
Dynamic Slicing of Java Bytecode Programs

Attila Szegedi and Tibor Gyimóthy
University of Szeged

Department of Software Engineering
6720 Szeged, Aradi vértanúk tere 1., Hungary
attila@szegedi.org, gyimothy@inf.u-szeged.hu

Abstract

A forward global method for obtaining backward dy-
namic slices of Java bytecode programs is presented. In
contrast with existing published techniques that require ei-
ther a customized Java compiler (which also implies ac-
cess to the source code) or bytecode instrumentation and
eventual manual dependency specifications, our approach
was to produce an instrumented virtual machine for Java.
This approach works with programs compiled with arbi-
trary third party compilers and does not require access to
the source code during the slicing process. However, we
still retain the ability to express the slicing criterion and
the resulting slice in terms of source code locations using
the supplemental information present in the compiled code.
Our technique also handles advanced aspects of the Java
environment, such as exception handling, multithreaded ex-
ecution and, to a certain degree, the execution of native ma-
chine code linked with the Java classes.

1. Introduction

For a given program P and a set of variables V at a pro-
gram location l we say that those statements in P that af-
fect the values of variables in V at l are the slice of the
program P with regard to the slicing criterion (V , l) [15].
This definition is sometimes more precisely referred to as
backward slice, since it associates a slicing criterion with
a set of program locations whose earlier execution affected
the value computed at the criterion. (It is possible to de-
fine a dual concept, the forward slice as a set of program
locations whose later execution depends on the values com-
puted at the slicing criterion. We are however concerned
with backward slices, and will simply use the term slice to
refer to them.)

Program slicing is thus a technique helpful in debugging,
reengineering and other activities related to understanding
relations betweens statements in a program. A survey of

program slicing techniques is found in [12].
Slicing techniques are divided into two broad categories:

static and dynamic slicing. Static slicing is done exclusively
by static code analysis (hence the name), and provides re-
sults that are independent of the program input. Dynamic
slicing is done by running the program for some input I

then collecting and analyzing the corresponding execution
trace. Dynamic slicing therefore provides results with re-
gard to the input I , and the slices are usually computed sep-
arately for each execution of the statement at the program
location in the slicing criterion. Dynamic slicing and asso-
ciated concepts are discussed in depth in [1].

Every concrete implementation of a dynamic slicing
technique targets a certain concrete representation of the ex-
ecuting program. The technique we present here is suitable
for the slicing of Java bytecode programs, as interpreted by
a Java Virtual Machine (referred to as “VM” or “JVM” from
now on). In contrast with existing published techniques that
require a customized Java compiler [13] (which also im-
plies access to the source code and being limited to the Java
language) or bytecode instrumentation and manual depen-
dency specifications [14] [10], our approach was to build an
instrumented JVM. It works with programs compiled with
arbitrary third party compilers and does not require access
to the source code. Because it does not need the source
code to work, it is applicable to programs written in any
source language (not necessarily Java) compiled into Java
bytecode. (In practice, the value of this benefit is dimin-
ished due to the limited usage of non-Java languages on the
Java platform.) We retain the ability to express the slic-
ing criterion and the resulting slice in terms of source code
expressions and line numbers using the supplemental sym-
bolic and line number information present in the compiled
code.

Dynamic slicing methods can be further categorized by
the direction of the traversal of the execution trace. There
are backward methods that can calculate relatively quickly
a slice of a single criterion by traversing the execution trace
in backward direction, starting from the criterion, and tran-



sitively resolving outstanding dependencies as they work
toward the beginning of the trace. An example of such a
method for Java is presented in [14]. There are also for-
ward methods that incrementally calculate slices of criteria
of interest by traversing the execution trace in the forward
direction. Forward methods are usually considered global,
since they calculate the slices of all criteria of interest, not
just that of a single criterion. A forward global method for
slicing C programs was given in [3] and this work was partly
inspired by it.

Our method here is a forward global method for the
dynamic calculation of backward slices of Java bytecode
programs. As we will demonstrate, it does not rely on
the presence of source code, deals with exception handling
and multithreaded execution, and can follow the computa-
tion through third party library code and, to a limited de-
gree, even through native machine code linked with the Java
classes.

In the following chapters we will first introduce the ele-
ments of our slicing toolbox, then discuss the static analysis
steps: the reconstruction of source expressions without the
source code, the narrowing of the scope of interest for slice
calculations, and control flow analysis. Then we present
our method for calculating the slices through tracking data
and control flow dependencies, including the handling of
the exceptions and native code execution. We devote a sec-
tion to the slicing of multithreaded programs. Finally, we
conclude the paper with experimental results, related works
and a short summary.

2. The slicing toolbox

Of course, code instrumentation is essential to obtain an
execution trace. Instrumentation can be performed on mul-
tiple levels (from highest to lowest): we can instrument the
Java source code, the Java bytecode, or the Java Virtual Ma-
chine. Our approach here was to create an instrumented
VM based on the code of a publicly available Open Source
VM called JamVM [5]. Instrumenting at the lowest level
has some obvious advantages over higher level instrumen-
tations. These include the following:

• It can work without source code, relying solely on
symbolic and line number information found in the
compiled class files.

• Analysis is not limited to the immediately analyzed
code. It can track dependencies that arise in third-
party code, in code of standard Java library classes,
inside the VM itself, and to a limited extent even in
third-party native machine code. If higher-level instru-
mentations were used, instrumenting the Java library
classes would be difficult, while tracking dependencies

inside the VM and in third-party native code would be
impossible.

• Instrumentation is confined to a single, finite body of
code - the C source code of the VM itself.

• It works with programs in any language (not just Java)
that can be compiled to Java bytecode. Currently,
Open Source bytecode compilers for FORTRAN [4],
Lisp [2] and Scheme [7], as well as commercial com-
pilers for Pascal, Oberon-2, and Modula-2 [11] are
available, and a low-level slicing toolbox can work
with all of them.

Figure 1 depicts the architecture of the toolbox. One el-
ement of it is an instrumented JVM that produces the exe-
cution trace of a program as it runs. This generates some
overhead as file I/O operations are involved, but is other-
wise light on CPU usage and requires no extra memory. The
instrumented JVM does not record the execution of each
and every instruction as the slicer is capable of reproducing
the effects of many instructions based on the bytecode (this
feature will be elaborated on later). The other part of the
toolbox is a slicer that reads the execution trace and imple-
ments the forward global method for computing backward
dynamic slices. The main components of the slicer are the
thread multiplexer, the static analyzer, and one or more slice
calculator instances. The thread multiplexer reads the ex-
ecution trace, and handles all ”thread start”, ”thread end”
and ”context switch” events. It creates, destroys or acti-
vates slice calculators accordingly. It forwards other events
from the trace to the currently active slice calculator. Each
slice calculator corresponds to one thread in the running
program, which will be discussed more later on. The static
analyzer is invoked whenever a method is entered for the
first time, and performs a necessary one-time analysis of
the method, which is a prerequisite for the tracking of de-
pendencies inside it.

3. Static analyzer

The static analysis of a method is comprised of three
key operations: that of translating bytecode to source ex-
pressions, narrowing the scope of interest, and calculating
control-flow information.

3.1. Translating bytecode to source expressions

An important feature of the slicer is the ability to query
the generated slices using source-level symbolic expres-
sions in the slicing criterion. Here we should mention that
the slicer does not rely on the source code of the classes
or the compiled class files being separately available in the



Instrumented

.class files

6
thread ID

define class

thread start

invoke virtual

method ID

address
object ID

field number

branch

field number

class bytes

...

... thread multiplexer
thread start

context switch
thread death
define class

classes

methods

slice calculator
operand stack

method stack

CFD stack

static analyzer
?
method invocation

?

heap
objects
arrays

statics

memory

CF ipd-s
source expressions

slices

dependencies
-

-

�

- - -

-�

�

execution trace

JVM

Figure 1. The architecture of the slicing toolbox

filesystem. Rather, whenever a class is defined in the instru-
mented VM, it dumps the full defining byte stream of the
class into the execution trace. Aside from making the exe-
cution trace file fully self-contained, it also allows us to pro-
cess on-the-fly generated code like proxy classes. The value
of this approach lies in the fact that dynamic on-demand
code generation has become a widespread technique in Java
programming, especially with the advent of aspect oriented
programming.

When the slicer reads the class bytecode from the exe-
cution trace, it will store it and later perform limited static
analysis on it method-by-method, on each first invocation
of a method. Part of this static analysis is the assignment
of a symbolic expression to each bytecode instruction that
accurately describes the result of its operation. This is done
by the static simulation of the operand stack, but instead of
concrete values the stack contains symbols. We will illus-
trate this in the following example:

Source
statement

Bytecode
sequence

Symbol
stack

Assigned
symbol

a[i]=42; BIPUSH 42 “42” “42”
ILOAD 1 “42”, “i” “i”
ALOAD 2 “42”, “i”, “a” “a”
IASTORE empty “a[i]”

When the first instruction BIPUSH 42 is encountered, the
slicer will use the decimal string representation of the con-

stant operand of the BIPUSH bytecode as the symbolic ex-
pression. The next two instructions load an integer and
an object reference respectively from local variables. The
slicer will consult the local variable table of the method
(which is generated by the compiler and is embedded in the
byte sequence that defines the class) to map the local vari-
able with index 1 to the symbol “i” and the local variable
with index 2 to the symbol “a”. Lastly, when the IASTORE
instruction (which stores a 32-bit signed integer value from
the stack into an element of an array of 32-bit signed in-
tegers) is encountered, the slicer will combine the topmost
two symbols on the stack – the index and the array object
reference – into a new symbol describing the array element.

It is trivial matter to assign a source code line number
to each bytecode offset using the line number information
present in the compiled class. With symbolic expressions
and source code locations assigned to non-jumping instruc-
tions, these instructions become static slicing criteria.

3.2. Narrowing the region of interest

With the above process we have now turned every non-
jumping bytecode instruction into a static slicing criterion.
The resulting set of slicing criteria is huge for any non-
trivial program, and since our method is a forward method
that, by default, calculates slices for all of them, we usu-
ally constrain the calculation to a certain narrower subset of



slicing criteria for efficiency reasons.
One filtering we use is for specifying classes of interest.

This is achieved by specifying a regular expression that the
fully qualified name of the Java class must match so that the
slices are calculated for criteria in that class’ code. Hence,
we will sometimes refer to included classes and excluded
classes.

The scope can be further narrowed by eliminating some
of the criteria in the included classes from it. Consider this
rather simplistic statement:

Source
statement

Bytecode
sequence

Symbol
stack

Assigned
symbol

a = b + c; ILOAD 2 “b” “b”
ILOAD 3 “b”, “c” “c”
IADD “b + c” “b + c”
ISTORE 1 empty “a”

As this table shows, on bytecode level we have four expres-
sions: b, c, b + c, and lastly a, each of them being a
slicing criterion. In most cases we only want to calculate
slices for the left-hand side of an assignment. By default,
our slicer only considers left-hand sides of assignments as
well as branch predicates for criteria of interest.

So far we have narrowed the set of criteria for which we
calculate the slices. We can also narrow the set of code lo-
cations that can serve as elements of dependency sets and
slices. Again considering the previous example, the only
code location we want included in the slices is the code lo-
cation belonging to the ISTORE 1 operation. In general,
we only consider locations of assignment instructions, con-
ditional branch instructions, method return instructions, and
instructions that push arguments for method calls onto the
stack. The reasoning for these latter instructions is that they
are essentially assignments - when the target method is in-
voked these values will be assigned to local variables rep-
resenting the method arguments, and the assignment intu-
itively happens at the call site. These instructions are back-
ward calculated during the static analysis of the method:
whenever a method invocation instruction is encountered in
the method being analyzed, the analyzer tracks back the in-
structions that contributed to the topmost n values on the
stack (n being the number of arguments of the callee) and
marks them as code locations of interest. This tracking
is simple as it is performed along with the calculation of
source expressions, and the data structure used for the sym-
bol stack entries also has a field for noting the identifier
of the instruction that pushed the value onto the stack (the
value origin). For instance, consider the method call

obj.m(a + b, obj2.n());

which is translated to the following set of bytecode instruc-
tions, with instructions resulting in method arguments being
marked as such in the ”Arg” column:

Bytecode Value origin Arg
1: ALOAD 1 1 m
2: ILOAD 2 1,2
3: ILOAD 3 1,2,3
4: IADD 1,4 m
5: ALOAD 4 1,4,5 n
6: INVOKEVIRTUAL n() 1,4,6 m
7: INVOKEVIRTUAL m()

As the method n() has just a single argument (namely
this), only the topmost location on the stack, (namely 5)
will be flagged as an additional code location of interest.
The method m() has three arguments (namely this plus
two others), so the three topmost locations (namely 1, 4,
and 6) will be flagged as additional code locations of inter-
est.

3.3. Static control-flow analysis

In order to track control-flow dependencies we have to
perform a static analysis of the control flow inside every
executed Java method. It is sufficient to perform only pro-
cedure level slicing, since we get interprocedural dependen-
cies from the execution trace. We partition the method code
into basic blocks. The partition criteria is similar to that
used in flow analysis of code without exception handling:
a new basic block is started whenever an instruction is en-
countered that immediately follows a branch instruction or
an instruction that is a target of a branch instruction. How-
ever, we also assume that each instruction capable of throw-
ing an exception is a branch instruction and that the first in-
struction of each exception handler is a target of a branch
instruction. Next, we build two control flow graphs using
the basic blocks as vertices: one contains only edges rep-
resenting normal control flow (CFGn), and another with
extra edges for control transfers occurring because of ex-
ception throws (CFGe). We apply the Lengauer-Tarjan [9]
algorithm for finding the dominators in the flowgraph on
the inversion of both control flow graphs. This way, we
obtain at most two postdominators for each branching ba-
sic block – one in CFGn, and another, possibly different
in CFGe. Each branching basic block identifies a set of
control flow predicates – namely the operands of its last,
branching instruction. Branching instructions take either
one or two operands from the top of the expression stack.

The postdominators are used to control the scope of a
control flow predicate. When the branch instruction is exe-
cuted, the control flow predicate becomes effective. When
the execution reaches any of the postdominators of the ba-
sic block that ends with that branch instruction, the control
flow predicate is no longer effective (and the previous con-
trol flow predicate, stored on a separate per-thread stack be-
comes effective again).



It is actually possible to use two interpretations of the
scope of a control flow predicate when exceptions are con-
sidered. A less strict interpretation is used when we con-
sider the postdominators from both CFGn and CFGe. In
this interpretation, a predicate that can cause an exception
is not considered effective when it actually does not cause
an exception since, in the case of a normal control flow,
it is cancelled when the execution enters the predicate’s
postdominator in CFGn. A more strict interpretation is
employed when we consider only the postdominators from
CFGe. In this interpretation, a predicate that can poten-
tially cause an exception remains in effect even when it does
not cause an exception, the reason being that its valid value
contributed to the execution continuing on the normal exe-
cution path. The more strict interpretation is usually not fea-
sible for most applications of slicing, as it results in broader
slices.

4. Slice calculator

The slicer can have any number of slice calculators at
any one time, each slice calculator of course representing
one thread in the running program. As such, it contains
its own operand stack, call stack, control flow dependency
stack, and program counter.

4.1. Data dependency tracking

In order to facilitate data dependency tracking, our slicer
needs to reproduce a significant part of the behavior of an
actual JVM; it needs to simulate threads, per-thread stacks,
and an object heap. The main difference between a real
JVM and the slicer is that while in a real JVM each 32-bit
data slot (a stack slot or an object field slot) contains a 32-
bit numeric value, in our slicer it contains a dependency set,
or more precisely, a pointer to a dependency set. As a for-
tunate side effect (since these pointers are also 32-bit wide)
the memory requirements of the slicer are not much higher
than the memory requirements of the real JVM, the only
difference being the extra memory needed for storage of the
actual dependency sets. While operations in a real JVM per-
form arithmetical and logical operations on stack values, in
our slicer they perform set operations on dependency sets.

As [14] shows, the effects of stack operations do not need
to be traced in the trace file since the slicer can simulate
these operations itself. Therefore the dependency effects of
each of the JVM stack operations can be calculated with-
out additional external information. Take for example the
IADD instruction: it pops the top two operands from the
stack, adds them together, and pushes the result back on the
stack. When our slicer encounters the IADD instruction, it
pops the top two dependency sets from the stack, calculates
their union set, and pushes it back on the stack. There are

however operations whose effects cannot be fully deduced
by the slicer. These are operations that access objects on
the heap, branch instructions, and the virtual method invo-
cations. That is why in addition to the slicer, we also need
a real instrumented JVM. This JVM will execute the pro-
gram, and upon executing an instruction whose effect can-
not be fully deduced by the slicer alone, it will emit the
necessary additional information into the trace file. In the
case of the branch instruction, it will be the address of the
jump target; in the case of a virtual method call it is the
identifier of the actual method being called; in the case of
the access to an object on the heap (this includes arrays as
well) it is the address of the exact slot or array element
that was being read or written. Other events that cannot
be deduced properly by the slicer – like defining of a class,
exit from a native method, throwing and catching of an ex-
ception, CPU thread context switches, freeing of memory,
are also emitted to the trace file. There are also resolution
events, namely the resolutions of nonvirtual methods and
static fields to actual memory addresses. These are emit-
ted by the instrumented JVM once for each GETSTATIC,
PUTSTATIC, INVOKESPECIAL, and INVOKESTATIC
instruction when it is executed for the first time. A sample
code fragment and the events emitted to the trace file are
shown below. The hexadecimal addresses here are purely
fictional and used only for the purposes of illustration:

Bytecode Event
ILOAD 1
ALOAD 0
GETFIELD 4 ADDRESS 0x00ca8104, 4
IADD
ICONST 2
IMUL
DUP
ALOAD 0
PUTFIELD 4 ADDRESS 0x00ca8104, 4
INVOKEVIRTUAL f() INVOKE 0x00ae6010
ILOAD 2
IF ICMPEQ 22 BRANCH 22

JVMs have automatic memory management, and usually
employ garbage collectors that move the objects in memory,
so the address of an object is not fixed during the runtime
of the program. This complicates data dependency track-
ing, but fortunately our VM of choice, JamVM uses a non-
moving garbage collector, hence we can use the physical
memory addresses of the objects as their identifiers.

Viewed at a high level, the calculation of slices in our
slicer is driven by the events in the trace file. The compo-
nent indicated in Figure 1 as a multiplexer reads the trace
file. It forwards the majority of events (i.e. ones contain-
ing the target object’s heap address, the target of a branch
instruction, identifier of a virtual method and so on) to the



currently active slice calculator. The operation of the slice
calculator for two events (address, and invokeV irtual)
along with a supporting function for calculating dependen-
cies induced by the execution of stack instructions (those
not requiring external information) is shown in the pseu-
docode below.

function address(int32 address, uint16 offset)
while(!isHeapInstruction(currentInstruction))

interpretStackInstruction(currentInstruction);
cancelFlowDependencies();
Set dep;
if(isArrayLoadInstruction(currentInstruction))

dep = union(pop(), pop()) + getArray(address)[offset+1]);
dep = addLocationAndCfDep(dep);
push(dep);

else if(isArrayStoreInstruction(currentInstruction))
dep = union(pop(), pop(), pop());
dep = addLocationAndCfDep(dep);
getArray(address)[offset + 1] = dep;

else if(isGetFieldInstruction(currentInstruction))
dep = union(pop(), getObject(address)[offset]);
dep = addLocationAndCfDep(dep);
push(dep);

else if(isPutFieldInstruction(currentInstruction))
dep = union(pop(), pop());
getObject(address)[offset] = dep;

addSliceMoveNext(dep);

function invokeVirtual(int32 methodAddress)
while(!isVirtualInvocationInstruction(currentInstruction))

interpretStackInstruction(currentInstruction);
cancelFlowDependencies();
invokeMethod(method);

function interpretStackInstruction(Instruction instruction)
cancelFlowDependencies();
Set dep;
if(isReturnInstruction(instruction))

if(isValueReturnInstruction(instruction))
dep = addLocationAndCfDep(pop());
addSlice(dep);

exitMethod();
else

if(isLoadLocalVariableInstruction(instruction))
uint16 lvindex = getLocalVariableIndex(instruction);
dep = addLocationAndCfDep(

operandStack[lvarsIndex + lvindex]);
push(dep);

else if(isStoreLocalVariableInstruction(instruction))
uint16 lvindex = getLocalVariableIndex(instruction);
dep = addLocationAndCfDep(pop());
operandStack[lvarsIndex + lvindex] = dep;

else if(isConstantPushInstruction(instruction))

dep = union(cfDep, currentLocation);
else if(isNonvirtualInvocationInstruction(instruction))

dep = Ø;
invokeMethod(getTargetMethod(instruction));

else
for(i = 0; i < popCount(instruction))

dep = union(dep, pop());
dep = addLocationAndCfDep(dep);
for(i = 0; i < pushCount(instruction))

push(dep);
addSliceMoveNext(dep);

Each data manipulating instruction overwrites a depen-
dency set at its target or calculates the union of several (usu-
ally two, in some cases three) dependency sets and stores
it in its target. If the current instruction is at a program
location of interest, the program location will be added to
the resulting dependency set. The elements of the currently
effective control-flow dependency set (control flow depen-
dency tracking will be discussed below) are also added to
the resulting dependency set.

Finally, if the expression associated with the currently
executed bytecode instruction and its code location are a
slicing criterion of interest, the dependency set qualifies as a
slice for that criterion and is appended to the list of slices for
that criterion. The static slicing criterion (V, l) is thus effec-
tively extended to a list of dynamic slicing criteria (V, l, i),
where i is an index in the slice list assigned to the static
criterion (V, l).

It is important to understand the distinction between slice
calculation and dependency tracking in excluded code. Our
slicing technique tracks dependencies in all code, regard-
less of whether it is excluded or not. The distinction is that
the code locations of excluded code are not of interest and
are therefore never added to dependendency sets, and de-
pendency sets are never added to the list of slices for slicing
criteria inside the excluded code, hence these slice lists will
remain empty.

4.2. Dynamic calculation of intraprocedural control
flow dependencies

Each slice calculator maintains a stack of active con-
trol flow dependencies Scfd (referred to in pseudocode as
cfDepStack). Whenever a branch instruction is encoun-
tered, the union of data dependencies of its predicates be-
comes a new control flow dependency that is pushed on
Scfd. This happens when a branch event is read from the
execution trace, and is shown by the following pseudocode:



function branch(uint16 newpc)
while(!isBranchInstruction(currentInstruction))

interpretStackInstruction(currentInstruction);
cancelFlowDependencies();
if(popCount(currentInstruction) > 0))

Set newCfDep = pop();
if(popCount(currentInstruction) == 2)

newCfDep = union(newCfDep, pop());
newCfDep = addLocationAndCfDep(newCfDep);
cfDepStack.push(new ControlFlowDependency(CfDep, pc,

invocationStack.length - 1));
cfDep = newCfDep;

jump(newpc);

When a postdominator of the block that contained the
branch instruction is reached, the dependency is popped off
Scfd:

function cancelFlowDependencies()
int32 callStackDepth = invocationStack.length - 1;
while(!cfDepStack.isEmpty())

ControlFlowDependency cfd = cfDepStack.peek();
if(cfd.stackDepth < callStackDepth

or !isCancelledAt(pc))
break;

cfDepStack.pop();

The control flow dependencies affect the data dependen-
cies since whenever a data dependency set is calculated, the
dependency set at the top of Scfd is added to it.

4.3. Dynamic calculation of interprocedural control
flow dependencies

There are two kinds of interprocedural control flow de-
pendencies: from caller to callee (forward dependency) and
from callee to caller (reverse dependency). Whenever exe-
cution enters another method, the Scfd remains unchanged,
thus the control flow dependency that was effective in the
caller is effective in the newly called method as well – this
is called forward dependency. Whenever a method exits –
regardless of whether normally (via a return instruction) or
abruptly (via exception throw), the control flow dependen-
cies that were in effect at the point of exit remain in effect –
Scfd again doesn’t change. These dependencies are called
reverse dependencies. In Java, each method invocation
instruction (INVOKEINTERFACE, INVOKESPECIAL,
INVOKESTATIC, and INVOKEVIRTUAL) is capable of
throwing an exception, so in our static analysis these in-
structions always end a basic block. The basic block ending
with an invoke instruction will also have a postdominator or
two, and only when one of these postdominators is reached

will the control flow dependencies from the called method
be popped off Scfd. However, since the only successor of
such a basic block in CFGn begins at the next instruction,
it is also its postdominator in CFGn. Hence provided we
are using the lenient interpretation of the dependency scope
the dependencies from the callee will get popped off Scfd

as soon as the execution returns to the caller. In order for
this to work, the locations of these callee dependencies will
be reset to the location of the call site in the caller when the
callee is exited, as shown in the pseudocode for handling
method exits:

function exitMethod()
invocationStack.pop();
MethodInvocation invocation = invocationStack.peek();
currentMethod = invocation.method;
int32 stackDepth = invocationStack.length;
uint16 lastpc = invocation.lastpc;
for(i = cfDepStack.length - 1; i- - > 0;)

if(cfDepStack[i].callStackDepth < stackDepth)
break;

cfDepStack[i].pc = lastpc;
jump(lastpc);

Should the callee exit abruptly, its control flow depen-
dencies will correctly remain in effect during the execution
of exception handler blocks (those corresponding to both
Java language keywords catch and finally). If an ex-
ception handler itself exits abruplty itself (i.e. it rethrows
the exception), the control flow dependencies will propa-
gate further to the next caller on the call stack, and so on.

4.4. Handling finally blocks

In the JVM, no distinction is made between a catch and
a finally block. A finally block is really just a specially
compiled catch block. The compiler is, however, free to de-
cide how to implement it. A common implementation is to
extract the code inside the finally block to an intraprocedu-
ral subroutine, ending with a RET instruction, and then call
it using the JSR instruction from both the normal execution
path and from the exception handler. Our static analysis
handles this implementation correctly, since it treats JSR
instruction as a basic block boundary, and maintains an edge
between the JSR instruction and the targeted subroutine in
CFGn. Thus, it is reachable from both the normal and the
abrupt execution path, and it will be recognized as a post-
dominator for all exception throwing instructions inside the
block protected by the try instruction, and the correspond-
ing control flow dependencies will be popped off Scfd as
soon as the execution enters the subroutine implementing
the finally block.



However, some more recent compilers choose to inline
all or some of the “finally” blocks, that is they emit the code
twice – once on the normal execution path, and once in the
exception handler. Unfortunately, our slicer does currently
not handle this implementation of the finally block well,
and it will not pop those control flow dependencies off the
Scfd that were created in the try block when the copy in the
exception handler is reached. As a consequence of the struc-
tured nature of the normal execution path in the Java code,
we still remove all these dependencies when the copy of the
finally block on the normal execution path is reached.

4.5. The dynamic calculation of control flow depen-
dencies in native code

Java code can be integrated with native machine code by
virtue of having methods declared as “native” – the code
for such methods is loaded from a library (a DLL, a SO, or
some other format for dynamically loadable shared code).
We cannot yet carry out a static analysis for these methods
similar to that described above, but colleagues are doing re-
search in the static analysis and slicing of binary executable
code [8], and we might be able to integrate its results some-
time in the future. Such native code can however interact
with the virtual machine via the Java Native Interface (JNI),
which is defined in terms of a C struct containing function
pointers. JNI permits the reading and writing of static fields,
fields of objects, elements of arrays, as well as the invoking
of Java methods, creating new objects, and throwing excep-
tions.

We will treat the native code as a black box with its activ-
ity only being observable through its invocation of JNI func-
tions. We employ the conservative assumption that once
execution enters native code, all values read through JNI
functions are values of control flow predicates that become
control flow dependencies and stay in effect even when the
control returns to Java code – they will be popped off Scfd

according to the same rules as those used for the interpro-
cedural reverse dependencies described above. Similar to
the way we treated the reading of values, we will assume
that data dependency of any value written by a JNI method
is equal to the currently effective control flow dependency
(which will include all the values previously read by the na-
tive code). Due to the conservative nature of the approach,
we can introduce false dependencies in the analysis. We can
also omit dependencies if the native code is not stateless and
stores values in some private storage (i.e. static variables in
C) between method invocations.

5. Supporting slicing of multithreaded pro-
grams

Our slicer toolbox fully supports the accurate slicing
of well-behaved multithreaded programs. We define well-
behaved as a multithreaded program with no race condi-
tions arising from unsynchronized concurrent modification
of shared data; the rationale for this constraint being given
at the end of this section. The write operations to the ex-
ecution trace file are protected by a critical section inside
the instrumented JVM, so the operations are guaranteed to
be recorded sequentially. Thread context switches are also
detected and a context switch event followed by the newly
activated thread’s identifier is written to the trace file. The
slicer itself executes on a single thread, but internally em-
ulates multiple threads, each emulated thread being repre-
sented by a distinct slice calculator instance. Whenever the
slicer reads a context switch from the trace file, it makes
the respective slice calculator current and forwards subse-
quently read events from the trace file to it until another con-
text switch event is read from the file. The JVM also emits
events whenever a thread is started and terminated. The lat-
ter event is especially important for the correct operation of
the slicer since upon reading this event, the slice calculator
will emulate all pending instructions on that thread until it
flushes its call stack to its bottom, and can calculate addi-
tional dependency sets and slices during this wrap-up phase.

We currently have no data about whether this critical
section alters the behavior of the program compared to the
same program executing on a non-instrumented JVM. Intu-
itively we assume that for programs that already properly
synchronize concurrent access to shared data across threads
this critical section has no effect. With programs that do not
synchronize access to shared data properly, it can actually
reduce the chance of race conditions.

Generally speaking we can say that, in absence of proper
synchronization (that is when the analyzed program con-
tains race conditions) our implementation of instrumenta-
tion does not guarantee that concurrent writes to a memory
location from two different threads will be emitted to the
trace file in the order they actually occurred. This is due to
the fact that the critical section only encompasses the I/O
operations on the trace file, and does not extend to the ac-
tual data modification. Doing so would widen the duration
of the critical section and hence further deteriorate the per-
formance of multithreaded programs, with no obvious ben-
efits. Slicing for debugging is usually done on a repeated
program run, after the bug has been detected. We expect
that the repeatedly executed program instance runs in an
identical way to the instance which produced the bug. If the
program contains a race condition, this deterministic repeti-
tion is already impossible, so there is little point in ensuring
that the operations embodying the race condition are regis-



Program Description LOC Input size
Crypt IDEA symmetric-key encryption and decryption 968 200 000 bytes
FFT 1-D Fast Fourier Transformation 706 32768 complex numbers
HeapSort Heapsort algorithm on integers 649 10000 integers
LUFact LU Factorization 1076 200x200 matrix
Series Fourier coefficient analysis 705 200 Fourier coefficients

Table 1. Sliced programs

tered in their actual physical order.

6. Experimental results

6.1. Retrieving the slices for a slicing criterion

The ultimate purpose of slicing a program is to be able
to conveniently retrieve the slices for slicing criteria of in-
terest. The data structure used to store the slicing data dur-
ing and after the slicing is organized in three levels that re-
flect the natural structure used by the JVM: on the top level
there are Java classes, which contain methods, and meth-
ods finally contain bytecode instructions, which are – as we
mentioned earlier – equivalent to slicing criteria. The crite-
rion of instructions of interest is represented as a pair of a
source-level variable name and source-level program loca-
tion. This pair is further annotated by a list of slices (one
slice for each evaluation of the expression). Each slice is
a dependency set that contains any number of source level
program locations. A slicing criterion can be specified sym-
bolically using a symbolic expression, a fully qualified class
name, and a source code line number where the expression
occurs. We then look up the class with the specified name,
use the line number tables of methods to identify the method
where the line number belongs as well as the exact bytecode
range corresponding for that line number inside the method.
Finally, we scan the instructions in the bytecode range to
find the instruction that was associated with the symbolic
expression of the criterion during the initial static analysis.
When the instruction is found, the list of slices linked to
that instruction is returned. This list can have any number
of elements, even zero if the instruction was never executed.

6.2. Experimental results

Below we present some experimental results obtained by
slicing several test programs, chosen from the Java Grande
Forum’s Benchmark suite [6]. We sliced the programs listed
in Table 1.

We obtained the performance figures shown in Table 2
after running these programs under the instrumented VM,
as well as running the slicer on the execution traces of these
programs.

Program Trace size HotSpot JamVM Slicing
Crypt 47.43MB 0.266s 8.398s 1349s
FFT 55.52MB 0.129s 11.836s 1122s
HeapSort 21.38MB 0.009s 4.065s 233s
LUFact 87.74MB 0.043s 19.186s 2886s
Series 3.75MB 0.866s 3.149s 149s

Table 2. Trace sizes and run times

Program
Distinct

slices

Average
slice
size

Static
criteria

Total
dynamic

slices
Crypt 379 30.72, 3% 193 2350647
FFT 415 36.61, 5% 154 610431
HeapSort 83 14.24, 2% 79 178086
LUFact 217 29.11, 3% 250 21283
Series 85 9.07, 1% 82 4491

Table 3. Slicing statistics

In Table 2, “HotSpot” shows the time it takes a Sun 1.4.2
HotSpot Client VM to run the program, “JamVM” tells us
the time it takes the instrumented JamVM to run the pro-
gram, and “Slicing” the time it takes the slicer to analyze the
trace file and calculate the slices. All tests were performed
on a 1.6GHz Pentium4 processor with 1GB of RAM, with
512MB of RAM allocated to the slicer. Table 3 summarizes
some of the more interesting data points obtained through
the slicing. it, “Distinct slices” refers to the number of
unique slice sets calculated. “Average slice size” means the
average number of program locations contained in a slice
set, represented as both an absolute number and a percent-
age of the total LOC of the program. “Static criteria” is the
number of static criteria of interest in the sliced program –
in this case, the number of left-hand sides of assignments
as well as predicates. “Total slices” is the total number of
slices calculated, each criterion having one slice assigned
for each evaluation of it. The especially large number of
slices in the Crypt example mainly comes from the fact that
it contains a number of loops with 200000 iterations each,
each iteration evaluating several criteria in the loop body.



7. Related work

Umemori et al [13] reported an implementation of a
bytecode-based Java slicing system. Their technique, how-
ever, is known as Dependence-Cache Slicing, and is a hy-
brid static and dynamic approach that – as they state in their
article – generally yields less precise slices compared to a
fully dynamic system like ours. They also state that their
approach requires a custom Java compiler and is therefore
essentially confined to analyzing programs written in Java
source language. Wang et al [14] also reported an imple-
mentation of a bytecode-based Java slicing system. In con-
trast with our system, they use a backward slicing method
where each slice calculation requires one traversal of the
execution trace, so their main focus is that of minimizing
the execution trace size and they do indeed present a novel
approach for compressing the trace. Since ours is a global
method, we are not concerned with the size of the trace as
we only use it as intermediate information for constructing
the set of slices for all slicing criteria. Wang’s implemen-
tation is also suitable for slicing single threaded programs
only, and uses manual dependency specifications for library
and third party code, but we are able to track dependen-
cies in third party and library code as well. Zhang [16] re-
ported a technique for improving the efficiency of forward
slicing method for C programs that could be adapted to our
Java slicing method. Zhao [17] published a technique for
the slicing of multithreaded Java programs, his is however
a fully static approach. Finally, Masri [10] presents a dy-
namic slicing methodology for Java bytecode that is similar
to ours in its calculation of data and control flow dependen-
cies. However, it does not deal with exception handling,
multithreading, and dependency tracking in native code.

8. Summary and future work

So far we have implemented a system for the dynami-
cal slicing of Java bytecode programs that operates without
source code, is source language independent, can trace de-
pendencies through native code, and is suitable for slicing
multithreaded programs.

We continue our research on dynamic slicing of Java
bytecode programs. Testing the slicer against programs
written in languages other than Java is a future task. Fol-
lowing the idea presented in [14] we also intend to utilize
the Sequitur-RLE algorithm, only instead of applying it to
the trace file we intend to apply it to the lists of slices to re-
duce their memory requirements. Similarily, we are looking
into streamlining the heavily used set operations by utiliz-
ing reduced ordered binary decision diagrams, a technique
reported in [16] for C programs that we wish to adapt for
Java bytecode programs. These avenues of research look
promising.

References

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing.
SIGPLAN Notices, 25(6):246–256, 1990.

[2] Armed Bear Common Lisp. http://armedbear-
j.sourceforge.net.

[3] A. Beszédes, T. Gergely, Z. M. Szabó, J. Csirik, and
T. Gyimóthy. Dynamic slicing method for maintenance of
large c programs. In CSMR ’01: Proceedings of the Fifth Eu-
ropean Conference on Software Maintenance and Reengi-
neering, pages 105–113, Lisbon, Portugal, March 2001.

[4] F2J, a Java bytecode compiler for the FORTRAN language.
http://www.cs.utk.edu/f2j.

[5] JamVM, a Java Virtual Machine.
http://jamvm.sourceforge.net.

[6] JGF, The Java Grande Forum Benchmark Suite.
http://www.epcc.ed.ac.uk/javagrande/seq/contents.html.

[7] Kawa, a Java bytecode compiler for the Scheme language.
http://www.gnu.org/software/kawa.

[8] A. Kiss, J. Jász, G. Lehotai, and T. Gyimóthy. Interproce-
dural static slicing of binary executables. In SCAM 2003:
Proceedings of the Third IEEE International Workshop on
Source Code Analysis and Manipulation, pages 118–127,
Amsterdam, The Netherlands, September 2003.

[9] T. Lengauer and R. E. Tarjan. A fast algorithm for find-
ing dominators in a flowgraph. ACM Trans. Program. Lang.
Syst., 1(1):121–141, 1979.

[10] W. A. Masri. Dynamic information flow analysis, slicing
and profiling. PhD thesis, Case Western Reserve University,
2005. Adviser-Andy Podgurski.

[11] MHC Corp.’s suite of Java bytecode com-
pilers for the Pascal family of languages.
http://www.webcom.com/mhc/home.html.

[12] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, 1995.

[13] F. Umemori, K. Konda, R. Yokomori, and K. Inoue. De-
sign and implementation of bytecode-based java slicing sys-
tem. In SCAM 2003: Proceedings of the Third IEEE Inter-
national Workshop on Source Code Analysis and Manipula-
tion, pages 108–117, Amsterdam, The Netherlands, Septem-
ber 2003.

[14] T. Wang and A. Roychoudhury. Using compressed byte-
code traces for slicing java programs. In ICSE ’04: Pro-
ceedings of the 26th International Conference on Software
Engineering, pages 512–521, Edinburgh, United Kingdom,
May 2004.

[15] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, SE-10(4):352–357, 1984.

[16] X. Zhang, R. Gupta, and Y. Zhang. Efficient forward compu-
tation of dynamic slices using reduced ordered binary deci-
sion diagrams. In ICSE ’04: Proceedings of the 26th Inter-
national Conference on Software Engineering, pages 502–
511, Edinburgh, United Kingdom, May 2004.

[17] J. Zhao. Slicing concurrent java programs. In IWPC ’99:
Proceedings of the 7th International Workshop on Program
Comprehension, pages 126–133, 1999.


