
Cross-Language Program Analysis and Refactoring

Dennis Strein Hans Kratz Welf Löwe
Omnicore Software Växjö universitet, Software Technology Group, MSI

Werderstr. 87, 76137 Karlsruhe, Germany Vejdes Plats 7, SE-351 95 Växjö, Sweden
{Strein|Kratz}@omnicore.com Welf.Lowe@vxu.se

www.omnicore.com www.vxu.se

Abstract

Many software systems are mixed-language systems to-
day, i.e., they bind together components defined in different
programming and specification languages. Analyses and
refactorings implemented in current software development
tools, e.g., integrated development environments (IDEs),
cannot process these mixed-language systems as a whole
since they are too closely related to particular program-
ming languages and do not process mixed-language sys-
tems across language boundaries. In this paper, we discuss
the foundations of cross-language analysis and refactoring.
We propose a meta-model for capturing relevant informa-
tion in a language independent way and an architecture
for integrating language specific front-ends, and analysis-
and refactoring-components. As a proof of concept, we in-
troduce X-DEVELOP, an IDE implementing the ideas dis-
cussed for a number of languages, analyses, and refactor-
ings. Based on our contributions, cross-language software
development tools are constructible in a straightforward
way delivering the same productivity as today’s single lan-
guage tools.

1 Introduction

Current integrated development environments (IDEs)
like Eclipse and Visual Studio.Net support software devel-
opment and maintenance by analysis and automated code
transformation, i.e. refactoring [8, 3]. For instance, they
analyze the correctness of syntax and static semantics while
editing a program, or allow for consistent renaming of iden-
tifers. This support increases the productivity of software
development and maintenance since it automates tedious
and error prone tasks.

Many software systems are heterogenous today, i.e., they
are composed of components of different programming and
specification languages. Even a simple Java program could
consist already of Java-source and -bytecode components.
A larger system, e.g., a simple Web application, could

merge SQL, HTML, and Java codes on the server site and
additional languages on the client site. To support these
mixed-language systems with automated analysis and refac-
toring, information from all different sources ought to be
retrieved and commonly processed. Only a system global
view allows for globally correct analysis and globally con-
sist refactoring.

Today’s IDEs fail in mixed-language systems, i.e., in
cross-language analysis and refactorings. At best, they can
only handle several programming languages individually.
The reason is the lack of a common meta-model captur-
ing program information for analysis and refactoring that
is (i) common for a set of programming languages abstract-
ing from details of each individual language, and that is (ii)
related to the source code level of abstraction in order to
allow for source-code analysis and refactoring.

We exemplify this with a small Web application.
This Web application integrates ASP, HTML, C# and
VisualBasic components:

// An ASP web page file
<%@ Page language="c#"% ClassName="WebForm">
<html>

<head>
<script language="c#" runat="server">

public Button myButton;
private void Init(string text) {

myButton.Text = text;
}

</script>
</head>
<body>
<asp:button id="myButton" runat="server">
</asp:button>

</body>
</html>

// A VisualBasic file
Public Class VBClient

Sub SetText(f As WebForm, text As String)
f.myButton.Text = text

End Sub
End Class

This example contains an ASP Web page file and a
VisualBasic file. The ASP Web page that is basically
an HTML file with some special ASP elements and pro-
gram code. When the page is requested on an ASP ap-
plication server, the code is executed first, which results in
a translated HTML code sent to the client. The page con-
tains C# code in a script region. This code declares a field
myButton and contains an initialization method Init
that accesses the field to set its initial text. The page also
contains a special HTML element <asp:button>, which
represents a button. This element has an attribute id with
the value myButton. The ASP application server uses this
id to allow program code to refer to the <asp:button>
element and to modify it before it is sent to clients. Thus,
this occurrence of myButton is semantically related to the
declaration of myButton in the C# code.

The VisualBasic file that accesses the field
myButton of the class WebForm representing the ASP
page at runtime. The occurrence of myButton in
the VisualBasic code refers to the declaration of
myButton in the C# code section of the ASP file. At run-
time both the VisualBasic and the C# code are com-
piled to the same platform, i.e. to the .Net platform. This
allows the direct interaction between both languages.

Now consider a renaming of myButton in the above
example. This would imply that we needed to change code
written in different languages, i.e. the C# declaration, the
id attribute of the corresponding HTML element and the
usage of myButton in the VisualBasic code. Ac-
cordingly, a tool automatically performing such a renam-
ing refactoring needs to be able to automatically analyze all
involved languages, as well as the involved cross-language
relations. Hence, we have requirement (i).

Moreover, a close relation to the source code level of ab-
straction is needed in order to generate source code in the
right language, at the right position, and with little changes
to unrelated remaining code in order to avoid confusion of
the programmer. The latter is hardly possible when cap-
turing the analysis information on the abstraction level of
an intermediate language for compilation, e.g. the .Net
Common Intermediate Language. Therefore, we have re-
quirement (ii).

In principle, all tools for software analysis, refactor-
ing, and visualization need a meta-model capturing infor-
mation gained by the analysis of the processed programs1.
In [9], we described the design of such common meta-
models to capture analysis information in a language inde-
pendent way. Common models could be constructed auto-
matically once we have specified mappings of the language

1We need to distinguish model and meta-model: a model abstracts –
more or less – from a concrete program, and, in that sense, it models that
program. A meta-model describes all possible models of programs and can
be understood as the type of models or a data structure capturing them.

specific meta-models of concrete front-ends to the common
meta-model. We extend this approach with two new con-
cepts: we support the construction of cross-language re-
lations (mixed-language systems) and we support multiple
languages in a single file (mixed-language files).

Section 2 describes how to design a common meta-
model and an architecture around for extracting program
information and utilizing them in analysis and refactor-
ing. Section 3 defines a concrete practical common meta-
model to capture information about languages found in typ-
ical real-world systems mixing object-oriented program-
ming languages and markup languages. Section 4 describes
the implementation of this meta-model in the X-DEVELOP

IDE, and summarizes some experiences with a real-world
applications. Section 5 discusses related work and Section 6
concludes the paper and shows directions of future work.

2 Design of a Common Meta-Model Archi-
tecture

Our architecture for analysis and refactoring in mixed-
language software systems consists of three major classes
of components: information extracting front-ends, a com-
mon meta-model (model data-structure), and analysis and
refactoring components.

The common meta-model captures program information
in a language independent representation.

Different language specific front-ends extract informa-
tion from program (fragments) written in the respective lan-
guages. They use language specific analysis and capture
information about the program in a language specific meta-
model first. Information that is relevant for global analysis
and refactoring is also stored in the common model. We are
not restricted to programming languages here. The front-
ends and models can capture other kinds information, as
well, e.g., markup information.

The front-ends retrieve the information represented in
the common model to implement low-level analyses (e.g.,
to look-up declarations). Retrieved information needs to be
provided first by another front-end, potentially a front-end
for a another language. Hence, this architecture allows the
front-ends to access each others information and, hence, to
construct cross-language relation between them.

Different high-level analyses and refactorings access the
common model. The common model represents informa-
tion gained from analysis of a complete mixed-language
program. Thus, concrete analyses based on this informa-
tion are language agnostic and can handle cross-language
relations.

In short, a front-end is responsible for parsing and an-
alyzing specific languages, whereas the common meta-
model stores the relevant analysis information abstracting
from language specific details. The common meta-model

2

is accessed by language independent analyses and refactor-
ings.

A common meta-model will always only be able to sup-
port a limited set of languages and language constructs.
Therefore, the it is not fixed, but may evolve as the need
to support new language concepts arises. We have given
more emphasis on such model evolution in [9].

Furthermore, the common meta-model does not need to
be a union of all language concepts of all languages to
support. Instead, it is sufficient to model only those lan-
guage concepts, that are relevant to higher level analyses
or to other languages. A union model would be unneces-
sarily complex and, most important, it requires much more
changes to the model whenever support for a new language
is desired.

What follows is a description of the general design of
common meta-models. In the first place, this design is not
limited to a specific class of language. Instead, following
this general design, any particular meta-model can be de-
rived for a particular class of languages. We outline such a
particular meta-model then in Section 3.

2.1 Language-Specific and Common Mod-
els

The information about a mixed language system is cap-
tured in the different language-specific models. Parts that
are relevant for cross-language analysis and refactorings are
abstracted to a common model.

In general, a specification of a software systems is sepa-
rated in different files f each having a specific file type F ,
denoted by f ∈ F . Each file can be parsed as a whole by a
specific front-end; each front-end is dedicated to a specific
file type F . Each file f ∈ F may contain code several parts
f = {p1, . . . , pn}, and each part pi may be of a different
languages Li. A front-end for F extracts the parts pi and
brings together all parts of the same language to common
blocks bi ∈ Li. A block is the concatenation of same-
language fragments in a file. As a result, we get as many
blocks bi as we have different languages in a file. Now we
can say that a file type F is determined by the languages
of the different blocks potentially contained in files of that
type F = {L1, . . . , Ln}.

Example 1 ASP files in Web applications are
HTML files with embedded code scripts of sev-
eral different programming languages. Thus,
ASP = {C#, HTML, JavaScript, ASP− directives}.
Even simple C# files contain program code, pre-processor
directives, and code comments. Thus, C# = {C# − code,
C# − comments, C# − pre− processor− code}.

The information for each block bi can be parsed to an
abstract syntax tree ASTLi

bi
. For each file f , the result is a

set of syntax trees representing the different blocks:

ASTSF
f = {ASTL1

b1
, . . . , ASTLn

bn
}, bi ∈ Li.

We denote the function φF that maps files f ∈ F to its set
of syntax trees ASTSF

f the parsing function of F :

φF : F → ASTSF ,

where ASTSF = {ASTL1 , . . . , ASTLn} is the set of syn-
tax trees of block languages that are legal in files of type F
and ASTL denotes the set of syntax trees of a particular
language L.

Example 2 A front-end for ASP files must be
able to construct syntax trees representing the
different file parts of the different languages
that may be part of ASP files. ASTSASP =
{AST C#, AST HTML, AST JavaScript, AST ASP−directives}.
The front-end have a high degree of freedom how to
implement this parsing function. One possibility is to split
the file initially in textual language-same fragments and
then use traditional lexers and parsers.

The abstract syntax trees ASTL of L can be described
by a language specific tree grammar GL. Formally,

GL = (TL, PL, progL)

with TL the set of AST node types, PL a set of BNF-
productions defining the abstract syntax tree structures, and
progL ∈ TL the root type of the abstract syntax trees. BNF-
productions p ∈ PL have the form t ::= expr, where
t ∈ TL, and expr is an expression over T ⊆ TL. Ex-
pression are either sequences (t1 . . . tk), iterations (t∗), or
alternatives (t1| . . . |tk) with the well-known semantics.

Both ASTL and GL define the set of legal ASTs of
(blocks of a) language L; it holds for the parsing function
of F :

φF : F → {ASTL1 , . . . , ASTLn},
with the Li being languages of F .

In order to make each bi processable by further language
Li-specific analysis, the parsing of the language-same frag-
ments may go along with some extra code generation. For
instance, separating HTML from C# code in the example
from the Introduction also requires to generate class dec-
laration code around the declaration and initialization of
myButton. This extra code ensures that the syntax trees
conform to their respective tree grammars.

The abstract syntax trees are the basis for static seman-
tic analysis. When looking only at a single language, the
results are semantic relations over AST node types of TL

of a single language L. However, in mixed-language sys-
tems there are, in general, semantic relations over nodes
types TL1 , . . . , TLn of all involved languages L1, . . . , Ln

contained in different blocks of files of that system.

3

Example 3 The tree grammar GC# of C# may contain
method declaration MethodDC# nodes and call expression
CallExpC# nodes. An important semantic relation is the
call relation:

callC# : CallExpC# × MethodDC#.

The tree grammar GVB of VisualBasicmay also contain
method declaration MethodDVB nodes and call expression
CallExpVB nodes. In a .Net environment, e.g., it is pos-
sible to call C# methods from VisualBasic sites. Thus,
there is a semantic cross-language relation:

callVB,C# : CallExpVB × MethodDC#.

The basic idea is to capture both intra-language and cross-
language relations in a common meta-model. Therefore,
such a common meta-model abstracts from the language
specific abstract syntax trees and captures the semantic rela-
tions in a language independent manner. First, we describe
how such a common meta-model is defined; then we discuss
how common models (instances) are constructed.

Let
M = (G,R)

denote a common meta-model, where G = (T, P, prog) is
a common AST grammar and R = {R1, . . . , Rm} is the
set of common semantic relations over syntactic constructs
t ∈ T . G defines an abstracted and unified view on the
different abstract syntax trees of the specific languages in-
volved; R defines a unified view on the different semantic
relations of these languages. G contains only those syntactic
constructs that are necessary for either constructing or rep-
resenting the relations in R. We denote those constructs as
relevant. For instance, relevant syntactic constructs for rep-
resenting call relations are call expression nodes CallExp
and method declaration nodes MethodD. Independent of
the language they are actually defined in, they will be rep-
resented in the common model. For constructing the call
relation, we also need scopes, e.g., name-spaces, packages,
classes, inner classes, method declarations, blocks etc., in
order to relate the call expression to the proper method dec-
laration. These scope defining constructs are represented in
the common model, as well.

For each language involved, we define relevant syntactic
constructs by mapping specific syntactic meta-model en-
tities to corresponding common meta-model entities. For
each language L, the front-end defines such a syntax map-
ping

αL : TL → T.

inducing a filtering function for computing common ASTs
from relevant constructs of language L-specific ASTs, cf.
also [9]. We assume αL to be surjective for common node
types Trelevant ⊆ T and complete for L-specific node types

TL
relevant ⊆ TL, which are relevant for semantic analysis.

Also, we keep track of the induced mapping between the
relevant L-specific nodes to the common AST nodes. This
one-to-one mapping on node instances is denoted by [[·]]L
for each language L.

Now we are ready to discuss how the common semantic
relations are constructed. The basic ideas is that semantic
analysis is based on the language specific and the common
models. Analyzed semantic relations are only stored in the
common model, but semantic analysis is triggered and per-
formed (by front-ends) in a language-specific manner. From
the front-end perspective, the common meta-model can be
understood as a common compiler definition table that the
language specific analyses read from and contribute to.

Initially, a common model just contains the relevant syn-
tactic constructs from the different blocks of the files of the
mixed-language system. Then, for each block, used occur-
rence of names are related to the corresponding defining
occurrence, according to the semantic rules of that block’s
language. Since all relevant syntactic constructs therefore
are already stored in the common model, this analysis can
be performed on the common model. Regardless, whether
the proper definition is in the same block, file, language, or
not, it will be found in the common model and the semantic
relation can be added to the common model as well.

Inversely, this means that, by applying the inverse func-
tion of [[·]]L, we can also get the L-specific relations. The
inverse is always defined since [[·]]L is a one-to-one map-
ping.

Note, that some semantic analyses are based on others.
For instance, types of formal and actual parameters need
to be resolved (type analysis) in order to resolve static call
targets (name analysis), which, in turn, is required for type
analysis on the caller’s site. These complicated interleaving
between type, inheritance, name, overloading, and operator
analysis are neither simplified nor complicated due to the
generalization to the cross-language case.

Since the used occurrences of names may be distrib-
uted in blocks of different languages, a common relation
R ∈ R is constructed by different language specific seman-
tic analysis function σL:

σL : GL ×M → M.

As an input, σL takes a language L-specific ASTL
b ∈ GL

of a block b and an instance of the common meta-model
M = (G,R) and adds relation tuples to some relations R ∈
R. Note, that σL using instances of M means that it can
interact with arbitrary other languages’ relevant constructs
and can rely on other analysis functions’ results generated
into the common model.

Example 4 For the Java programming language the cal-
culation of σJava includes the resolution of method calls (as

4

found in Java compilers). The rules for these resolution
are defined in detail in the Java language specification.
These rules are encoded in σJava. On the other hand, σJava

can use the common model M to look for method declara-
tions by searching the common syntax tress for nodes of the
common type MethodD. This way the Java front-end can
construct method call relations to other programming lan-
guages.

The common meta-model allows to store analysis results
of software systems incorporating arbitrary language com-
binations an integrative way. Concrete high-level analysis
and refactoring are based on the common model and can
be implemented independently from the actually supported
languages.

2.2 Front-ends

As mentioned before, the support for a specific file type
F is implemented in front-end FF of F . In the previous
section, we have already seen the functions that need to be
implemented by the front-ends in order to construct their
respective contributions to the common meta-model. They
are summarized here.

Each front-end supports a specific file type F that in-
corporates a set of supported specific languages: F =
{L1, . . . , Ln}. A filetype F -specific front-end FF is de-
fined by a triple:

FF = (φF , {αL1 , . . . , αLn}, {σL1 , . . . , σLn})

The front-end provides the parsing function φF that sorts
file parts according to their languages into blocks and con-
structs syntax trees representing the different file blocks.

For each language L of such a block, the front-end de-
fines the syntax mapping αL, that maps language specific
syntax trees ASTL to common meta-model trees AST .

For each language L the semantic analysis function σL

constructs common semantic relations between nodes that
are defined by the syntax mapping. σL is based on the
common meta-model M as well as specific syntactic meta-
model GL to handle language specificities. Through the
common meta-model M it can indirectly access informa-
tion created by front-ends for other languages. This way,
we can construct cross-language relations of arbitrary lan-
guage combinations.

Note, that semantical relations are not limited to the typ-
ical relations for statically typed programming languages.
They may include dynamic relations that would actually
only be computed at runtime, e.g., dynamic types in weakly
or dynamically typed languages or dynamic call targets in
object-oriented languages. However, the computation of
(non-trivial) dynamic program properties using static analy-
sis is generally an undecidable problem. Thus, we use con-

servative approximations for constructing these dynamic re-
lations.

Example 5 The Java programming language, e.g., is an
object-oriented, polymorphic language that supports vir-
tual method calls. Thus, for a given call site the actually
called method will be determined at runtime. Our con-
servative approximation of the callJava relation for Java
and the corresponding common call relation conservatively
contains calls to all method declarations that are possible
call targets.

At least these three front-end components – parsing
function, syntax mapping(s), semantic analysis function(s)
– need to be implemented, whenever a new filetype with
new languages is to integrate. Further adaptation might be
necessary too, e.g., when the set of relevant common model
constructs needs to be extended in order to capture proper-
ties of a new language. For a deeper analysis of the evolu-
tion of our architecture, we refer to [9].

2.3 High-Level Analysis and Refactorings

The common model is an integrative representation of
a whole mixed-language program including cross-language
relations. We use it as a source of information for high-level
analysis (high-level as opposed to the syntactic and seman-
tical analyses that we consider low-level) and refactoring,
i.e. code transformation. To perform analysis and refactor-
ing correctly, we rely on the correctness of information sup-
plied by the common model, i.e., indirectly, by the specific
front-ends. As already stated, we require conservative static
low-level analyses in the front-ends. We cannot guarantee
the refactoring to be consistent, otherwise.

Example 6 A rename refactoring can automatically re-
name a method (declaration) and all call sites. While the
textual modifications required for this refactorings are sim-
ple - they just have to update the names - finding the cor-
rect places to change is not. These places might be spread
throughout the software system and different languages,
which do not necessarily be programming languages, e.g.
ASP directives allow specifying which method to call on
certain events. The refactoring needs to know a conserv-
ative approximation of all possible call sites. Each of them
could possibly target to other method declarations also.
These other targets ought to be renamed, as well, to guar-
antee semantic correctness. Actually, we need to compute
the transitive closure of the "possible method declarations"
relation, since new call targets may introduce new call sites
may introduce new call targets etc. For object-oriented lan-
guages, the common call relation must therefore contain
calls to all possibly called methods, cf. Example 5.

5

With analysis information captured in the common meta-
model at hand, we are now ready to perform the actual code
transformations. Every node in the language specific syn-
tax trees is annotated with information describing its tex-
tual origin, i.e., the source file and the exact position in
that file, e.g., defined by byte-offsets for start and end po-
sitions. When relevant nodes are mapped to the common
model this information is preserved, and this mapping is in-
vertible. In refactorings, we use this position information
for direct textual modifications of the source. The alterna-
tive, a modification of the model and a serialization to the
respective file, is a non-option: parsing the different parts
of a file and regrouping them in blocks are not invertible –
even non-modified parts would be changed and moved lead-
ing to confusion for the user. A benefit of our approach is
that transformations only change parts of the source code
that actually needs to be modified.

After a refactoring has been applied, we might com-
pletely rebuild the front-end specific and the common mod-
els again. In practice, our implementation supports incre-
mental model updates that reuse parts of the existing model
to speed up the process of rebuilding the ASTs and the com-
mon model after refactoring. This is necessary, since IDEs
integrate refactorings in the edit-compile cycle where pro-
gram changes occur quite frequently.

3 A Practical Common Meta-Model Archi-
tecture

In the previous section, we described the general design
of common meta-models to capture analysis information
from mixed-language systems. This design is not limited
to particular kinds of languages. In this section, we out-
line a concrete practical meta-model to capture information
from languages found in typical Web applications: object-
oriented programming and markup languages.

3.1 A Practical Common Meta-Model

Our common meta-model is defined by common tree
grammar G = (T, P, prog) and common relations R to han-
dle object-oriented programming languages like Java, C#,
VisualBasic and J#, as well as markup languages like
XML and HTML. We can not describe the complete meta-
model. Instead we outline some of the most important node
types and relations and how they are used.

Node types T include:

• Prog, represents a compilation unit

• ClassD, represents class declarations

• InterfaceD, represents method declarations

• TypeD, represents type declarations

• MethodD, represents method declarations

• ParameterD, represents method parameters

• Identifier, represents identifiers in the code

• CallExp, represents method call expressions

• Exp, represents general expressions

• Stmt, represents statements

• Element, represents markup elements

• Attribute, represents markup element attributes

Productions P defining the structural relations between
nodes of these types include:

• ClassD ::=
Identifier(MethodD|ClassD|InterfaceD)∗

represents the common syntax of classes.

• MethodD ::= Identifier(ParameterD)∗Stmt
represents the common syntax of methods. The
Identifier is the name of the method, the
ParameterD nodes are the parameters and the Stmt
node is the method body.

• CallExp ::= ExpIdentifier(Exp)∗

represents the common syntax of method calls. The
first Exp is the expression the method is invoked on,
the Identifier is the name of the called method, the
trailing Exp nodes are the arguments.

• Element ::= (Attribute)∗(Element)∗

represents elements and their attributes.

The semantics of a program is represented by a set of
common relations between nodes of the common model:
R = {R1, . . . , Rm}. Similar to the common node types
and productions, we define common relations required for
object-oriented and markup-languages. The most important
relations include:

R = {invokes, calls, inh,

parametertype,methodtype, override}
More specifically:

• invokes : CallExpr × MethodD ∈ R, represents
method calls defined by the static program semantics.

• calls : CallExpr × MethodD ∈ R, represents all
potential method calls.

• inh : TypeD × TypeD ∈ R, represents inheritance
of types.

6

• parametertype : ParameterD × TypeD ∈ R, rep-
resents types of method parameters.

• methodtype : MethodD × TypeD ∈ R, represents
types of methods.

• override : MethodD×MethodD ∈ R, represents a
method that override another method.

The common model is constructed by concrete language
front-ends, which in turn use the model as a source for
analysis to access information from other languages. We
discuss this in the next section.

3.2 Practical Front-Ends

As mentioned before, front-ends implement a parsing
function φF , the language mapping functions αL, and the
language specific sematic analysis functions σL. Front-
ends for different file types may share parts of the parsing
function, syntax mapping, and analysis function in case they
can contain the same languages.

Example 7 The C# language appears in our ASP file
type as well as pure C# files. Thus, we have two
front-ends for the two file types F1 = ASP =
{C#,HTML, JavaScript} and F2 = C# = {C#} and
C# is contained in both. Thus, both front-ends can share
(parts of) the parsing function, the syntax mapping, and se-
mantic analysis functions for C#.

For our object-oriented programming languages, the se-
matic analysis functions include name and type resolution.
Rules for these resolutions are highly language-specific and
are defined in detail in respective language specifications.
Despite the fact that they operate on a common model
instead of language-specific models, their implementation
does not differ from the one found in ordinary compiler
front-ends for these languages.

As described, language interaction is achieved, because
front-ends use the common model as a source for seman-
tic analysis. For example, a front-end for a language L1

searches for nodes of the common type MethodD to pro-
vide the common method calls : CallExp×MethodD re-
lation. To lookup the type of a method it looks in the com-
mon relation methodtype. This methodtype relation, in
turn, is constructed by the semantic analysis of a language
L2 that contained method declaration, and, hence, also con-
structed the MethodD node. Actually, the languages don’t
matter; L1 and L2 may as well be the same language.

Semantic relations are not restricted to compiler-like
relations. Generally, the semantic relations can express
dynamic program properties and are constructed by con-
servative analysis. Our meta-model distinguishes, e.g.,
the calls : CallExp × MethodD and the invokes :

CallExp × MethodD relations. The calls relation is a
conservative method call relation. We say (c,m) ∈ calls if
method call c is possibly a call to method m, and (c,m) /∈
calls if method call c is definitely not a call to method m. In
statically typed object-oriented languages, it is always pos-
sible to find a static call target method m for any given call
c following the rules of the language specification (unless
the program is erroneous), i.e. the static invokes relation.
However, object-oriented languages support method over-
riding and virtual method invocation. Thus, the dynamic
call target may also be one of the different overriding meth-
ods of the static target method.

For our object-oriented languages, we can construct the
call relation as follows: Provided the relation override :
MethodD × MethodD expresses that a method overrides
another:

calls(c,m) ⇔ ∃m′ : invokes(c,m′) ∧
overrides(m′,m)

This is a very rough approximation that takes all overrid-
ing methods as possible candidates. Better results could be
generated by a conservative flow analysis.

3.3 Practical Refactorings

We exemplify the use of the common model for high-
level analysis and refactoring with the Rename Method
refactoring. This refactoring is a code transformation that
changes the name of a method and consistently updates all
call sites. It is more than a simple text replacement: we
need to find all possible calls to the renamed method and the
name may appear in completely different meanings, e.g.,
representing a variable name. Additionally, we need to re-
name other methods if the changed calls could invoke these
other methods, too. Finally, there could be more methods
with the same name that are actually unrelated and, hence,
should not be changed. The situation gets even more com-
plex if multiple languages are involved. The method defined
in language L1 can be called from a call in language L2 and
we need to change code in both languages.

Our common model already provides syntactic and se-
mantic information for implementing this refactoring. We
make use of the common model node types Identifier rep-
resenting identifiers in the source code, CallExpr repre-
senting callers and MethodD representing callees, as well
as the common call relation defined above. Because calls
includes all possible method invocations, we can compute
the set of calls and methods to be changed: starting from
the call sites their declared targets, we compute the transi-
tive closure of the union of the calls relation and its inverse
calls−1 : MethodD × CallExp.

Then we look up the name of both calls and method
declarations, i.e., we find the Identifier nodes under

7

C#
file

VB
file

VB
parser

C#
parser

C#
syntax rules

VB
syntax rules

VB
AST

C#
AST

Common

AST

Common

Semantic

Relations

System

kernel

C#
analyzer

C#
semantic rules

VB
analyzer

VB
semantic rules

high-level

analysis

refactoring

Figure 1. Kernel Architecture.

CallExp and MethodD, respectively:

CallExp ::= Exp Identifier (Exp)∗

MethodD ::= Identifier (ParameterD)∗ Stmt

For each such identifier node in the common model, we look
up its textual position in the source and rename it textually
and update our models accordingly.

Similar refactorings that are actually implemented in a
similar way include:

• Change method signature, i.e., adding, removing, or
reordering parameters. This refactoring is also based
on the transitive closure of the calls relation. Then
it looks for actual and formal parameters under the
CallExp and MethodD nodes involved.

• Move classes, i.e., changing name-space (C#) and
package (Java) of classes. This refactoring requires
name-space and package declarations, resp., using and
import statements, resp., and fully-qualified names in
the common model.

Following this approach, we can implement a refactoring in
a language-independent way. Also, since our model reflects
cross-language relations, our implementation can handle
mixed-languages systems. The refactoring will work with
any language that is supported by a front-end, and, when-
ever a new language is added the refactoring will work with
this new language, as well, without having to implement
language-specific code for this particular refactoring.

4 The X-DEVELOP Implementation of a Prac-
tical Common Meta-Model Architecture

X-DEVELOP2 is a product quality IDE supporting mul-
tiple programming languages and cross-language analysis
and refactoring. Its kernel implements a common meta-
model as described above. This common meta-model
is then used in source-code-analysis-driven refactorings.
Additionally, the kernel provides a common infrastruc-
ture, which is a set of data-structures and helper algo-
rithms that can be used by front-ends to store their analy-
sis results and to simplify their implementation. Sup-
port for concrete languages is implemented in X-DEVELOP

using language front-end plug-ins, currently for: C#,
Java, VisualBasic, J#, HTML, XML, ASP, JSP,
JavaScript. Figure 1 shows the architecture of X-
develop’s kernel and its interaction with language front-
ends. In the figure, we only illustrated C# and Visual
Basic as example.

4.1 Experiences with a Real-World Sys-
tem

In this section, we summarize some experiences process-
ing a real-world software system with X-DEVELOP. We
choose the open source project ITextDotNet, a PDF
generation tool for the .Net platform, as an example. The
source code is freely available. The overall size of the
project is 251.225 lines of code. ITextDotNet is a good
example of a mixed-language system. It makes use of three
widespread .Net programming languages - C#, J# and

2www.omnicore.com

8

Method Declarations Call Expressions Unrelated Textual Total
relevant irrelevant relevant irrelevant Occurrences (irrelevant)

J# 7 80 420 795 479 1781
C# 0 0 374 249 136 759
VB 0 0 85 66 48 199

Whole system (sum) 7 80 879 1110 663 2739

Table 1. Relevant and irrelevant add Method Declarations and Call Sites in ITextDotNet.

Visual Basic. The project consists of core libraries
written in J# and three clients using this core library. One
client is written in J#, the second one in C# and the third
one in Visual Basic. A complete semantic model of
the source code also requires the analysis of the binary li-
braries (DLLs) referenced by the source code. Thus, there is
a fourth language involved: .Net binary. X-DEVELOP

has front-ends for each of those 4 languages.
One can realize the usefulness of our architecture al-

ready with our example code transformation: assume, we
were to rename the method add(Element element)
of the class com.lowagie.text.Document to some
more meaningful name, say addTextElement. A tex-
tual search for add results in 2739 hits, 1781 of them in J#
code, 199 in Visual Basic Code and 759 in C# code.
Among those text places, there are the relevant method
calls and declarations that have to be changed, as well as
other unrelated method declarations and calls with the same
name. Additionally, there are completely unrelated textual
occurrences of add, for example, the declaration of a vari-
able named add.

A semantic search for methods named add yields that
there are actually 87 methods with the name add and
the right signature defined in this project, of which 7 are
directly or indirectly part of the inheritance hierarchy of
com.lowagie.text.Document.add. Those meth-
ods have to be renamed together with all their call sites.
In order to do that correctly, these occurrences have to be
distinguished from syntactic occurrences of add. This re-
quires semantic analysis.

Performing this code transformation manually would ob-
viously be very time consuming and error prone. It would
involve finding and modifying the correct of the 2739 pos-
sible places across different programming languages and
sorting out the proper 7 method declarations and their 879
proper call sites. The Rename Refactoring implemented on
top of our common model does this automatically. Given
a method declaration, it asks for the new name, determines
all methods in the hierarchy, finds the correct calls to those
methods and changes them. In our case, the analysis finds
all 879 relevant call sites, 420 of them in J# code, 85 in
Visual Basic Code and 374 in C# code. Table 1 shows
the full statistics.

The time required for the analysis is only about 5 sec-

onds on a Mobile Pentium 4M machine with 2 GHz and 768
MB of RAM and another 5 seconds to update the common
model after the modification.

5 Related Work

All tools for software analysis and refactoring need a
meta-model capturing information on the processed pro-
grams. Although some of today’s tools can handle several
programming languages individually, they fail in mixed-
language systems, i.e., in cross-language analysis and refac-
toring. They use language specific meta-models designed
particularly for one language. For example, RECODER [6]
and IDEs like CODEGUIDE4 or the ECLIPSE JDT3 define
a Java-specific meta-model. These models can neither
capture multi-language systems, i.e., capture source code
written in different programming languages in a common
model, nor mixed-language systems, i.e., capture relations
between code fragments written in different programming
languages.

Several transformation systems, e.g. ASF+SDF [12] and
DMS [1], have been used for processing mixed language
systems. Our approach goes beyond those tools by integrat-
ing semantic analysis across languages. Our common se-
mantic model can represent whole mixed-language systems
and can be used for the language-independent implemen-
tation of high level analyses and refactorings that rely on
semantic information.

A re-engineering tool for multi-language software sys-
tems has been discussed in [4]. Besides many technical dif-
ferences, their approach differs from our approach by us-
ing a union model of several programming languages. As
stated above, the disadvantages of a union model is that it
is unnecessary complex and that much more changes to the
model are required whenever support for a new language is
desired.

The MOOSE re-engineering environment [10] uses a
common model to implement support for different lan-
guages. Refactorings can then implemented language in-
dependently using this common model. However, their
model can not capture mixed-language systems and repre-
sent cross-language relations. Additionally, their model dif-

3www.eclipse.org

9

fers from ours by being mainly focused on traditional pro-
gramming languages, i.e. Smalltalk and C++.

Common intermediate representations (IR) of programs
are used in compilers and virtual machines as well. These
IRs preserve the execution semantics of a system and serve
as a base for program analysis and optimization. Exam-
ples are the Java virtual machine [5] or the .Net common
language runtime [7]. For several reasons, IRs are insuffi-
cient as a basis for source code transformations: one key
issue is the lack of information and the missing link to the
source code. Another problem with IRs is the specialization
to compilable programming languages. The representations
are not general enough to support other types of specifica-
tions that can usually be found as sources in software sys-
tems, e.g., UML specifications, scripting-, and markup lan-
guages.

Common models of software systems are also used in
software architecture and design methods and tools. The
Unified Modelling Language (UML) [2, 11] is defined to
specify, visualize, and document software system design.
UML as a meta-model is language independent, and, in
principle, can also describe mixed-language systems. How-
ever, it describes software systems on an architectural or
design level, which is not sufficiently detailed for imple-
menting refactorings or similar tools.

6 Conclusions

In this paper, we introduced the design of a meta-model
for cross-language analysis and refactoring and an archi-
tecture for constructing instances of that meta-model from
mixed-language systems. Moreover, we proposed a prac-
tical meta-model for object-oriented and Web applications;
it allows capturing systems with markup-, scripting-, and
application-components using different markup scripting
and object-oriented programming languages. Finally, we
described our X-DEVELOP IDE implementing this practical
meta-model and the architecture around including a number
of front-ends, analyses, and refactorings.

The set of programming languages manageable depends
on the capabilities of our common meta-model. In [9], we
showed how such a common meta-model may evolve on
demand of new programming languages. However, we cur-
rently lack clear constraints defining descriptively the class
of languages captured today. These constraints are currently
developed. They should in the future complement the de-
scription of the capabilities of our approach in this paper,
which just lists the languages that X-DEVELOP actually
supports.

Future work also includes the handling of those dynam-
ically typed programming languages, e.g., interpreted lan-
guages like SmallTalk, where sufficiently precise mod-
els can only by constructed using data-flow analysis.

Another issue for future work is the awareness of gener-
ated code linking client and server components, e.g., in Web
Services and EJB applications. For these extensions, we ex-
pect that our meta-model and architecture generalize. They
require new front-ends, e.g., for WSDL- or deployment de-
scriptor formats, and new conservative analyses resolving
calls from clients to servers via the middleware.

Rather ambitious is extend the approach towards the
C/C++-language. Here, the pre-processor with its text-
rewriting semantics that is even cross-cutting the language
constructs is expected to cause problems not solvable with
our meta-model and architecture in a straight-forward way.

References

[1] I. Baxter, P. Pidgeon, and M. Mehlich. Dms: Program trans-
formations for practical scalable software evolution. In In-
ternational Conference on Software Engineering, 2004.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling
Language User Guide. Addison-Wesley Longman, ISBN
0-201-57168-4, 1998.

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[4] B. Kullbach, A. Winter, P. Dahm, and J. Ebert. Program
comprehension in multi-language systems. In WCRE ’98:
Proceedings of the Working Conference on Reverse En-
gineering (WCRE’98), page 135, Washington, DC, USA,
1998. IEEE Computer Society.

[5] T. Lindholm and F. Yellin. The Java Virtual Machine Speci-
fication Second Edition. Addison Wesley, 1998.

[6] A. Ludwig and D. Heuzeroth. Metaprogramming in the
large. In GCSE’2000, number 2177 in LNCS. Springer,
2000.

[7] J. S. Miller and S. Ragsdale. The Common Language In-
frastructure Annotated Standard. Addison Wesley, 2004.

[8] W. F. Opdyke. Refactoring object-oriented frameworks,
1992.

[9] D. Strein, R. Lincke, J. Lundberg, and W. Löwe. An extensi-
ble meta-model for program analysis. In ICSM 2006 - 22nd
IEEE Int. Conference on Software Maintenance, 2006.

[10] S. Tichelaar. Modeling Object-Oriented Software for Re-
verse Engineering and Refactoring. PhD thesis, University
of Berne, Dec. 2001.

[11] Unified Modeling Language (UML), version 2.0.
〈URL:http://www.omg.org/technology/
documents/formal/uml.htm〉, 2006.

[12] M. G. J. van den Brand, J. Heering, P. Klint, and P. A.
Olivier. Compiling language definitions: the ASF+SDF
compiler. ACM Trans. Program. Lang. Syst., 24(4):334–368,
2002.

10

