

Transforming Embedded Java Code into Custom Tags

Shannon Xu and Thomas Dean
Queen’s University
Kingston, Canada

{xus,dean}@cs.queensu.ca

Abstract

When a new technology is introduced, the migra-
tion of existing applications to the new technology
must be carefully considered. Automation can make
some migrations feasible that otherwise may be too
risky or expensive to be worth the advantages of the
new technology. In this paper we describe a tech-
nique for migrating web applications using embedded
Java code into a custom tag implementation. The
technique uses source code transformation techniques
to analyze and separate the Java from the web pages.
The code is then automatically transformed to custom
Java classes which are invoked from the modified web
pages containing custom tags. The result is an web
application with identical function and appearance,
but where the business logic (the Java code) has been
separated from the presentation (the web pages).

1. Introduction

When new technology is introduced, it is not al-
ways effective to migrate older applications to use the
new technology. Software transformation can reduce
both the risk and the cost of the migration.

Java Server Pages (JSP) is one of the popular
technologies for building web applications that serve
dynamic contents [1]. In the initial incarnation, JSP-
based web applications consist of web pages that con-
tain Java code embedded in the HTML. This provides
a direct and simple way of implementing dynamic web
pages. However, while an improvement over previous
technology (program generating HTML in I/O state-
ments), it still mixed application logic expressed as
Java code with the presentation provided by the
HTML code and JavaScript. Even if most of the logic
is separated into a servlet and communicated to a page
using a Data Bean, application logic to traverse the
results in the bean must be inserted into the page.

The explicit use of scriptlets facilitates rapid pro-
totyping but introduces more complexity in implemen-
tation. Such scriptlets interweave all sorts of HTML
with Java code, and make code debugging and author-
ing tricky, and software maintenance and evolution
difficult.

The most recent version of JSP provides a func-
tionality called custom tags. HTML is extended with
XML markup tags that link to a library of Java classes.
These tags may be given abstract names and incorpo-
rate all of the decision and iterative logic. This permits
the almost total separation of application logic from
presentation.

In this paper we examine an analysis and trans-
formation technique which allows us to migrate web
applications with embedded Java code to a custom tag
implementation. The result is an application with iden-
tical function and appearance, but where the applica-
tion logic expressed in Java code has been removed
and replaced with appropriately named custom tags.
The Java code is moved to a set of custom classes in-
voked by the custom tags.

The remainder of the paper is organized as fol-
lows. In Section 2, we introduce some related basic
concepts and previous work. In Section 3, we present
the proposed restructuring technique for Java code
transformation. Section 4 presents some preliminary
results and in Section 5, we conclude the paper.

2. Background and Related Work

One of the most challenging aspects in parsing
JSP pages is code intermingling. In JSP web applica-
tions, Java code can be inserted into HTML/JavaScript
and HTML/JavaScript can be nested within the Java
code. The actual implementation of Java Server pages
treats all of the HTML and JavaScript as print state-
ments. Some analysis and transformation of web page
takes the same approach. Hassan et al. [6] translate
the HTML in web applications to print statements be-
fore migrating applications to different server side

translations. Several techniques to analyze the struc-
ture of web applications including transforms have
been successful [10,11,12]. However these focus on
the HTML code that is produced by the server.

The information we are interested in is contained
not only in the individual languages, but also in the
way they are interwoven. All these characteristics
require our JSP parser to have the ability to analyze all
the languages in a multilingual file together, rather
than separately. In addition, the JSP parser must also
have the ability to process the web pages containing
errors or other unexpected contents. To address these
challenges, we use the grammar presented by N.
Synytskyy et al. [13] and modified to recognize Java
instead of Visual Basic [7]. This grammar unifies all
three languages (JavaScript, HTML and Java) in a
single language definition allowing transforms that
cross the boundary between Java, HTML and
JavaScript.

The grammar is based on island grammars [4] and
robust parsing [8,9]. The main strength of island
grammars is the ability to separate the incoming text to
be parsed into two general categories: interesting is-
lands and uninteresting water. Therefore, one of the
important properties of a multilingual parser using
island grammars is the ability to capture complex in-
teractions among different interesting parts of web
applications written in different languages by simulta-
neously parsing multiple languages into a single parse
tree. This ability will benefit code analysis and fact
extraction for the structure transformation. We have
further extended the grammar to allow the XML based
custom tags as well as other markup.

Most of our implementation is based on the TXL
programming language. TXL is a pure functional pro-
gramming language particularly designed to support
rule-based source-to-source transformation [2]. Each
TXL program has two parts: a structure specification
of the input to be transformed, which is expressed as
an unrestricted context-free grammar; and a set of one
or more transformation rules, which are specified as
pattern/replacement pairs to define what actions will
be performed on the input. Each pattern/replacement
pair in a transformation rule is specified by example,
and may be arbitrarily parameterized for more rule
flexibility.

3. Process

Figure 1 illustrates the JSP transformation process
implementing our proposed restructuring technique.
The whole process is divided into five phases: pre-
processing, grouping, tag naming, code transformation,
and post-processing. The process is automated except

for the tag naming phase where human assistance is
required.

1. Preprocessing. The preprocessing phase takes the

original source code as its input and produces
normalized code by modifying non-scripting ele-
ments that need restructuring into scripting ele-
ments, extracting HTML content out of out.print()
or out.println() statements, merging adjacent
scriptlets, encoding code comments, and Java
scriptlets embedded in strings. All procedures
during the preprocessing phase except the last two
are implemented using TXL. The last two proce-
dures are implemented using shell scripts.

2. Grouping. The grouping phase takes the normal-
ized code produced in the preprocessing phase as
its input and produces annotated code by marking
each line of code with a tag id. The tag id indi-
cates that the line of code is going to be moved
into a tag that has the same id. This phase is im-
plemented using TXL.

3. Tag naming. The tag naming phase takes the an-
notated code produced in the grouping phase as its
input and produces a list of meaningful tag names
with the assistance of a human operator. This
phase is implemented using TXL and JSP.

4. Code transformation. The transformation phase
takes each of the annotated source code files and
the tag name list produced in the tag naming phase
as its inputs and produces three types of outputs:
the modernized JSP pages, the tag library XML
file, and the custom tag classes. There are two

Original Code

preprocessing

Normalized Code

grouping

Annotated Code

tag class generationpage transformation
& taglib generation

Data factsmodernized pages taglib xml
custum tags

postprocessing

tag naming

Tag name list

code transformation

Figure 1. Transformation process

branches in this phase: Page Transformation and
taglib Generation branch, and Custom Tag Gen-
eration branch, which share the same fact base ex-
tracted from the annotated source code during this
phase. This phase is implemented using TXL.

5. Post-processing. The post-processing phase takes
the modernized JSP pages and custom tag classes
from the code transformation phase and re-inserts
all comments stripped in the pre-processing phase
into appropriate locations in the source code. This
phase is implemented using shell scripts.
Consider the JSP page shown in Figure 2, which

illustrates the original mixed Java and HTML to be
processed. After the transformation process, the same
page is modified by inserting newly created custom
tags into the page, which is shown in Figure 3.

There are two other options for migrating to cus-
tom tags in JSP. The first is the standard tag library.
These tags are relatively low level, corresponding to
individual java statements with tags for conditional
loops, simple conditional statements (such as if state-

ments) and database access. Translating to standard
tag libraries is straightforward but still leaves the ap-
plication code in the web page, just in a different lan-
guage. The other option is the new SimpleTag inter-
face which is a less complex interface than the Cus-
tomTag interface. Our technique can be easily adapted
to the SimpleTag interface.

In the following sections, we will examine each of
the phases of the process in more detail.

3.1 Preprocessing

There are several components to the preprocessing
phase. The first of these is lexical normalization,
which has two elements: scriplets in strings and com-
ments.

TXL has an initial scanning phase which recog-
nizes, among other things, string and character literals.
In most cases this is desirable. However sometimes,
the string literals may in fact contain scriptlets. If we
leave these elements inside of the strings, they will be
ignored during parsing. Consider the following two
examples:

<input type=”text” name=”username” value=
’<%=StringFormat.toHTMLString(request.getPara
meter(“username”))%>’
>

<a href=
”check-
out.jsp?submit=add&item=<mylib:itemi/>”>
Buy this CD!

<html ><body >

 You have the following items in your cart :
 <table border>
 <tr>
 <td> Title </td>
 <td> Price </td>
 </tr>

 <tr>

 <td > <%= title %> </td >
 <td > <%= price %> </td >
 </tr>

 </table>

</body ></html >

<%octs.ShoppingCart cart = new octs.ShoppingCart ();
 octs.CDStoreDB storeDB = new octs.CDStoreDB ();
 cart.setItem (request.getParameter ("item"));
 String title;
 String price;
 String par = request.getParameter ("submit");
 if (par.equals ("Purchase")){
 //more Java code to handle the case when customer
 //makes a purchase
 …
 updateNum = DBtest.makeCart(orderNum, custNum);
 String[] items = cart.getItems();
 int[] UPCitems = new int[items.length];
 …
 %>

 Purchase Processing!
<%} else { %>

<%
 String [] items = cart.getItems ();
 for (int i = 0; i < items.length; i ++){ %>

 <%
 ResultSet rs =
 storeDB.cdPrice(Integer.parseInt(items[i]));
 while (rs.next()){
 title = rs.getString (1);
 price = rs.getDouble (2); %>

 <%}
 }%>

<%}%>

Figure 2. Intermixing of HTML and Java code

<html ><body >
<%@ taglib uri=http://xyzzy.org/oct01-taglib
 prefix="oct01" %>
<oct01:checkout attr_item="item" attr_submit="submit">

 <oct01:purchase>
 Purchase Processing !
 </oct01:purchase>

 <oct01:notPurchase>

 You have the following items in your cart :
 <table border>
 <tr>
 <td> Title </td>
 <td> Price </td>
 </tr>
 <oct01: shoppingCartItems>
 <tr>
 <oct01:eachItem>
 <td> <oct01:ex_title/> </td>
 <td> <oct01:ex_price/> </td>
 </tr>
 </oct01:eachItem>
 </oct01: shoppingCartItems>
 </table>
 </oct01:notPurchase>

</oct01:checkout>
</body ></html >

Figure 3. Modified page with custom tags

In the first piece of code a JSP expression is em-
bedded in the string and a simple custom tag is en-
closed within double quotes in the second piece of
code. Both of them are interesting elements but would
be ignored as part of the string during the parsing.
Similar to the preprocessing introduced by Li [7], we
use double square quote brackets ([[…]]) to replace
the single quotes in the first example and the double
quotes in the second example before parsing, and then
change them back after the transformation. The dou-
ble square brackets can be chosen because they are not
meaningful in the HTML and JSP grammars and we
modify the JSP grammar to define the double square
brackets as delimiters for attribute values in HTML.
The two examples become:

<input type=”text” name=”username” value=
[[<%=StringFormat.toHTMLString(request.getPar
ameter(“username”))%>]]
>

<a href=
[[check-
out.jsp?submit=add&item=<mylib:itemi/>]]>
Buy this CD!

Another issue is that different languages have dif-

ferent commenting conventions. In a multilingual JSP
page, there are generally three types of comments:
HTML comments enclosed within HTML comment
tags (<!-…-->) , JSP comments enclosed within JSP
comment tags (<%--…--%>), and normal Java com-
ments (//… or /*…*/) embedded inside JSP script-
ing elements. Comments in one language may be per-
fectly legitimate and meaningful content in another.

We take a similar to the approaches taken by
Synytskyy [13] and Hassan et al. [6]. We use a lexical
preprocessor to transform HTML and JSP comments

into an attribute value of new custom tag, and to trans-
form Java comments into the parameter of a function
call (CommentCall()).

Figure 4 shows part of a JSP page before com-
ments encoding, and Figure 5 shows the same page
after comments encoding. Once the code moderniza-
tion is performed, we can use the comment-handling
custom tags and Java function calls as place holders to
re-insert all comments that have been encoded in the
preprocessing phase.

We also perform some simple normalization of
the code to make the final transform easier. For loops
are converted to equivalent while loops, and some if
statements with else blocks are separated into two if
statements (one for the then part, one for the else part).

3.2 Grouping

The grouping phase identifies which part of the
Java code in a JSP page is to be migrated into each
custom tag. It does this by annotating each Java
statement with a tag id. The tag id associated with
each statement indicates that the line of code is to be
migrated into a tag with the same id. This phase can
be divided into the following two steps.

Step 1. We assign a unique tag id to each control
or loop block that contains at least one segment of
HTML code using scope rules presented elsewhere

<!-- html comments -->
<html ><body >
<%-- jsp comments --%>
<%
 //one line of java comments
 /* multiple lines of java comments
 java comments again */
 octs.ShoppingCart cart = new octs.ShoppingCart ();

octs.CDStoreDB storeDB = new octs.CDStoreDB

...

Figure 4. Before comment encoding

<commentHandling:htmlComment
 attr1="<!-- html comments -->"/>
<html ><body >
<commentHandling:jspComment attr1=" jsp comments "/>
<%
 CommentCall("//one line of java comment");
 CommentCall("/* multi lines of java comments");
 CommentCall(" java comments again */");
 octs.ShoppingCart cart = new octs.ShoppingCart ();

octs.CDStoreDB storeDB = new octs.CDStoreDB

...

Figure 5. After comment encoding

<html ><body >
<%
 octs.ShoppingCart cart = new octs.ShoppingCart ();
 octs.CDStoreDB storeDB = new octs.CDStoreDB ();
 cart.setItem (request.getParameter ("item"));
 String title, price;
 String par = request.getParameter ("submit");
 <ifelse id="Block1"> if (par.equals ("Purchase"))
 { %>
 Purchase Processing !
 <%}else{%>

 You have the following items in your cart :
 <table border>
 <tr > <td > Title </td> <td > Price </td> </tr>
 <%
 String [] items = cart.getItems ();
 int i = 0;
 <whileloop id="Block2"> while (i < items.length) {%>
 <tr >
 <%
 ResultSet rs = storeDB.cdPrice (Integer.parseInt (items [i]));
 <whileloop id="Block3"> while (rs.next ()){
 title = rs.getString (1);
 price = rs.getDouble (2);
 %>
 <td > <% = title %></td >
 <td > <% = price %></td ></tr >
 <%} </whileloop>
 i ++;
 } </whileloop>
 %>
 </table>
 <%}</ifelse>
%>
</body ></html >

Figure 6. Intermediate annotated code

[15]. These segments may only occur in sub-scopes.
That is, inside constructs such as loops, switch state-
ments, and subroutines. The annotation for each block
has the form of

<block-type id=tag-id> ... </block-type>

The block-type tag is ifelse for a control block
and whileloop for a loop block. We use a tag id of
the form of “Block#”, and “#” is a number starting
from one and increased by one for each block, which is
automatically generated in this step. Figure 6 shows
the output of for the example code in Figure 2. Some
formatting has been changed to better fit the proceed-
ings.

Step 2. Based on the tag id assigned and block
type recognized during the first step, we annotate each
line of code with an appropriate tag id if this line of
code belongs to the same scope as the tag id. During
the annotation, we preserve the nesting relationship in
the assignment of each id. For example, if a line of
code in “Block2” is nested inside “Block1”, we
will assign this line of code a tag id equal to
“Block2_Block1”. Figure 7 gives the annotated
code for the same example. Note that “Block0”
represents the topmost scope of this page, and we call
it the main block for each JSP page. These annota-

tions not only identify which tag but also are used to
hold extra attribute information as part of the trans-
formation process.

According to the annotated code shown in Figure
7, we can tell which line of Java code will be migrated
into each tag, how each custom tag should be used,
and what kind of relationship holds between the cus-
tom tags. This approach also provides for future de-
velopment of our technique. The current grouping
transform takes a greedy approach, maximizing the
code that should be put into each tag. Data Flow
analysis combined with clone detection can be used to
identify and mark code that should be put in separate
tags such as the code for session management.

3.3 Tag naming

Up until now, each tag has a default name (i.e. the
tag id shown in Figure 7), which is less than meaning-
ful for application programmers. In order to determine
a meaningful name for each tag, we allow human be-
ings to make the decision using their business and ap-
plication knowledge. To make the tag naming simple,
this phase takes the annotated code as its input and
uses a web interface to assist application programmers
to decide on meaningful tag names.

Figure 8 shows the web interface that is composed
of two columns. The right column displays the source
code of a JSP page with each code block in a different
color. The left column of this interface displays a ta-
ble that shows a default name for each tag in the color
corresponding to the code block. That is, the Java
code in red will be migrated into the tag with a red tag
id “Block0_Block1_Then”. Since color is not

<html ><body >
<%
 <tag id="Block0"> octs.ShoppingCart cart = new octs.ShoppingCart ();
 <tag id="Block0"> octs.CDStoreDB storeDB = new octs.CDStoreDB ();
 <tag id="Block0"> cart.setItem (request.getParameter ("item"));
 <tag id="Block0"> String title, price;
 <tag id="Block0"> String par = request.getParameter ("submit");
 <tag id="Block0"> <ifelse id="Block1"> if (par.equals ("Purchase"))
 <tag id="Block1_Then">{%>
 Purchase Processing !
 <%} else
 <tag id="Block1_Else">{ %>

 You have the following items in your cart :
 <tag id="Block2"> < table border >
 <tr ><td > Title </td> <td > Price </td> </tr>
 <%
 <tag id="Block2_Block1_Else">String [] items = cart.getItems ();
 <tag id="Block2_Block1_Else">int i = 0;
 <tag id="Block2_Block1_Else"><whileloop id="Block2"> while (i < items.length)
 <tag id="Block2_Block1_Else"> {%>
 <tr >
 <%
 <tag id="Block2_Block1_Else">ResultSetrs =storeDB.cdPrice(Integer.parseInt(items[i]));
 <tag id="Block3_Block2_Block1_Else"> <whileloop id="Block3"> while (rs.next ())
 <tag id="Block3_Block2_Block1_Else"> {
 <tag id="Block3_Block2_Block1_Else"> title = rs.getString (1);
 <tag id="Block3_Block2_Block1_Else"> price = rs.getDouble (2);
 %>
 <td > <% = title %></td ><td > <% = price %></td ></tr >
 <%}</whileloop>
 <tag id="Block2_Block1_Else"> i ++;
 }</whileloop>
 %>
 </table>
 <%}</ifelse>
%>
</body ></html >

Figure 7. Annotated code

 Figure 8. Tag naming interface before a renaming

available in the proceedings, we have indicated corre-
sponding colors by adding circles and lines to figure 8.
Based on the unchanged source code presented in the
right column and his/her own business and system
knowledge, an application developer may choose a
new name for each tag, and fill the form in the left
column. A list of meaningful tag names for each JSP
page can be produced based on the application devel-
opers’ knowledge, and the list is added to a fact base
for future use.

3.4 Code transformation

The code transformation phase takes each of the
annotated source code files and the tag name list as its
inputs and produces three sets of results as well as
some data facts. There are two branches in this phase.
The modernized JSP pages and the tag library descrip-
tion xml file are generated by the Page Transformation
and taglib Generation branch. The custom tag classes
are generated by the Custom Tag Generation branch.
Now let us take a closer look at these two branches.

3.4.1 Tag class generation. Figure 9 shows the struc-
ture of the tag class generation branch, which is com-
posed of five sub-phases: UniqueRenaming, Flat-
ten&MarkEnd, Define/UseAnalysis, ModifyCode, and
GenerateTagClass.

1) UniqueRenaming In the first sub-phase, a unique id
(UID) is assigned to the declaration of each entity of
each JSP file and all references to the same entity are
annotated with the same assigned UID. Here the UID
of an entity has the similar form as that used by Guo et
al. [5] and Li [7] except that our UID includes the tag
id. Our UID is in the form:

“entity_name

enclosing_class_and_interface_name
package_name file_name tag_id”

The tag id included in the UID of an entity indi-
cates the tag class in which the entity is first declared.
This extra information about tag id will make the later
analysis on the use/definition of an entity more con-
venient. For example, the line of code shown in Fig-
ure 10 declares the variable items, which has been
assigned a unique identifier of “items ex.jsp
Block2_Block1_Else”. We can also see that the
variable “cart” has a UID of “cart ex.jsp
Block0”.

2) Flatten&MarkEnd. This sub-phase is responsible for
marking the starting point and ending point for each
tag block and collecting more information about the
migration decision for each line of code. As an exam-
ple, this sub-phase replaces the opening and closing
brace brackets of the marked conditional and loop
blocks using <tags> and </tags> to reduce nest-
ing complexity. This sub-phase also identifies the con-
dition expressions of the statements with these marked
blocks.

The sub-phase collects the information about
which statements work as part of loop-body for an
iteration tag, suggesting that the code be migrated into
both doStartTag() and doAfterBody() meth-
ods for the tag. It also determines which line of code

…
 <tag id="Block2_Block1_Else"> String[]
 <uid id="items ex.jsp Block2_Block1_Else">items</uid>
 = <uid id="cart ex.jsp Block0"> cart </uid>.getItems ();
…

Figure 10. Partial output from UniqueRenaming
…
 <tags id="Block3_Block2_Block1_Else">
 <tag id="Block3_Block2_Block1_Else">
 <whileloop id="Block3_Block2_Block1_Else">
 <uid id="rs ex.jsp Block2_Block1_Else"> rs </uid>.next ();
 <tag id="Block3_Block2_Block1_Else" location="inloop">
 <uid id="title ex.jsp Block0"> title </uid>
 = <uid id="rs ex.jsp Block2_Block1_Else"> rs </uid>.getString (1);

 …
 %>
 <td >
 <% = <uid id="title ex.jsp Block0"> title </uid> %>
 </td>

 …
 </tr>
 <%
 </tags id="Block3_Block2_Block1_Else" type="whileloop">
 <tag id="Block2_Block1_Else" location="afterBody">
<uid id="i ex.jsp Block2_Block1_Else"> i </uid> ++;

…
Figure 11. Partial output from Flatten&MarkEnd

UniqueRenaming

Flatten&MarkEnd

Annotated Code

Data facts

Custom Tags

Define/UseAnalysis

ModifyCode

GenerateTagClass

Figure 9. Custom tag generation

must be migrated into doAfterBody() method for
a tag and which will be marked up with “after-
Body” location. the collected migration location in-
formation is stored in the annotation of each line of
code as shown in Figure 11. A line of code containing
the “inloop” annotation should be migrated into
both doStartTag() and doAfterBody() meth-
ods as part of a loop body for while-loop blocks or
into doStartTag() method as part of if-statement
body for if-else blocks.

A statement containing the “afterBody” anno-
tation will be migrated into the doAfterBody()
method only. Statements containing the “inclass”
annotation will be migrated into tag classes as a class
member. A line of code without a location annotation
will just be migrated into the doStartTag()
method.

3) Define/UseAnalysis. This sub-phase ensures that
each variable used by other tags will have a get
method in the tag class, and each variable that works
as an attribute for its declaration tag class will have a
set method. Each variable that is related to a get or
set method will be declared as an instance variable
and not as a local variable of any method in the tag
class. This sub-phase also collects names and types
for all of the tags in each JSP source file. All of the
collected information is stored in the fact base for fu-
ture use. Although not yet implemented, JSP declara-

tions (<%! … variable or class definition … %>) can
be handled by assigning them to an appropriate tag
class and ensuring that the other tag classes have ac-
cess to them using get and set methods.

4) ModifyCode. This sub-phase modifies the code of
each JSP file by inserting the declarations for the get
and set methods of each tag based on the data facts
extracted in the previous sub-phase, and annotates the
inserted code with the appropriate positions. This sub-
phase also replaces each variable that is not declared
but is used in the current tag using its parents' get
method, and adds and annotates its parent validation
code for the variable.

…Java import statements…

public class eachItemTag extends BodyTagSupport {

 ResultSet loopvar_rs;

 public int doStartTag () throws JspTagException {

 int action = SKIP_BODY;

 try {

 shoppingCartItemsTag parent_shoppingCartItems =

 (shoppingCartItemsTag)findAncestorWithClass(this,

 octs.shoppingCartItemsTag.class);

 if (parent_shoppingCartItems == null)

throw new JspTagException("eachItemTag not in shoppingCartItemsTag");

 checkoutTag parent_checkout=(checkoutTag)

 findAncestorWithClass(this,octs.checkoutTag.class);

 if (parent_checkout == null)

 throw new JspTagException("eachItemTag not in checkoutTag");

 loopvar_rs = parent_shoppingCartItems.getrs();

 if (loopvar_rs.next()){

 parent_checkout.settitle(loopvar_rs.getString(1));

 parent_checkout.setprice(loopvar_rs.getDouble(2));

 action = EVAL_BODY_INCLUDE;

 }else{ action = SKIP_BODY; }

 } catch(Exception e){

 System.out.println("error in eachItemTag "+e);}

 return action;

 }

 public int doAfterBody () throws JspTagException {

 int action = SKIP_BODY;

 try {

 checkoutTag parent_checkout=(checkoutTag)findAncestorWithClass(

 this,

octs.checkoutTag.class);

 if (parent_checkout == null)

 throw new JspTagException ("eachItemTag not in checkoutTag");

 if (loopvar_rs.next ()){

 parent_checkout.settitle (loopvar_rs.getString (1));

 parent_checkout.setprice (loopvar_rs.getDouble (2));

 action = EVAL_BODY_AGAIN;

 }else{ action = SKIP_BODY; }

 } catch(Exception e){

 System.out.println ("error in eachItemTag "+e);}

 return action;

 }

Figure 13. A tag class with an iteration action

…
 <tags id="Block3_Block2_Block1_Else">
 <tag id="Block3_Block2_Block1_Else"> ex_Block2_Block1_ElseTag parent_Block2_Block1_Else =
 (ex_Block2_Block1_ElseTag) findAncestorWithClass (this, ex_Block2_Block1_ElseTag.class);

 <tag id="Block3_Block2_Block1_Else"> if (parent_Block2_Block1_Else == null)
 throw new JspTagException ("Block3_Block2_Block1_ElseTag not in ex_Block2_Block1_ElseTag");

 …
 <tag id="Block3_Block2_Block1_Else" location="inclass"> ResultSet
 <uid id="loopvar_rs ex.jsp Block3_Block2_Block1_Else"> loopvar_rs </uid>;

 <tag id="Block3_Block2_Block1_Else">
 <uid id="loopvar_rs ex.jsp Block3_Block2_Block1_Else"> loopvar_rs </uid>
 = parent_Block2_Block1_Else.getrs ();

 <tag id="Block3_Block2_Block1_Else"> <whileloop id="Block3_Block2_Block1_Else">
 <uid id="loopvar_rs ex.jsp Block3_Block2_Block1_Else"> loopvar_rs </uid>.next ();

 <tag id="Block3_Block2_Block1_Else" location="inloop"> parent_Block0.settitle
 (<uid id="loopvar_rs ex.jsp Block3_Block2_Block1_Else"> loopvar_rs </uid>.getString (1));
 %>
 <td >
 <% = <uid id="title ex.jsp Block0"> title </uid> %>
 </td>

 …
 </tr>
 <%
 </tags id="Block3_Block2_Block1_Else" type="whileloop">
 <tag id="Block2_Block1_Else" location="afterBody">
 <uid id="i ex.jsp Block2_Block1_Else"> i </uid> ++;

…

Figure 12. Output from ModifyCode

This sub-phase also inserts new statements to im-
plement iteration actions for some of the marked loops,
such as the marked while loop with an id of
“Block3” shown in Figure 7. The variable “rs”,
which is used in the while loop condition expression
rs.next() in the block “Block3_ Block2_
Block1_Else”, must be declared as an instance
variable in its declaration tag class and initialized in
the doStartTag() method of the tag class. There-
fore, the variable “rs” will be renamed as “loop-
var_rs”, and two new lines of Java code will be in-
serted into the page (shown in Figure 12) to de-
clare ”loopvar_rs” as an instance variable of type
“ResultSet”, and to initialize this variable in the
doStartTag() method of the class. The prefix
“loopvar_” is used as a simple technique to ensure a
unique name. We must also rename all references to
this variable.

5) GenerateTagClass. This last sub-phase takes the
results from the previous sub-phase and generates the
tag classes for each JSP file. To generate a tag class,
we build the class body in the order from the inner-
most scope to the outermost scope.

For example to build a tag class without an itera-
tion action, we first collect all statements and declara-
tions annotated as “inloop” to build an if-else state-
ment element for the doStartTag() method, and
collect all other elements without any location annota-
tion and use them to build the try-catch block for the
doStartTag() method. Second, we build the
doStartTag method body and header, and annotate
this newly created method as “inclass”. Then, we
collect all statement and declaration elements anno-

tated as “inclass” to build the class body. Finally,
we build the class by creating its class header encapsu-
lating the constructed class body.

The difference between building a tag class with-
out iteration action and building a tag class with itera-
tion action is that we need to build the doAfter-
Body() method as well as the doStartTag()
method and also annotate it as “inclass”. To build
the doAfterBody() method body, we collect all
elements annotated as “afterBody” and combine
them with the if-else statement that has been con-
structed for the doStartTag() method to build try-
catch block for doAfterBody() method.

To automatically generate tag classes based on the
syntax and the collected information from the previous
sub-phases, we have four templates based on JSP cus-
tom tag cases[15]: a tag class for main block / block
without iteration action, a tag class for if-then/if-else
block without iteration action, a tag class with iteration
action and a simple tag class for JSP-expression. Fig-
ure 13 shows one of the tag classes generated for the
example. The name of the class is taken from the facts
generated by the tag naming phase..

3.4.2 Page transformation and taglib xml genera-
tion. Once the classes implementing the tags have
been generated, the next step is to generate the new
web application pages where the embedded Java code

FlattenMarkEnd2

Annotated Code

Data facts

modernizedPage

ReducePage

TransformPage

GeneratelibXML

taglib
XML

Figure 14. Page transformation and taglib xml
generation

<html><body>
<%
 <tags id="Block0">
 <tags id="Block1_Then">
%>
Purchase Processing !
<%
 </tags id="Block1_Then">
 <tags id="Block1_Else">
%>

You have the following items in your cart :
<tag id="Block2"> <table border>
 <tr>
 <td > Title </td>
 <td > Price </td>

</tr>
 <%
 <tags id="Block2_Block1_Else">
 %>
 <tr >
 <%
 <tags id="Block3_Block2_Block1_Else">
 %>
 <td > <%=title %> </td>
 <td > <%=price %> </td>

</tr>
 <%
 </tags id="Block3_Block2_Block1_Else">
 </tags id="Block2_Block1_Else">
 %>
</table>
<%
 </tags id="Block1_Else">
 </tags id="Block0">
%>
</body></html>

Figure 15. Output of sub-phase ReducePage

has been replaced by custom tags. The process, shown
in Figure 14 takes 4 steps.

1) FlattenMarkEnd2. The first sub-phase is different
from the Flatten&MarkEnd sub-phase in the custom
tag generation branch. This sub-phase identifies and
marks only the ending point for the main block of each
JSP file to make sure all of the children tags are prop-
erly nested. It removes the opening brace brackets of
the marked control or loop blocks, and replaces the
closing brace brackets of the same marked blocks by
</tags> markup.

2) ReducePage. This sub-phase identifies and marks
the starting point, and also adds a <tags> markup for
each tag block in each page. At the same time, it re-
moves all Java elements from the page except for the
<tags> and </tags> markup. Figure 15 shows the
example output of this sub-phase for the example page
of Figure 2. From the output, we can see that all Java
statements or declarations code have been removed
from the page, and the starting point and the ending
point for each tag block has been indicated in the page.

3) TransformPage. This sub-phase takes the output of
ReducePage in combination with the data facts ex-
tracted by the Custom Tag Generated Branch to pro-
duce a migrated JSP page for each original page. This
is the final result that was shown in Figure 3. From the
output, we can see that the taglib directive has been
added to the page, and for each tag block the <tags>
and </tags> markup has been replaced by opening
and closing tags. If there are any existing attributes for
a tag, all attribute/value pairs of this tag are also added
to the open tag.

4) GeneratelibXML. The last sub-phase takes the out-
put of TransformPage and produces an xml file, which
is the tag library description file for the web applica-
tion system. Figure 16 shows part of the output of this
sub-phase for the same page. From the output, we can
see that the custom tag checkout is implemented by
the Java class octs.checkout.class, whose
body content is JSP type and two required attributes
are attr_submit and attr_item, respectively.

4. Preliminary Results

We have tested our system on 3 small systems to

date consisting of a online music store, a mini weblog
application and a guest book application. Two were
obtained from within Queen’s, the other is a sample
system downloaded from the internet. The systems

comprise a total of 14 JSP pages containing a total of
682 lines of mixed JSP and HTML. The resulting
pages contain 362 lines of tags and HTML. 74 custom
tag classes were generated.

Currently each JSP expression is translated into its
own custom tag. A simple optimization is to fold the
simple JSP expressions into one simple tag. This
would eliminate 23 custom tag classess.

5. Future Work and Conclusions

One of the main opportunities in future work is to
improve the java grouping phase. The current ap-
proach uses a greedy algorithm to group as much code
together as possible. However this is not always opti-
mal. In many web applications there may be Java code
to deal with session management at the beginning of
each page. Ideally this code could be identified by the
use of method invocations on the session object and
placed in a single tag class that can be shared among
all pages.

Near miss clone detection [3,14] can be used to
identify common scriptlets that can also be shared. The
differences between the similar scriplets can be re-
solved to produce a tag class library invoked from
parameterized custom tags. Both of these possibilities
are currently under investigation.

In this paper, we have presented a technique that
restructures a JSP-based web application by transform-
ing embedded Java code of JSP pages into custom tags,
without changing the original functionality, user inter-
face or code comments of the application. To imple-
ment this technique, we used a robust multilingual

<tag>
 <name>checkout</name>
 <tag-class>octs.checkoutTag</tag-class>
 <body-content>JSP</body-content>
 <description></description>
 <attribute>
 <name>attr_submit</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 <description></description>
 </attribute>
 <attribute>
 <name>attr_item</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 <description></description>
 </attribute>
</tag>

<tag>
 <name>purchase</name>
 <tag-class>octs.purchaseTag</tag-class>
 <body-content>JSP</body-content>
 <description></description>
</tag>
…

Figure 16. Output of sub-phase generatelibXML

parser technique using island grammars for program
understanding, design recovery, unique renaming, and
source-to-source TXL transformation techniques for
program analysis and transformation. After the trans-
formation process, the restructured pages with elimi-
nated scriptlets are easier to debug and test without
affecting run-time performance. Moreover, all busi-
ness logic intensive Java code in the JSP pages has
been moved and encapsulated into custom tag classes,
and all elements for presentation are kept in the pages,
which reduces the complexity of web applications and
makes the restructured applications more maintainable.

References

[1] H. Bergsten, JavaServer Pages, O’Reilly 2002.
[2] J.R. Cordy, “TXL – A Language for Program-

ming Language Tools and Applications”, Proc.
LDTA 2004, ACM 4th International Workshop on
Language Descriptions, Tools and Applications,
Electornic Notes in Theoretical Computer Sci-
ence 110, Dec. 2004, pp. 3-31.

[3] J.R. Cordy, T. Dean, N. Synytskyy, “Practical
Language-Independent Dectection of Near Miss
Clones”, Proc. CASCON 2004, 14th IBM Center
for Advanced Studies Conference, Toronto, Oc-
tober 2004, pp. 29-40.

[4] van Deursen and T. Kuipers, “Building Docu-
ment Generators”, Proc. Int. Conference on
Software Maintenance (ICSM 99), Oxford, Eng-
land, pp. 40-49.

[5] X. Guo, J.R. Cordy and T.Dean, “Unique Re-
naming of Java Using Source Transformation”,
IEEE 3rd International Workshop on Source
Code Analysis and Manipulation, Amsterdam,
p151-160, September 2003.

[6] A. E. Hassan and R.C. Holt, “Migrating Web
Frameworks Using Water Transformations”,
Proceedings of COMPSAC 2003: International
Computer Software and Application Conference,
Dallas, Texas, USA, p296-303, November 2003.

[7] X. Li, Defining and Visualizing Web Application
Slicing Using Design Recovery, M.Sc. Thesis,
Queen’s University, 2004.

[8] L. Moonen, “Generating Robust Parsers using
Island Grammars”, Proc 8th International Work-
shop on Reverse Engineering, Stuttgart, Ger-
many, October 2001, pp 13–22.

[9] L. Moonen, “Lightweight Impact Analysis using
Island Grammars”, Proc 10th International
Workshop on Program Comprehension, Paris,
France, June 2002, pp 343–352.

[10] F. Ricca, P. Tonella, and Ira D. Baxter, "Web
Application Transformations based on Rewrite
Rules", Information and Software Technology.,
vol. 44, n. 13, pp. 811-825, October 2002

[11] F. Ricca, and P. Tonella, "Web Application Slic-
ing", IEEE International Conference on Software
Maintenance., Florence, Italy, November 2001,
pp. 148-157.

[12] F. Ricca, “Analysis, Testing and Re-Structuring
of Web Applications”, Proc. of ICSM'2004, In-
ternational Conference on Software Maintenance,
pp. 474-478, Chicago, Illinois, 11-14 September
2004

[13] N. Synytskyy, J.R. Cordy and T.R.Dean, “Robust
Multilingual Parsing Using Island Grammars”,
Proc. 2003 13th IBM Centres for Advanced Stud-
ies Conference, Toronto, p149-161, October
2003.

[14] N. Synytskyy, J.R. Cordy and T.R.Dean, “Reso-
lution of Static Clones in Dynamic Web Pages”,
Proc. WSE 2003, IEEE 5th International Work-
shop on Web Site Evolution, Amsterdam, p49-58,
September 2003.

 [15] S. Xu and T. Dean, “Modernizing Java Server-
Pages”, being submitted to WSE 2005.

