
Object-oriented cohesion as a surrogate of software comprehension: an
empirical study

Steve Counsell, Stephen Swift, Allan Tucker,

Department of Information Systems and Computing, Brunel University,
Uxbridge, Middlesex. UB8 3PH.

Email: steve.counsell@brunel.ac.uk
Tel: +44 (0) 1895 266740

Emilia Mendes, Department of Computer Science, University

of Auckland, New Zealand

Abstract

The concept of software cohesion in both the
procedural and object-oriented paradigm is well
known and documented. What is not so well known or
documented is the perception of what empirically
constitutes a cohesive ‘unit’ by software engineers. In
this paper, we describe an empirical investigation
using object-oriented (OO) classes as a basis. Twenty-
four subjects (drawn from IT experienced and IT
inexperienced groups) were asked to rate ten classes
sampled from two industrial systems in terms of their
overall cohesiveness; a class environment was used to
carry out the study. Four key results were observed.
Firstly, class size (when expressed in terms of number
of methods) did not tend to influence the perception of
cohesion by any subjects. Secondly, well-commented
classes were rated most highly amongst both IT
experienced and inexperienced subjects. Thirdly, the
empirical study suggests that cohesion comprises a
combination of various class factors including low
coupling, small numbers of attributes and well-
commented methods, rather than any single, individual
class feature per se. Finally, the research supports the
view that cohesion is a subjective concept reflecting a
cognitive combination of class features; as such it is a
surrogate for class comprehension.

1. Introduction

The concept of software cohesion has its roots in the
1970’s when Stevens et al. [15] started looking at
inter-module metrics for procedural software. Yourdon

and Constantine later categorised cohesion on a seven
point ordinal scale from functional at one end to
coincidental at the other [17]. Since then, various
attempts in the object-oriented community have been
made to capture cohesion through software metrics [1,
8, 10]. The best known and most investigated of these
metrics is the Lack of COhesion in Methods of a class
(LCOM) proposed by Chidamber and Kemerer (C&K)
[8]. The LCOM metric rates a class as cohesive if
every method uses every instance variable; at the other
extreme, a class whose methods use disjoint instance
variables is considered uncohesive.

Despite these attempts at capturing class cohesion and
valuable work contributing to our understanding of
cohesion [4], one gap in our knowledge persists, and
that is an understanding of how software engineers
view and rate cohesion on an empirical basis. In this
paper, we empirically investigate class cohesiveness,
using twenty-four subjects as a basis in a controlled
classroom environment. Three hypotheses were
investigated; the first related to the influence class size
had on perceived cohesion. The second hypothesis
related to the role of developer comment lines
embedded in the classes studied. A final hypothesis
assessed the influence of IT experience on the rating of
cohesion.

Some interesting and counter-intuitive results were
found as a result of the study, in particular
reinforcement of the view that, empirically, class
cohesion is effectively a combination of various class
features. The subjective nature of cohesion implies
that there is unlikely to be any generally accepted

definition of OO class cohesion. Rather, a set of broad
guidelines for attaining ‘cohesive’ classes.
Furthermore, the subjective nature of cohesion
suggests that it is a surrogate for comprehension –
since many of the features identified by the subjects as
contributing to cohesive classes in this study are
obvious candidates for describing the
comprehensiveness of a class. The results of our study
also reinforce the view that observations from previous
empirical studies are a useful guide for ongoing
empirical studies.

The paper is arranged as follows. In Section 2, we
describe the motivation for our study and review some
related work in the area. In Section 3, we describe our
hypotheses and describe the study itself. We provide
analysis of the data in Section 4 and a discussion of the
issues raised by the study in Section 5. Finally, we
draw some conclusions and point to some future work
(Section 6).

2. Motivation and related work

The motivation for the work described in this study
stems from a number of sources. Firstly, the related
concept of software coupling is relatively easy to both
quantify and assess, whether in the procedural or
object-oriented paradigm [6, 5]. Yet, a common
understanding of what factors make a class cohesive
has not been achieved by the OO software metrics
community. Furthermore, to our knowledge, no
empirical studies of the type described in this paper
have been undertaken so far. We feel our study
redresses this deficiency a little.

A second motivation for our study is to inform our
understanding of how developers (both with and
without experience) view software characteristics. If,
as a community, we want to build more reliable and
maintainable software, then we need to understand
how, generally speaking, developers think and behave.
In this paper, we adopt the stance that there is no
obvious metric that encompasses all views of what
constitutes cohesion. Our study however, may shed
some light on, or reinforce developer guidelines and
good practice for producing robust, easily-understood
OO classes. In addition, through the use of appropriate
metrics, we hope to inform our understanding of
software quality issues [7].

A final motivation stems from previous work by the
authors [10], where a measurement of cohesion based

on Hamming Distance was found to correlate strongly
with an association-based coupling metric. In other
words, we hypothesised that cohesion and coupling
were strongly inter-related in the OO paradigm. The
work in the paper herein tries to uncover the extent to
which this is true from a developer’s viewpoint of
cohesion. We are also aware of the criticisms that
using only student subjects as a basis of an empirical
study have received. In this paper, the majority of
subjects had significant experience of industrial
software development (enrolled on an advanced
Master’s programme), limiting to some extent this
criticism. The study compares and contrasts the rating
of cohesion by experienced and inexperienced IT
subjects.

In terms of other related work, a number of attempts
have been made to capture cohesion through software
metrics. As well as the C&K LCOM metric, the
Cohesion Amongst the Methods of a Class metric
(CAMC) of Bansiya et al. [1] was found to correlate
with both LCOM and the views of three developers on
what constituted cohesion. Bieman and Ott [3]
demonstrated the measurement of functional cohesion
in C software. Finally, Briand et al. [4], propose a
framework for measurement of OO cohesion and
conclude that many of the cohesion metrics proposed
are in most cases not validated theoretically and even
fewer validated empirically.

3. Study Design

3.1 Subjects used

The subjects of the empirical study were all Master’s
Degree students on an eleven week course covering
analysis and design of large-scale information systems.
Topics covered in this module included an analysis of
the LCOM metric and other C&K metrics, a variation
of the CAMC metric and a discussion of other
techniques such as the Goal Question Metric approach
of Basili et al. [2]. The role of coupling of different
forms was also covered and discussed. The course
material prior to this study was delivered on a five
lecture basis over a total of fifteen hours. We would
expect each subject to have a good understanding of
cohesion, coupling and metric areas when the study
was started.

Sixteen of the twenty-four subjects used had industrial
IT experience of development work and in one case of

those sixteen, just managerial IT experience. Every
subject possessed a degree in Computer Science (as a

pre-requisite for entry to the Master’s course). Table 1
shows some summary data for the sixteen subjects
with commercial development experience.

Statistic: Min. Max. Med. Mean
Experience: 11 months 25 years 7.25 years 7.08 years

Table 1: Summary of experience of subjects

3.2 Hypotheses investigated

The study conducted had three key hypotheses (H1 –
H3). All three hypotheses were developed prior to the
study, based on the intuition and experience of the
authors. From a cohesion viewpoint:

1. H1: Smaller classes are more cohesive than
larger classes. The measure of size used here
is the number of methods (this measure
includes private, public and protected
methods as well as constructors and
destructors). The hypothesis is based on the
belief that firstly, if a class is small, then it
contains only the methods it needs to carry
out its tasks (i.e., it is not an amalgamation
of different functionality). Secondly, if it is
small, the class is unlikely to have evolved
very much (on the assumption that classes
grow in size over time). As such, it could be
viewed as a well-constructed class.

2. H2: Classes with relatively large numbers of
comment lines are more cohesive than those
without (or fewer) comment lines. This
hypothesis is based on the belief that
comments help developers understand the
code and contribute to ease of assessment
and maintenance of that class. Commenting
is generally considered good practice. As
such, a class with comments is more likely
to be written in accordance with sound
practice (e.g., there is minimal coupling
between the class and other classes; the
methods of the class are also strongly related
in some way).

3. H3: There is a difference between the ratings
of cohesion made by subjects with IT
experience and those without IT experience.
This hypothesis is based on the view that if a
class is ‘poorly written’, then the
experienced subjects are more likely to
adjudge that class as cohesive than
inexperienced subjects. Equally, if a class is

‘well-written’, then it will be considered
cohesive by experienced subjects while
inexperienced subjects will be less likely to
identify subtle features contributing to class
cohesion.

3.3 Materials used and procedures

The twenty-four subjects were each given a set of the
ten C++ class header files being analysed. Due to
space considerations in this paper, the full ten classes
are not contained herein (the full set is available at:
www.dcs.bbk.uk/~steve/classes.htm). The ten classes
were chosen at random from two industrial-sized C++
systems. The only restriction placed on the choice of
these classes was that there had to be a relatively wide
range of class size (in terms of number of methods and
attributes), but at the same time not too wide a range as
to bias the results of the study. The two systems were:

1. Rocket. A compiler consisting of 32.4
thousand lines of code and comprising 322
classes [16].

2. ET++. A user interface framework, consisting
of approximately 56.3 thousand non-comment
source lines and comprising 508 classes.

Seven of the classes were taken from the Rocket
system and the remaining three from ET++. Those
three classes were Arc, ArcList and
DDGNodePtrList. The two systems themselves
were chosen on the basis that, firstly, they represented
two contrasting application domains. Secondly, a
number of previous empirical studies have used the
same systems [9, 10, 13]; the results from these other
studies helped to inform our understanding of the
results in this study.

Each set of ten classes given to a subject was randomly
shuffled before being distributed to minimise bias due
to fatigue or learning effects. The subjects were given
approximately fifteen minutes to rate and mark for

each class on a scale of 1 - 10 how cohesive they
thought that class was (where 1 represents a minimally
cohesive class and 10 a maximally cohesive class).
Subjects were also asked, where they thought it
appropriate and interesting, to comment on why they
had given the cohesion value they had. The scripts
were collected in after the fifteen minutes had elapsed. Vobject *DoCreateDialog();

4. Data analysis

4.1 Hypothesis H1

Hypothesis H1 investigated whether small classes
(expressed in terms of number of methods) were more
cohesive than smaller classes). To investigate
Hypothesis H1, the median and average cohesion
scores for each class were calculated and then ranked.
Table 2 shows the ascending ranked position of the ten
classes according to experienced subjects, the name of
the class, the median cohesion value according to all
twenty-four subjects’ rating of the class, the
experienced subjects average score awarded (Exp.),
that of the inexperienced subjects (Inexp.) and the
Number of Methods in that Class (NMC). For
example, class ApplnDialog was rated least
cohesive and class DDGNodePtrList rated the most
cohesive of classes by experienced subjects.

Table 2 also contains a Number of ASsociations
(NAS) metric defined as the number of unique classes
 to which the class under consideration is coupled. This
metric includes coupling due to inheritance and
 through any other form of coupling, i.e., through
aggregation, the return type of a method or the
parameter of a method. The NAS metric also includes
coupling due to the C++ friend facility, which features
in one of the classes studied (i.e., BagItem). The
NAS also includes self-reference coupling. An
example of the latter would be where a return type or
parameter of a method is of the same class as that in
which it is defined. As an example in the Alert class
of Figure 1, ‘Alert’ itself is a parameter to the
MetaDef method. The following class definition of
Alert (a class used as part of the study) shows an
NMC value of eight and an NAS value of six (i.e.,
coupling due to Dialog, VObject, Alert,
Bitmap, AlertType and Menu classes).

Class Alert: public Dialog {

VObject*text,
*image, *buttons;

 public:
 Metadef(Alert);

Alert(AlertType,byte *text=
0,Bitmap *bm= 0, …);

 ~Alert();

 int Show(char *fmt, …);
int ShowV(char*fmt, va_list
ap);

 class Menu *getMenu();
void InspectorId(char*buf,
int sz);

};

Figure 1: The Alert class of the Rocket system.

After each NAS value in Table 2 is a bracketed value
representing the NAS with self-references omitted.
Table 2 also contains a Coupling Between Objects
metric (CBO) of Chidamber and Kemerer [8] which
differs from the NAS metric in one key respect: it
counts all couplings to other classes without the
uniqueness restriction. As such, the CBO is susceptible
to multiple counts of the same coupling (which could
be considered a criticism of the metric).

From the class Alert we would obtain a value of
seven for the CBO metric and six for the NAS value,
the difference due to the class Vobject being
referred to twice in the class. Table 2 thus illustrates
the important difference between the NAS and CBO
metrics. Moreover, the CBO values would, alone,
indicate that Assoc and ArcList were highly
coupled. Yet they are not in reality. The majority of the
coupling is shared between three classes, in each case
one coupling of which is a self-coupling.

Position
(Exp.)

Class Name Median
(both)

Avg.
(Exp.)

Avg. (In
exp.)

NMC NAS CBO

1. ApplnDialog 2 3.55 3.86 5 5 (4) 6
2. Alert 3.5 3.75 4.00 8 6 (5) 7
3. Dialog 3 3.91 3.38 16 7 (6) 8
4. CycleItem 4 4.33 5.00 15 10 (9) 18
5. Arc 4.5 4.40 3.00 5 2 (2) 6
6. Bitmap 5 4.82 4.75 23 7 (6) 12
7. BagItem 5 4.95 5.29 12 8 (7) 14
8. Assoc 5 5.13 4.25 12 4 (3) 18
9. ArcList 6 5.35 3.29 9 3 (2) 10
10. DDGNodePtrList 6 5.86 4.00 9 4 (3) 10

Table 2: The ten classes, their cohesion ratings and coupling features

Table 2 shows that for both groups of subjects, the size
of the class given by the NMC values does not seem to
influence the cohesion values produced. For
experienced subjects, classes ApplnDialog and
Alert have low cohesion ratings and are two of the
smallest classes (5 and 8 methods, respectively).
Equally, classes Bitmap, BagItem and Assoc have
relatively high cohesion values for both groups (with
23, 12 and 12 methods, respectively). The median
values generally follow the pattern of the experienced
group in terms of ascending order.

Interestingly, for experienced subjects, coupling in
terms of NAS values seems to have influenced their
cohesion ratings: low coupling gives rise to high
cohesion values. This does not appear to be true for the
inexperienced group, where no clear pattern emerges.
Classes which were rated highly by experienced
subjects are notable for their high CBO values,
suggesting that subjects do not consider multiple
references to the same classes when considering
cohesion.

In conclusion, we would not find support for
Hypothesis H1. It is not true from the study described
that small classes are more cohesive than larger ones.
On the other hand, classes with low coupling
(according to the NAS values) do seem to exhibit
higher cohesion values (amongst experienced IT
subjects); in addition, for the same classes, the CBO is
relatively high. In other words, it would seem that
classes with relatively low NAS coupling are rated
highly even though they have a high CBO value (i.e.,
the coupling is shared among a few classes). For
inexperienced subjects, no pattern emerges for
hypothesis H1. Key to a high rating of cohesion for

experienced subjects is thus a low amount of distinct
coupled classes i.e., low NAS and high CBO values
are not necessarily detrimental to the rating of
cohesion of a class.

4.2 Hypothesis H2

Hypothesis H2 investigated whether classes with
relatively large numbers of comment lines were more
cohesive than those with fewer comment lines. The
role that comment lines play in aiding a developer or
maintainer is still an open research issue. Rosenberg
[14] has cast doubt on the appropriateness and viability
of lines of code in general as a metric; his doubts
would readily extend to comment lines. Previous work
by some of the authors has been done to eliminate
comment lines around constructors as a result of code
bloat [11]. The work was done as part of Kerievsky’s
‘refactoring of constructors to factory methods’ [12],
but elimination of the comment lines was only as a by-
product of eliminating the constructors themselves and
not intended directly [13]. Fowler [11] describes the
role of a comment to describe why code is where it is,
not what that code actually does.

In terms of the definition of a comment line herein, we
make no distinction in terms of how the lines are
distributed throughout the methods of the class (i.e.,
whether beginning, end or dispersed throughout). We
consider a comment line as simply any non-executable
line apart from a blank line. If a line wraps-around, we
consider it as one comment line only.

Table 3 shows the number of comment lines (NCL)
found in each of the ten C++ classes in the order of
ascending cohesion value according to the IT
experienced subjects. It also shows the position of the
class in the rankings by inexperienced subjects (fourth

column). For example, class ApplnDialog was rated
least cohesive by the experienced subjects, had zero
comment lines and yet was rated seventh by
inexperienced subjects. This may highlight the
difference in the way that the experienced subjects
view cohesion (in contrast to the opinion of
inexperienced subjects). Inexperienced subjects may
rely more on comments as an aid to comprehension
(although the result for class Arc seems to contradict
that theory). Table 3 shows that classes with relatively
larger numbers of comment lines (ArcList and
DDGNodePrList) were generally considered by the
experienced subjects to be cohesive. The same is true
of the inexperienced group. Clearly, the top two
classes in terms of comment lines were ranked
relatively highly in terms of their cohesion values by
both groups. This would seem to indicate that
comment lines are an aid to the assessment of cohesion
(and comprehension) for

both types of subject. However, in saying this, an
allied factor (or even the critical factor in appraisal of
cohesion) may be the low NAS values and high CBO
value combinations for these classes (as discussed in
Hypothesis H1). Such a low NAS may have given the
subjects the impression of high cohesion. In other
words, low coupling combined with a relatively large
number of comment lines may together contribute to
high class cohesion.

The fact that the methods of these two classes all
contribute to a functional goal, i.e., the construction of
a data structure, may also be significant in explaining
their cohesion values. Nonetheless, we tentatively
conclude in support of Hypothesis H2 that classes with
relatively large numbers of comment lines are
generally deemed more cohesive than those with fewer
comment lines.

Position
(Exp.)

Class Name NCL Position
(Inexp,)

1. ApplnDialog 0 7
2. Alert 0 5
3. Dialog 3 8
 4. CycleItem 0 2
5. Arc 28 10
6. Bitmap 0 3
7. BagItem 3 1
8. Assoc 3 4
9. ArcList 47 9
10. DDGNodePtrList 54 5

Table 3: Comment lines and associated cohesion positions

4.3 Hypothesis H3

Hypothesis H3 investigated whether there was a
significant difference in their view of cohesion (by
experienced and inexperienced subjects). From Table
2, we have seen that the two groups have differing
views on cohesion. Hypothesis H3 determines whether
across the two groups there is a consensus on what
constitutes a cohesive class. To investigate Hypothesis
3, the values for each class within each of the two
groups (experienced and inexperienced) were
analysed. Table 4 shows the median values for those
groups. The most revealing difference between the
view of experienced subjects and inexperienced
subjects occurs for the classes ranked 8, 9 and 10.
Overall, only on two occasions is the median value of

the inexperienced subjects greater than that of the
experienced subjects (this occurs for classes
CycleItem and BagItem).

Results from Table 4 therefore indicate that, generally
speaking, experienced subjects tend to be more
generous (and perhaps more forthright) in their
assessment of cohesion. We thus find support for H3
and claim that there are substantial differences between
the way that the two groups rate cohesion. This effect
is particularly pronounced for the last two classes of
Table 4.

Position Class Name Median

(Exper.)
Median
(Inexp.)

1. ApplnDialog 3.5 1
 2. Alert 3 3
3. Dialog 4 3
4. CycleItem 4 5
5. Arc 5 2
6. Bitmap 5.5 5
7. BagItem 4 5
8. Assoc 5 3
9. ArcList 7 3
10. DDGNodePtrList 8 3

Table 4: Median values of classes for both groups of subjects

Examination of some of the comments provided by the
experienced subjects on the classes reveals the
motivation behind their assessment. For ArcList,
comments such as ‘has tight scope’ (this subject rated
cohesion value 9) and ‘many methods seem to return
the same variable’ (rated cohesion value 8) were
found. Equally, ‘many dependencies’ for Alert
(cohesion rated 3) and ‘has friends’ for class
BagItem (cohesion rated 1) pointed to some of the
reasons for the subject giving low cohesion values for
that class. We also note that comments about why a
class was considered cohesive or otherwise tended to
be made by the experienced subjects. On a final note, it
is interesting that the classes ArcList and
DDGNodePtrList both have zero instance
variables. It would thus seem that minimising this
feature is one pre-requisite for cohesively viewed
classes. This contradicts the commonly-held view that
instance variables are key to definition of class
cohesion metrics.

5. Discussion

5.1 Threats to validity

A number of issues arise as a result of this study. The
threats to its validity need to be considered. Firstly,
only ten C++ classes were considered in this study and
there were an uneven number of subjects in the two
groups. In defence of these threats, we claim that it is
very difficult to get any industrial developers to spend
time on studies of this type. Realistically, it is rare to
have the benefit of even modest numbers of each
subject type. Secondly, only the header files were
given to the subjects (not the full method definitions).
In defence of this threat, we would claim that

assessment of cohesion at the earlier design level is far
more useful than after the class has been written at
implementation level. A third threat to the validity of
the study might have been the relatively short time
available to the subjects (i.e., fifteen minutes) to
complete their assessment of cohesion. In our defence,
we believe that there are key indicators of a cohesive
and uncohesive class which can be spotted quite
quickly from paper versions of those classes. We feel
that fifteen minutes was adequate and that is supported
by full responses from most subjects. Finally, C++ was
chosen because it is a core industrial OO language. We
do accept that Java or C# would have been equally
applicable and valid languages to use in this study.

5.2 Results

The results in this paper effectively reinforce what we
already know or suspect about OO cohesion. It is an
elusive and subjective concept. It is interesting that the
features of classes considered cohesive by the subjects
herein had very few instance variables (in the top two
cases, there were zero variables). The maximum
number of variables in any one class was three (for
classes Alert and CycleItem); this typified the
classes in the Rocket and ET++ systems. It would
appear that subjects considered features other than
instance variable usage when considering cohesion
(although certain annotated comments by subjects did
allude to this feature). The study raises a large number
of issues on how subjects view cohesion. In one sense,
we could easily replace the word ‘cohesion’ in this
paper with the word ‘comprehension’. We feel that one
is a surrogate of the other. However, more studies on
this topic and the other issues raised need to be

undertaken before any concrete conclusions can be
drawn.

Drawing on our knowledge of the two systems studied,
previous studies have found ET++ to conform far more
rigidly to sound OO practice than Rocket in terms of
the way its classes are designed [9, 13]. It thus comes
as no surprise that the classes in ET++ system (Arc,
ArcList and DDGNodePtrList) fared so well.
This also implies that if a system is exhibiting features
which would be considered poor programming
practice, then assessment of cohesion in that system is
likely to follow the same trend. Finally, we do refer to
the terms ‘inexperienced’ and ‘experienced’ subjects
throughout the paper. We feel that both groups have a
huge amount to offer in terms of their interpretation of
cohesion. The word ‘inexperienced’ is not meant in
any negative sense. In the next section, we draw some
conclusions and point to future work.

6. Conclusions and Future work

In this paper, we have described a study which
attempted to clarify the contributing factors to a
cohesive OO class. Twenty-four subjects of mixed
experience were used as a basis. Results from three
hypotheses suggest that size, when measured in terms
of number of methods per class is not a contributing
factor in subjects’ view of cohesion. Secondly,
comment lines whether independently, subconsciously
or as a contributing feature cause subjects to rate
classes as having high cohesion. Finally, differences
were found between the IT experienced and
inexperienced groups in terms of the rating of class
cohesion. When taken together, classes with low
coupling, relatively higher numbers of comment lines
and methods which contribute to a common goal of the
class in a ‘functional’ sense seem to be indicative of a
cohesive class.

In terms of future work, we hope to replicate this study
at a later date; inclusion of the standard cohesion types
as proposed by Yourdon and Constantine [17] would
be an interesting slant on this work. We also need to
consider in more detail the role that comment lines
really do play in aiding the developer. Finally, the
work in this paper is an ongoing project to assess the
value and characteristics of IT experience and
secondly, the traits of subjects without any IT
experience.

Acknowledgements

We gratefully acknowledge the help of Jim Bieman at
Colorado State University for access to the two
systems investigated (ET++ and Rocket).

References

[1] J. Bansiya, L. Etzkorn, C. Davis and W. Li. A class
cohesion metric for object-oriented designs. Journal of
Object-Oriented Programming (January), pages 47-52, 1999.

[2] V.R Basili, G. Caldiera and H.D Rombach, The Goal
Question Metric Approach. Encyclopedia of Software
Engineering, Volume 1, pages 528-532, 1996.

[3] J. M. Bieman and L. Ott. Measuring functional cohesion.
IEEE Transactions on Software Engineering, 20(8): 644-
657,1994.

[4] L. Briand, J. Daly and J. Wust. A unified framework for
cohesion measurement in object-oriented systems. Empirical
Software Engineering Journal, 3(1): 65-117, 1998.

[5] L. Briand, J. Daly and J. Wust. A unified framework for
coupling measurement in object-oriented systems. IEEE
Transactions on Software Engineering. Volume 25(1): 91-
121, 1999.

[6] L. Briand, P. Devanbu and W. Melo. An investigation
into coupling measures for C++. In Proceedings of the 19th
International Conference on Software Engineering (ICSE
97), Boston, USA. Pages 412-421, 1997.

[7] L. Briand, J. Wust, J. Daly and V. Porter, Exploring the
relationships between design measures and software quality
in object-oriented systems. The Journal of Systems and
Software 2000, volume 51, pages 245-273.

[8] S. R. Chidamber and C.F. Kemerer. A metrics suite for
object-oriented design. IEEE Transactions on Software
Engineering, 20(6): 467-493, 1994.

[9] S. Counsell, G. Loizou, R. Najjar and K. Mannock. On
the relationship between encapsulation, inheritance and
friends in C++ software. Proceedings of the International
Conference on Software Systems Engineering and its
Applications, Paris, France, 2003.

[10] S. Counsell, E. Mendes and S. Swift, Comprehension of
Object-oriented Software Cohesion: the empirical quagmire,
Proceedings of the 10th International Workshop on Program
Comprehension (IWPC 2002). Paris, France, pages 33-42,
2002.

[11] M. Fowler, Refactoring: Improving the Design of
Existing Code, Addison Wesley, Reading, Massachusetts,
1999.

[12] J. Kerievsky, Refactoring to Patterns, Industrial Logic,
online at: www.industriallogic.com, 2002.

[13] R. Najjar, S. Counsell, G. Loizou and K. Mannock,
The role of constructors in the context of refactoring object-
oriented systems, Proceedings of the 7th European
Conference on Software Maintenance and Reengineering,
2003, Benevento, Italy, pages 111-120.

[14] J. Rosenberg, Some misconceptions about lines of code,
Proceedings of the Fourth IEEE International Software
Metrics Symposium, Albuquerque, New Mexico, pages 137-
142, 1997.

[15] W. P. Stevens, G. J. Myers and L. L Constantine.
Structured Design. IBM Systems Journal, 13(2): 115-139,
1974.

[16] A. Weinand, E. Gamma and R. Marty. ET++ - an
object-oriented application framework in C++,. Proceedings
of Object-oriented Programming Systems, Languages and
Applications (OOPSLA), San Diego, USA, pages 46-57,
1988.

[17] E. Yourdon and L. Constantine, Structured Design,
Prentice Hall, 1979.

http://www.industriallogic.com/

	1. Introduction
	2. Motivation and related work
	3. Study Design
	3.1 Subjects used
	3.2 Hypotheses investigated
	3.3 Materials used and procedures

	4. Data analysis
	4.1 Hypothesis H1

	6. Conclusions and Future work
	Acknowledgements
	References

