
E-mail: silvia.breu@gmail.com

Abstract

Aspect mining tries to identify crosscutting concerns in
legacy systems and thus supports the refactoring into an
aspect-oriented design. We briefly introduce DynAMiT, a
dynamic aspect mining tool that detects crosscutting con-
cerns based on tracing method executions. While the ap-
proach is generally fairly precise, further analysis revealed
that some false positives were systematically caused by dy-
namic binding. Furthermore, some aspect candidates were
blurred or not detected due to not-sufficient tracing mecha-
nisms of method executions when using AspectJ’s execution
pointcuts for the trace generation. We enhanced the mining
capabilities of DynAMiT by taking additional static type in-
formation into account and generating the traces using call
pointcuts instead: In an initial case study with AnChoVis, a
1300 LOC Java program, the number of mined aspect can-
didates increased by a factor of three, while the number of
false positives remained zero.

1. Motivation

With software systems becoming more and more com-
plex, developers face increasing difficulties in building
modular systems that cannot be tackled by “traditional” de-
sign and programming techniques. Anticipation of change
can only be accomplished if the complexity of successive
software releases is controlled and “code tangling” is lim-
ited. This notion refers to code that exists several times in
the system but cannot be encapsulated by separate modules
using traditional techniques [16]. The problem occurs if un-
derlying functionality crosscuts the whole software system.
Thus, tangled code makes software systems more difficult
to maintain, to understand, and to extend. As the object-
oriented paradigm has turned out to be insufficient in many
cases, several approaches have been proposed, with Aspect-
Oriented Programming [10] being the most prominent one.

∗Part of the work was done while at the FernUniversität in Hagen

It provides better separation of complex concerns that can-
not be encapsulated in traditional module systems.

Recently, attention has also been drawn to the question
of how these ideas can be used for re-engineering. The ma-
jor task here is to find and isolate crosscutting concerns.
This is called Aspect Mining. Detected concerns can be re-
implemented as aspects: Functionality belonging together
is put in one module. This reduces complexity and improves
maintainability and extensibility of software systems.

Several techniques have been proposed for aspect min-
ing [6, 7, 8, 11, 12, 14, 15, 20], including our DynAMiT
[1, 3], the first dynamic approach. It mines aspects from a
program’s trace of method invocations. These traces are in-
vestigated for recurring patterns of method executions. Re-
curring patterns describe repeated functionality in the pro-
gram and thus potentially crosscutting concerns, which may
be replaced by aspects.

A pattern is defined as a relation between two method
invocations in the trace that respect certain temporal order-
ing constraints. These constraints specify when a pattern is
recurring. For instance, for a pattern to be recurring it must
be observed more than once in different calling contexts.

Traces of Java programs, as they are analysed by Dy-
nAMiT, reflect the dynamic (or runtime) binding of method
calls: The object receiving a method call depends on the
runtime type of the variable holding the object, not just its
static type. This currently leads DynAMiT to identify false
positives: aspect candidates that already have been encap-
sulated properly using object-oriented techniques. To rem-
edy this drawback, we extended DynAMiT’s original ap-
proach to take static types into account as previously pro-
posed in [2].

To our knowledge it is the first technique that combines
static and dynamic analyses and pushes towards hybrid as-
pect mining. The fusion of static and dynamic analysis
overcomes limitations inherent in both static and dynamic
approaches. Re-evaluation of original DynAMiT case stud-
ies shows that the new approach reduces the number of false
positives, and detects between 167% and 200% more cross-
cutting patterns.

The paper is organised as follows: Section 2 briefly
presents the original DynAMiT and summarises the results
of its evaluation. Section 3 illustrates detected problems
and Section 4 describes the modifications we realised with
the new DynAMiT version. We discuss the impact of these
extensions on two initial case studies in Section 5, while
Section 6 discusses related work. Section 7 concludes with
possible directions for future work.

2. DynAMiT in a Nutshell

DynAMiT mines aspect candidates from method-
execution traces and is written in Java. A trace is a long
list of events, each denoting either that a method is entered
or exited. As both, entering and leaving methods are traced,
it is easy to deduce what methods a given method executed.
Formally, a trace is defined as follows:

Definition 2.1 (Program trace)
Given a program P with a set of method signatures NP , a
program trace TP of P is a list [t1, . . . , tn] of pairs ti ∈
(NP × {ent, ext}), where ent marks entering a method
execution, and ext marks exiting a method execution.

The nesting of method execution is more conveniently
expressed as nesting parentheses, like the example in Fig-
ure 1. A method signature with a curly-braced body denotes
the lifetime of a method activation. Other methods invoked
by a method are placed inside the body. Figure 1 shows a
trace of five methods: A, B, C, D, E. While B is active it ex-
ecutes A, which executes D; after D returns, B executes C,
then E, which finally executes D twice.

1 A() {}
2 B() {
3 A() {
4 D() {}
5 }
6 C() {}
7 E() {
8 D() {}
9 D() {}

10 }
11 }

Figure 1. Representation of a program trace

Two method executions u and v in a trace TP may be
related. We define the following relations, abstracting the
program trace, to identify crosscutting concerns:

• Outside-before execution. Method u is left imme-
diately before v is entered, written as u ⇀ v. This
means, [(u, ext), (v, ent)] is a sublist of TP . For the

abstraction of the trace in Figure 1 the following holds:
A() ⇀ B(), A() ⇀ C(), C() ⇀ E(), and D() ⇀
D().

• Outside-after execution. Method v is entered imme-
diately after u is left, written as v ↼ u. It is the re-
versed outside-before execution relation. This means,
[(u, ext), (v, ent)] is a sublist of TP . For the abstrac-
tion of the trace in Figure 1 the following holds: B()
↼ A(), C() ↼ A(), E() ↼ C(), and D() ↼ D().

• Inside-first execution. Method u is called immedi-
ately after entering v, written as u ∈> v. This means,
[(v, ent), (u, ent)] is a sublist of TP . For the abstrac-
tion of the trace in Figure 1 the following holds: A()
∈> B(), D() ∈> A(), and D() ∈> E().

• Inside-last execution. Method u is called immedi-
ately before v is left, written as u ∈⊥ v. This means,
[(u, ext), (v, ext)] is a sublist of TP . For the abstrac-
tion of the trace in Figure 1 the following holds: D()
∈⊥ A(), D() ∈⊥ E(), and E() ∈⊥ B().

The above definitions relate method executions in a
trace. The inside-first relation can be used, for example, to
find invocations of a logging method that is executed at the
beginning of a method. The key point is that such an execu-
tion pattern must be observed multiple times in a trace be-
fore it can be considered as a candidate for an aspect. There-
fore, a definition of a recurring execution relation needs to
be established.
Definition 2.2 (Uniformity)
Two methods u and v, with u, v ∈ NP , are used uniformly in
a trace TP with respect to a relation ◦ ∈ {⇀,↼,∈>,∈⊥},
when the following holds: ∀ w ◦ v : w = u, w ∈ NP .

For example, in Figure 1, A() and B() are used uni-
formly with respect to the outside-before relation, since im-
mediately before every B(), always A() is executed. The
same applies to the outside-before relations A() ⇀ C(),
C() ⇀ E(), to the outside-after relation E() ↼ C, to the
inside-first relations(A() ∈> B() and D() ∈> E()), and
to the inside-last relations D() ∈⊥ E and E() ∈⊥ B().

Because uniformity considers an entire trace, two uni-
formly used methods indicate that some functionality is
used consistently in the program. If additionally it is re-
peatedly used it might be better implemented as an aspect.
Hence, two methods are defined to be crosscutting with re-
spect to a relation when they are used uniformly and occur
in more than one calling context in a trace:

Definition 2.3 (Crosscutting)
Two methods u and v, with u, v ∈ NP , are crosscutting with
respect to a relation ◦ ∈ {⇀,↼,∈>,∈⊥} induced by a trace
TP , when u and v are used uniformly and the following
holds: ∃ u ◦ w ∧ w 6= v, w ∈ NP .

For inside-execution relations u ∈> v (or u ∈⊥ v) the
calling context is the surrounding method execution v. For
outside-execution relations u ⇀ v (or u ↼ v) the calling
context is the method v invoked before (or after) which al-
ways method u is executed. In our example, A() is a cross-
cutting method execution, since A() is not only always ex-
ecuted before B() but also always before C(). It is the
only crosscutting method execution that can be identified in
the small trace example of Figure 1.

2.1. DynAMiT Evaluation

An evaluation of DynAMiT using Java programs demon-
strated the precision and applicability of dynamically
mining aspects from call traces [1]: DynAMiT found
seeded and existing crosscutting concerns in AnChoVis
(≈ 1,300 LOC), Graffiti (≈ 82,000 LOC, [5]), and re-
discovered aspects that were added previously using AOP
techniques. In one case an analysed program has been re-
factored based on the dynamic aspect mining results. Addi-
tionally, it was verified that the re-factoring did not change
the software system’s behaviour.

The current implementation of DynAMiT is tightly cou-
pled with the AspectJ compiler [19], which is used to in-
strument Java programs for tracing. AspectJ provides two
pointcuts suitable for tracing method invocations. However,
it cannot be used for tracing more fine-grained control flow.
For instance, AspectJ cannot be used to instrument every
basic block, which could be implemented by instrument-
ing bytecode more directly. As a consequence, the aspects
mined by DynAMiT are relatively coarse-grained, although
this is not inherent to the approach of dynamic mining.

3. Problems

While the approach is generally fairly precise, further
analysis revealed that some false positives were system-
atically caused by dynamic binding, as well as by not-
sufficient tracing mechanisms of method executions when
using AspectJ’s execution pointcuts. This section illus-
trates, considering small examples, how dynamic binding
can produce false positives in the resulting aspect candi-
dates, as well as how the joice of pointcuts influences the
trace generation.

3.1. Dynamic Binding of Methods

Figure 2 illustrates the problem caused by dynamic bind-
ing in the DynAMiT approach. The interface I has two
method declarations a() and c(). The class B imple-
ments that interface, while the abstract class A only
implements method a() of I. The abstract class A is
extended by two subclasses C1 and C2, which both provide

interface I {
public void a();
public void c();

}

abstract class A implements I {
public void a(){}

}

class C1 extends A {
public void c(){}

}

class C2 extends A {
public void c(){}

}

class B implements I {
public void a(){}
public void c(){}

}

class Runner {
static void doSth(A a) {

a.a();
a.c();

}
static void doSth(B b) {

b.a();
b.c();

}
public static void main(String[] args) {

A obj1 = new C1();
A obj2 = new C2();
B obj3 = new B();
doSth(obj1);
doSth(obj2);
doSth(obj3);

}
}

Figure 2. Example code of a software system

implementations of method c() whose declaration is inher-
ited from I (via A).

class Runner uses this hierarchy; its execution gen-
erates the trace in Figure 3(a). Here, the crosscutting al-
gorithm identifies the before-aspect candidates A.a() ⇀

C1.c(), and A.a() ⇀ C2.c(). However, the underly-
ing code pattern exists only once in the code, namely in
void doSth(A a) and thus does not exist crosscutting in
the code. Hence, whenever we have abstract methods with
several concrete implementations, the dynamic aspect min-
ing algorithm will systematically produce false positives.

This poses a problem as dynamic binding is at the heart of
object-oriented design and programming.

void Runner.doSth(A){
void A.a(){
}
void C1.c(){
}

}
void Runner.doSth(A){
void A.a(){
}
void C2.c(){
}

}
void Runner.doSth(B){
void B.a(){
}
void B.c(){
}

}
(a) ’Traditional’ dynamic

void Runner.doSth(A){
void A.a(){
}
void A.c(){
}

}
void Runner.doSth(A){
void A.a(){
}
void A.c(){
}

}
void Runner.doSth(B){
void B.a(){
}
void B.c(){
}

}
(b) With static object info

Figure 3. Dynamic vs ’static’ trace

3.2. Execution vs. Call Pointcuts

DynAMiT itself uses aspects to trace method executions
of a program. The AspectJ compiler used for weaving trace
aspects offers two choices for a trace implemenation: exe-
cution pointcuts that are associated with the execution of a
method, and call pointcuts that are associated with the call
of a method (at the call site). Both gather different informa-
tions, leading to different traces and thus different abilities
to mine aspects.

An execution pointcut uses the type of the actual method
invoked, that is, after dynamic binding. Thus, using an exe-
cution pointcut it is thus possible to log the exact type of the
invoked method. However, the static type of the method, as
it is present in the source code at the call site, is lost. Since
AspectJ implements weaving by bytecode instrumentation,
Java API code cannot be instrumented and traced with exe-
cution pointcuts.

Conversely, a call pointcut cannot access the exact signa-
ture of a method being invoked because it is executed before
dynamic binding is resolved. However, it does recognise the
static signature of the called method, as it is known at the
call site. Since call pointcuts are associated with call sites of
methods, client calls into the Java API can be instrumented
and traced.

To understand the different pointcuts with respect to
API calls, consider the code fragment in Figure 4 which
calls the Java API method for string concatenation. The
use of method execution pointcuts produces a trace that
shows the execution of method bar() as first inside method
foo(int, int). However, this is not true. It is obvi-
ous that this trace is just an approximation of what really

happens: first inside the execution of foo the API method
concat(String) of class String is executed, and the ex-
ecution of bar occurs subsequently. The use of call point-
cuts instead would lead to a correct generation of this part
in the trace.

public void bar() {
...

}

public void foo(int i, int j) {
result = result.concat("foo");
this.bar();
...

}

Figure 4. Code snippet with API method

It may be beneficial that API methods are not traced as
with each analysis Java API classes would also be anal-
ysed. Nonetheless, it would be preferable if we could con-
trol whether or not, and maybe how much of the API classes
and methods should be used for mining.

With the original DynAMiT we decided to focus on
method executions, and thus used execution pointcuts. They
permit an exact log of the executed method to be recorded,
unlike the coarser call pointcuts. However, it was subse-
quently realised that the additional detail provided by the
dynamic types logged with execution pointcuts can make it
harder to mine aspect candidates.

4. Extensions to DynAMiT

DynAMiT can produce false positives due to dynamic
binding of method calls: a single call site may actually
reach several distinct methods. Each such method creates
a distinct entry in the trace, leading to spurious “different”
calling contexts that may result in wrong aspect candidates.
We describe now, how a different type of pointcut together
with additional static object information helps to improve
the original DynAMiT.

4.1. Static Object Type

Now, DynAMiT has to identify different methods that
are invoked from the same call site using static type in-
formation: Thus, instead of logging the signature of the
method actually invoked, the known static signature at the
call site is logged.

A trace that uses static type information differs from a
trace of the same program using dynamic (or actual) type
informations, as we see in Figure 3(b). There, the cross-
cutting algorithm would not detect the incorrect crosscut-
ting concerns illustrated in 3.1 (which may be part of a real

crosscutting concern, but are not on their own). Thus, this
solves the problem described in Section 3.1. An integration
of static information into the traces would frequently avoid
the difficulty that an invocation of the same functionality
(i.e., one occurring only once in the code) appearing to be
crosscutting in the traces.

4.2. Method Call Pointcut

To use static type information, DynAMiT implements
method tracing using call pointcuts. Since AspectJ instru-
ments the corresponding bytecode of call sites, only calls
outside of Java system classes may be traced. This has con-
sequences for callbacks invoked from Java system classes,
which no longer can be traced. Callbacks invoked from sys-
tem classes arise especially in GUI-driven program that use
the AWT/Swing class hierarchy.

Callbacks were not a problem for execution pointcuts,
which monitor the execution of a method, not its invocation.
While the call may be initiated by a Java system class, the
executed class is typically part of the client code. As such,
it can be traded using an execution pointcut. When moving
from execution pointcuts to call pointcuts, system-related
callbacks are no longer traced. Nevertheless, in the systems
mined so far, calls to the API were in general more common
than callbacks; thus, it is safe to say that call pointcuts will
monitor a much larger part of all method invocations than
previously execution pointcuts.

Moving from execution pointcuts to call pointcuts for
tracing alters the trace of a program beyond the types
recorded: there is a difference when a method is called, and
when it is executed. If, for example, a method x takes argu-
ments that have first to be evaluated using another method y
before x can be executed, than the call to x obviously occurs
before the call to y, but the order of execution is reversed: y
is executed before x.

As we now no longer work on execution relations but on
call relations, we have to think whether we still can use the
notion of relative order of method executions. Because the
basic idea of mining for recurring patterns in a program run
remains consistent, we consider the call relations equivalent
to the execution of methods, and handle them as before, re-
ferring to them still as execution relations to prevent confu-
sion in terminology. Providing that we do not mix calls and
executions of methods for monitoring program behaviour in
our traces, this is safe to do.

5. Impact of Static Types and Call Pointcuts

The static extension and changes to DynAMiT have been
evaluated using two programs that previously were analysed
with the traditional DynAMiT [1]. First, on the AnChoVis
visualisation tool. In comparison to the original DynAMiT,

we found slightly less inside-aspect candidates, but in gen-
eral substantially more outside-aspect candidates (see Fig-
ure 5). The traces themselves became much larger as now
more method calls are monitored. In AnChoVis, the traces
grew by the factor of 5.5.

Most of the differences are due to the fact that the set
of traced methods changed, as explained in Section 4.2.
This has three consequences: The set of aspect candidates
increases considerably, some aspect candidates may have
been lost, and the constellation within some aspect candi-
dates may change.

More Aspect Candidates. The set of aspect candidates
tends to be larger, because a larger number of different
method signatures are contained in the trace. Consulting
Figure 5 and comparing the results with those in [1] shows
that with the original DynAMiT nine outside-before rela-
tions formed one aspect candidate, and ten outside-after re-
lations formed a second candidate, whereas now the anal-
ysis detects four aspect candidates that are built from two
(twice), three, or eight before relations resp., and two can-
didates that are built from two and nine after-relations. This
corresponds to an increase of identified crosscutting pat-
terns by 200%. For example,

String java.io.BufferedReader.readLine() ↼
BufferedReader
anchovis.Data2Matrix.getReader(),
BufferedReader
anchovis.FunctionMapping.getReader()

has now been detected, which is a correct crosscutting
concern because the two calls appear at different lo-
cations in the code: in the classes Data2Matrix and
FunctionMapping. The original version of DynAMiT
was unable to detect the crosscut as there is only a single
implementation of the getReader() functionality in the
common superclass. Of course, readLine() is also an API
method, which provides an additional reason why the orig-
inal DynAMiT was not able to detect the crosscut.

A newly discovered inside candidate is String

java.lang.String.valueOf(Object) which is found
as the first call inside method void anchovis.Log-

ging.entering(String), which is again due to the
fact that call pointcuts also monitor API methods like
valueOf(Object).

Missing Former Aspect Candidates. The hybrid ap-
proach described could also result in the set of aspect can-
didates becoming smaller as some methods are no longer
traced when using call pointcuts, e.g., void anchovis-

.AnChoVis.main(String[]) or void anchovis.An-

ChoVis.mouseClicked(MouseEvent). Thus, the inside
aspect candidates are formed from slightly less relations: 30

String java.lang.String.valueOf(Object) ∈>
void anchovis.Logging.entering(String),
void anchovis.AnChoVis.start(String[]),
void anchovis.AnChoVis.init(String[]),
boolean anchovis.AnChoVis.checkArgs(String[]),
void anchovis.AnChoVis.parseArgs(String[]),
int anchovis.AnChoVis.getIntValue(String),
boolean anchovis.AnChoVis.checkMatrixProps(),
int anchovis.AnChoVis.calcEnumSteps(),
void anchovis.AnChoVis.setGraphicBounds(),
void anchovis.AnChoVis.setFrameHeaders(),
void anchovis.AnChoVis.setFrameSizes(),
void anchovis.AnChoVis.setBackgroundColor(Color),
void anchovis.AnChoVis.addPaintingPanels(),
void anchovis.AnChoVis.createMainApplicationFrame(),
void anchovis.AnChoVis.setDummyLabel(),
void anchovis.AnChoVis.createColorMatrix(),
void anchovis.AnChoVis
.createMatrixEnum(boolean, int),
void anchovis.AnChoVis.createColorScaleFrame(),
void anchovis.AnChoVis
.setColorPanels(ColorConstants),
String[] anchovis.AnChoVis.calculateScaleValues(),
void anchovis.AnChoVis.setScaleLabels(String[]),
void anchovis.AnChoVis.createValueNamesFrame(),
int anchovis.AnChoVis
.setIdentifierLabels(int, int, int, int),
void anchovis.AnChoVis
.setValueNamesLabels(int, int, int, int, int),
void anchovis.AnChoVis
.setFramePositions(int, int, int),
void anchovis.AnChoVis.setTerminationOperation(int),
void anchovis.AnChoVis.setFramesVisible(),
boolean anchovis.AnChoVis.insideMatrix(int, int),
void anchovis.AnChoVis.printHelp(),
void anchovis.AnChoVis.printVersion()

String java.io.BufferedReader.readLine() ⇀
String[] java.lang.String.split(String),
boolean anchovis.AnChoVis.checkMatrixProps()

void anchovis.Logging.entering(String) ⇀
void anchovis.AnChoVis.start(String[]),
boolean anchovis.AnChoVis.checkArgs(String[]),
GraphicsEnvironment java.awt.GraphicsEnvironment
.getLocalGraphicsEnvironment(),
void anchovis.AnChoVis.setDummyLabel(),
void anchovis.AnChoVis
.setColorPanels(ColorConstants),
int anchovis.AnChoVis
.setIdentifierLabels(int, int, int, int),
int java.awt.event.MouseEvent.getX(),
void anchovis.AnChoVis.printVersion()

int java.lang.String.compareTo(String) ⇀
void anchovis.AnChoVis.init(String[]),
void anchovis.AnChoVis.printHelp()

String java.lang.StringBuffer.toString() ⇀
void anchovis.Logging.entering(String),
void java.io.BufferedWriter.write(String),
void anchovis.Logging.exiting(String)

String java.io.BufferedReader.readLine() ↼
BufferedReader anchovis.Data2Matrix.getReader(),
BufferedReader anchovis.FunctionMapping.getReader(),

String java.lang.String.valueOf(Object) ↼
void anchovis.AnChoVis.init(String[]),
String java.lang.String.substring(int),
double java.lang.Math.ceil(double),
Rectangle java.awt.GraphicsConfiguration.getBounds(),
void javax.swing.JPanel.setBorder(Border),
void anchovis.AnChoVis.setScaleLabels(String[]),
void anchovis.AnChoVis.setFramesVisible(),
void anchovis.AnChoVis.printHelp(),
void anchovis.AnChoVis.printVersion()

void anchovis.Logging.exiting(String) ∈⊥
void anchovis.AnChoVis.start(String[]),
void anchovis.AnChoVis.init(String[]),
boolean anchovis.AnChoVis.checkArgs(String[]),
void anchovis.AnChoVis.parseArgs(String[]),
boolean anchovis.AnChoVis.checkMatrixProps(),
int anchovis.AnChoVis.calcEnumSteps(),
void anchovis.AnChoVis.setGraphicBounds(),
void anchovis.AnChoVis.setFrameHeaders(),
void anchovis.AnChoVis.setFrameSizes(),
void anchovis.AnChoVis.setBackgroundColor(Color),
void anchovis.AnChoVis.addPaintingPanels(),
void anchovis.AnChoVis.createMainApplicationFrame(),
void anchovis.AnChoVis.setDummyLabel(),
void anchovis.AnChoVis.createColorMatrix(),
void anchovis.AnChoVis.createMatrixEnum(boolean, int),
void anchovis.AnChoVis.createColorScaleFrame(),
void anchovis.AnChoVis.setColorPanels(ColorConstants),
String[] anchovis.AnChoVis.calculateScaleValues(),
void anchovis.AnChoVis.setScaleLabels(String[]),
void anchovis.AnChoVis.createValueNamesFrame(),
void anchovis.AnChoVis
.setValueNamesLabels(int, int, int, int, int),

void anchovis.AnChoVis
.setFramePositions(int, int, int),

void anchovis.AnChoVis.setTerminationOperation(int),
void anchovis.AnChoVis.setFramesVisible(),
boolean anchovis.AnChoVis.insideMatrix(int, int),
void anchovis.AnChoVis.printHelp(),
void anchovis.AnChoVis.printVersion()

Figure 5. Extended DynAMiT : crosscutting analysis results for AnChoVis

inside-first and 27 inside-last relations, instead of 31 each.
This corresponds to gradually incomplete candidates; ap-
proximately 3% and 13% resp. of an inside aspect candidate
could not be detected by the analysis.

Changing Former Aspect Candidates. Finally, the set
of aspect candidates changes because API method calls
appear in the program traces in between some non-API
method calls that built the execution relations in the orig-
inal DynAMiT. In particular, this affects the first-inside-
relations, because the parameters for a method (here the
inner one) often have to be evaluated by API meth-
ods prior to the method call itself. Thus, the void

anchovis.Logging.entering(String) ∈> . . . can-
didate from [1] is replaced by String java.lang-

.String.valueOf(Object) ∈> This means that
half of the logging concern is masked by an API method.

In summary the switch from execution to call traces has
two major consequences: Our call relations use static type
information (preventing incorrect results due to dynamic
binding), but the subset of methods traced also changes and
increases (due to implementation issues).

In the case study, the use of static object information
proved beneficial. It partly eliminated wrong aspect can-
didates of the structure described in Section 4.1, and some-
times even detected new candidates.

A second case study with telecom, the aspect-oriented
phone company simulation included in the distribution of
AspectJ, that was also already used in [1], reenforces the
results from the AnChoVis case study. Overall, the number
of aspect candidates found by the extended DynAMiT in-
creased by a factor of 2.67. Both, the number of inside- and
outside-aspect candidates increased; additional new candi-
dates mostly include calls to methods from classes Print-
Stream, String, and StringBuffer. This is a conse-
quence of API methods now also being traced.

6. Related Work

Several techniques have been proposed for aspect min-
ing. Unlike the technique described here, they are based on
static program analysis and often require user interaction.
Also unlike the approach here, these tools don’t uses type
information to increase the precision of mining—with the
exception of the Aspect Mining Tool [7].

• The Aspect Browser [6] identifies crosscutting con-
cerns with textual-pattern matching (much like ”grep”)
and highlights them. Its success in finding aspects thus
strongly depends on naming conventions followed in
the program code to be analysed.

• The Aspect Mining Tool (AMT) [7] is based on a
multi-modal analysis for an advanced separation of

concerns in legacy code. It combines text- and type-
based analysis to reduce false positives.

• The exploration tool JQuery [8] offers a generic
browser that allows the definition of logic queries in
a specific query language. The navigation/analysis of
the source code can be based on different structural re-
lationships, regular expression matches, and complex
searches for structural patterns.

• FEAT [14], the Feature Exploration and Analysis Tool
is implemented as a plugin for the Eclipse Platform.
FEAT visualises concerns in a system using so-called
”concern graphs”. A concern graph abstracts the im-
plementation details of a concern by storing the struc-
ture implementing that concern. This way, it docu-
ments explicitly the relationships between the different
elements of a concern (classes, fields, methods).

• Ophir [15], another framework for automatic aspect
mining, identifies initial re-factoring candidates using
a control-based comparison. The initial identification
phase builds upon code clone detection using program
dependence graphs. The next step filters undesirable
re-factoring candidates. It looks for similar data de-
pendencies in subgraphs representing code clones. The
last phase identifies similar candidates and coalesces
them into sets of similar candidates, which are the re-
factoring candidate classes.

• Krinke and Breu [11] propose an automatic static as-
pect mining based on control-flow. The control-flow
graph of a program is mined for recurring execution
patterns based on constraints as introduced in [1], such
as the requirement that the patterns have to exist in dif-
ferent calling contexts.

• Ceccato et al. [4] have conducted a comparison of
three aspect mining techniques that they proposed ear-
lier. They advocate the combination of different ap-
proaches to overcome the weaknesses of a single tech-
nique. The fan-in analysis determines methods that
are called from many different places to identify as-
pect candidates in Java software systems [13]. This
technique seems to complement the results from the
second technique which is based on concept-analysis
of execution traces [17]. Just as all dynamic analysis
approaches, its main limitation is incompleteness. The
third technique, the identifier analysis [18], produces
many details but often too many false positives. Its re-
sults largly overlap with the previous two approaches.
That indicates that a combination of these three tech-
niques could make a powerful analysis by refining the
united results from the fan-in and the dynamic anal-
ysis with the more detailed results from the identifier
analysis.

7. Conclusions and Future Work

DynAMiT is so far the only aspect mining approach
that combines dynamic analysis with static types. It iden-
tifies crosscutting aspects in a Java program by mining its
method-call trace. Method calls in Java are dynamically
bound, such that the same method call in Java source code
may lead to different calls at run time. As a consequence,
the original implementation of DynAMiT failed to recog-
nise potential aspect candidates. Our extension of DynA-
MiT takes the static types of calls into account to identify
dynamically different calls of the same static type. This
leads to better mining results: evaluated with the same pro-
gram as the original DynAMiT, the extended DynAMiT
finds considerably more potential aspects and fewer false
positives. With AnChoVis, the number of potential outside-
aspect candidates has tripled, and for telecom we get a
factor of 2.67.

In future work, we propose to investigate whether
filtering out spurious methods can further improve the
extended DynAMiT. These interferences can extensively
be found in class java.lang.String and class

java.lang.StringBuffer, especially in those methods
that implement the concatenation operator +. The number
of masked aspect candidates is likely to decrease consider-
ably if we exclude those methods or classes from the anal-
ysis. Furthermore, the problems with string concatenation
and parameter evaluation do appear in the linearised, com-
piled bytecode (and, of course, later on at run-time, and thus
in every kind of trace). But they do not appear in or affect
the analysis of source code. Thus, it could be worthwhile
considering a (static) analysis of the source code.

The idea to include static information in the analysis has
proved promising in this case study. However, in order
to draw more general conclusions, it will be necessary to
conduct further case studies with large programs that have
a deep inheritance hierarchy. We also plan to use JHot-
Draw version 5.4b1 [9], a framework for 2D graphics with
≈ 40 kLOC which is a benchmark for aspect mining tech-
niques, in order to compare the new version of DynAMiT
with the control-flow based approach [11].

Most of the differences between classic DynAMiT and
the extended version were due to additional API calls being
traced (by bytecode instrumentation). Those resulted in the
complete analysis becoming more fine-grained. This proba-
bly impairs program understanding and certainly the possi-
bility of high-level mining for general crosscutting concerns
like logging. However, it may enhance implementability of
aspect candidates and thus ease refactoring.

Acknowledgements. Thanks to Jens Dörre who con-
ducted parts of the case studies, and to Christian Lindig for
his valuable feedback on earlier versions of this paper.

References

[1] S. Breu. Aspect Mining Using Event Traces. Master’s thesis,
University of Passau, Germany, March 2004.

[2] S. Breu. Towards Hybrid Aspect Mining: Static Extensions
to Dynamic Aspect Mining. In 1. Workshop on Aspect Re-
verse Engineering (WARE) at Working Conference on Re-
verse Engineering (WCRE), November 2004.

[3] S. Breu and J. Krinke. Aspect Mining Using Event Traces.
In Proceedings 19th International Conference on Automated
Software Engineering (ASE), pages 310–315. IEEE Press,
September 2004.

[4] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella,
and T. Tourwé. A qualitative comparison of three aspect
mining techniques. In International Workshop on Program
Comprehension (IWPC), 2005.

[5] Gravisto homepage. http://www.gravisto.org/.
[6] W. G. Griswold, Y. Kato, and J. J. Yuan. Aspect Browser:

Tool Support for Managing Dispersed Aspects. Technical
Report CS99-0640, Department of Computer Science and
Engineering, UC, San Diego, 1999.

[7] J. Hannemann and G. Kiczales. Overcoming the Prevalent
Decomposition of Legacy Code. In Workshop on Advanced
Separation of Concerns, 2001.

[8] D. Janzen and K. D. Volder. Navigating and Querying Code
Without Getting Lost. In 2nd International Conference
on Aspect-Oriented Software Development (AOSD), pages
178–187, 2003.

[9] JHotDraw open-source project homepage.
http://www.jhotdraw.org/.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In European Conference on Object-Oriented
Programming (ECOOP), 1997.

[11] J. Krinke and S. Breu. Aspect Mining Based on Control-
Flow. Softwaretechnik-Trends, 2005.

[12] N. Loughran and A. Rashid. Mining Aspects. In Workshop
on Early Aspects: Aspect-Oriented Requirements Engineer-
ing and Architecture Design (AOSD Sat. Workshop), 2002.

[13] M. Marin, A. van Deursen, and L. Moonen. Identifying as-
pects using fan-in analysis. In 11th Working Conference on
Reverse Engineering (WCRE), pages 132–141. IEEE Com-
puter Society, November 2004.

[14] M. P. Robillard and G. C. Murphy. Concern Graphs: Find-
ing and Describing Concerns Using Structural Program De-
pendencies. In 24th International Conference on Software
Engineering (ICSE), pages 406–416, 2002.

[15] D. Shepherd and L. Pollock. Ophir: A Framework for Auto-
matic Mining and Refactoring of Aspects. Technical Report
2004-03, University of Delaware, 2003.

[16] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N De-
grees of Separation: Multi-Dimensional Separation of Con-
cerns. In 21st International Conference on Software Engi-
neering (ICSE), pages 107–119, 1999.

[17] P. Tonella and M. Ceccato. Aspect mining through the for-
mal concept analysis of execution traces. In 11th Working
Conference on Reverse Engineering (WCRE), pages 112–
121. IEEE Computer Society, November 2004.

[18] T. Tourwé and K. Mens. Mining aspectual views using for-
mal concept analysis. In Workshop on Source Code Analysis
and Manipulation (SCAM), pages 97–106. IEEE Computer
Society, 2004.

[19] Xerox PARC. Aspect-Oriented Programming with AspectJ
(Tutorial), 1998.

[20] C. Zhang and H.-A. Jacobsen. Quantifying Aspects in
Middleware Platforms. In 2nd International Conference
on Aspect-Oriented Software Development (AOSD), pages
130–139, 2003.

