
AVal: an Extensible Attribute-Oriented Programming Validator for Java

Carlos Noguera and Renaud Pawlak
INRIA - Futurs, Jacquard Project

LIFL, UMR CNRS 8022, Equipe GOAL - Bâtiment M3
59655 Villeneuve d’Ascq Cédex - FRANCE

{noguera, pawlak}@lifl.fr

Abstract

Attribute Oriented Programming (@OP) permits pro-
grammers to extend the semantics of a base program by an-
notating it with attributes that are related to a set of con-
cerns. Examples of this are applications that rely on XDo-
clet (such as Hibernate) or, with the release of Java5’s an-
notations, EJB3. The set of attributes that implements a
concern defines a Domain Specific Language, and as such,
imposes syntactic and semantic rules on the way attributes
are included in the program or even on the program itself.
We propose a framework for the definition and checking of
these rules for @OP that uses Java5 annotations. We de-
fine an extensible set of meta-annotations to allow the val-
idation of @OP programs, as well as the means to extend
them using a compile-time model of the program’s source
code. We show the usefulness of the approach by presenting
two examples of its use: an @OP extension for the Fractal
component model called Fraclet, and the JSR 181 for web
services definition.

1. Introduction

Attribute Oriented Programming[14] (@OP) allows the
extension of a base language’s semantics with concepts spe-
cific to a given domain by means of attributing the source
code elements of the language with relevant metadata. For
example, a class with an attribute Persistent may spec-
ify that the instances of that class must be saved in a per-
sistent storage at runtime. Attribute-Oriented Program-
ming can be implemented through library support (XDo-
clet, Apache Commons Attributes), or by direct language
support (.Net, Java).

A set of attributes in an @OP framework can be seen as
defining a Domain Specific Language (@DSL) on top of the
base language. This @DSL imposes a set of syntactic and
semantic rules in addition to those of the base language. The
validations required to check these rules vary among @OP

frameworks, and they can be quite complex. In the case
of JSR-1811, some annotations reference XML descriptors
that must be validated by the framework; while for other
annotations, validations must be performed on the code el-
ements on which the annotations are placed; for example, a
@WebService object cannot implement the finalize()
method.

Although some support is included for the validation of
these rules in existing frameworks and languages, in gen-
eral it is not enough to cover the complex rules specified
in current @OP languages. It is then up to the framework
programmer to implement these supplementary checks in a
way that is expressive, extensible, and provides meaningful
error messages to the end user. In this paper, we present a
framework for the validation of @OP programs which cov-
ers these properties.

1.1. Attribute Oriented Programming

Attribute-oriented programming is a program-level
marking technique. Basically, developers can mark pro-
gram elements (e.g., classes, methods and fields) with
attributes (annotations) to indicate that they maintain
application-specific or domain-specific semantics [14]. An-
notations separate the application’s business logic from
middleware-specific or domain-specific semantics (e.g.,
logging and web service functions).

By hiding the implementation details of those semantics
from program code, annotations increase the level of pro-
gramming abstraction and reduce programming complexity,
resulting in simpler and more readable programs. The pro-
gram elements associated with annotations are transformed
to more detailed programs by a supporting tool (e.g., gener-
ation engine). For example, a generation engine may insert
a call to a logging API into the methods associated with a
logging annotation. The dependencies towards the un-
derlying API are replaced by annotations, acting as weak

1Java Specification Request 181 for web service metadata

references. This means that any evolution of the underlying
API is taken into account by the generation engine and the
program code remains unchanged.

Recently attributes are used in a number of enterprise
frameworks. Attributes are normally employed to embed in
the source code information that was previously specified in
external configuration files or derived from conventions of
source code elements. For example, in the EJB3 [10] spec-
ification, annotations on JavaBeans coexist with the legacy
XML-based descriptors. Also, in JUnit version 4, instead
of relying on the naming convention that the name of test-
case methods must start with the string test, an annota-
tion @Test is used. Annotations in these two frameworks
(i) enhance the readability of the source code, in EJB3, the
programmer must only look in a single file to get all the in-
formation for the EJB; and (ii) make the use of frameworks
easier, in JUnit2, if the programmer misspells the @Test an-
notation, the Java compiler will flag the error, whereas this
is not true for naming conventions. Annotations may also
be used to directly represent DSLs. The aspect-oriented
programming language AspectJ is a DSL closely based on
Java, with the introduction of annotations in Java5, AspectJ
migrated to being an annotation-based language by trans-
lating the DSL terms to equivalent annotations on pure Java
code. By using AspectJ as a library rather than a language,
the programmer can simplify her compilation process since
both, aspects and base code, are processed by the same com-
piler.

The rest of the paper is organized as follows: in Section 2
we introduce Java 5 annotations as a platform for @OP and
the Spoon annotation processor. In Section 3 we present our
proposed framework for annotation validation, AVal; while
in Section 4 we present two case studies: Fraclet (4.1) and
an implementation of the JSR 181 (4.2). In Section 5 we
evaluate the approach and in Section 6 compare it to related
work. Finally conclude in Section 7.

2. Background

In this section we discuss Java 5 Annotations –with spe-
cial attention to the validation capabilities provided within
the language– and Spoon, our source code processor.

2.1. Java5 Annotations

In version 1.5, Sun included several language updates to
Java, in particular, a metadata facility for program elements
called annotations. Annotations in Java are a kind of typed
metadata, that allows for @OP . They are defined in a way
similar to interfaces, using the keyword @interface.
Each annotation contains a number of attributes that can

2http://www.junit.org

be primitive types (int, float, String), enumerations
or classes represented as the return type of methods in the
@interface. The semantics of the annotations can be
implemented either at runtime (through the reflection API),
or at compile-time (through the use of an annotation pro-
cessor). An example of a Java5 annotation that allows pro-
grammers to specify which methods of a given class to test
is shown in figure 1.

@Target({ElementType.CLASS,ElementType.METHOD})
public @interface Test{
String name() default "";

}

Figure 1. Java annotation definition

Java5 annotations allow for a limited set of validations
that restrict the source code elements on which the anno-
tations can be placed. This is done by annotating the def-
inition of the annotation (meta-annotating) with @Target.
The Target annotation takes as argument an array with the
elements on which the annotation can be placed. For exam-
ple, the annotation defined in figure 1 can only be used on
classes or methods. All other restriction on the usage of the
annotations must be implemented by the @OP framework
programmer. Depending on the way the @OP framework
interprets the annotations, the misuse of an annotation will
only be detected when the application is compiled or at run-
time when the annotations are interpreted, if at all.

2.2. Spoon Annotation Processor

Spoon [11] is a source-code processor based on a meta-
model of the program that models every code element, in-
cluding statements and expressions. It relies heavily on
generics to ensure type safe processing, and uses the con-
cept of processors as units of program analysis and trans-
formation. A processor is in essence an implementation of a
visitor on the program’s model. In each visiting, the proces-
sor has complete (both read and write) access to the model.
Special processors are AnnotationProcessors that
declare the annotation in which they are interested, and the
type of elements on which the annotation is applied.

3. AVal Annotation Validator

To provide a generic and extensible framework for the
checking of annotated programs in Java, we have imple-
mented an Annotation Validator (AVal) as a Spoon proces-
sor. AVal follows the idea that annotations should describe
the way in which they should be validated, and that self
validation is expressed by meta-annotations (@Validators).
This idea of meta-annotations as a way to describe the rules

of use of domain level annotations is a generalization of
Java’s @Target annotation discussed in section 2.1.

AVal’s architecture is composed of four layers (figure 2):

Base program The (annotated) program that is to be val-
idated. Elements of the program are annotated by at-
tributes defined on the @DSL layer.

Domain Specific (Annotation) Language (@DSL) The
domain specific annotations. Each annotation is
meta-annotated by an AVal meta-annotation that
expresses the rules for its validation.

@Validators Meta-annotations that encode the rules to
validate annotations. Each @Validator represents a
validation rule, and is itself annotated with the class
that is responsible for the implementation of it.

Validation implementation A class implementing each
validator. The class must implement the Validator
interface, and it uses the Spoon compile-time model of
base the program, @DSL annotation, and @Validator
in order to perform the validation.

A
V

a
l
P

ro
c

e
s
s

Base Program

@DSL

Vaidators
Implementation

@Validators

A
n

n
o

ta
te

s

Figure 2. AVal Architecture

AVal is implemented as a Spoon source code preproces-
sor that is executed before the code generation or compila-
tion phase in a @OP framework. It traverses the base code
looking for domain specific annotations. Each time it finds
an annotated element, it checks the model of the annota-
tion’s declaration to see if it has any @Validators. In case
the annotation has one or more validators, the tool executes
the each validator’s implementation in the order in which
they are defined. As a preliminary optimization, the valida-
tor’s implementation is cached, so that if in the traversal of
the program the same annotation is found twice, the correct
validator implementation is executed without processing the
annotation’s definition again.

@Target({ElementType.METHOD})
@Inside(Documented.class)
public @interface WebLink{

@URLValue String value();

}

@Implementation(URLValueValidator.class)
public @interface URLValue{}

Figure 3. Example of the use of AVal @Valida-
tors: (@Inside and @URLValue)

3.1. A small example

In order to better explain the nature of AVal validations
we show a small example. Take a small @DSL composed
of the annotations @Document and @WebLink that allows
to document classes by means of external web pages. As
validation rules we define:

• Only methods can be annotated with @WebLink

• Only methods within Documented classes (classes an-
notated @Document) can be annotated with @We-
bLink.

• The @WebLink annotation contains an String at-
tribute that must be a valid URL.

In order to automatically check these rules, we annotate
(figure 3) the definition of the @WebLink with two @Val-
idators: @Inside, that checks that all WebLinks are inside
code elements annotated @Document, and @URLValue that
states that the value of the annotation should be a valid
URL. The definition of these two @Validators will be ex-
plained in detail in the following sections.

When the AVal processor is executed, it visits the
program’s elements checking if they have a @WebLink
annotation. When it finds one, AVal opens the def-
inition of the @WebLink annotation and processes the
value() element; it then creates an instance of the
URLValueValidator class and executes the implemen-
tation of the @Validator. A detailed description of this pro-
cess is found in section 3.3.

3.2. Generic Validators

As a starting point, AVal defines a number of generic
validators that can be used regardless of the domain. These
generic validators are divided into structural and value val-
idators.

3.2.1 Structural Validators

Structural validators reason on the relationship between an-
notations, and, between an annotation and the code element
it annotates.

@AValTarget This validator extends Java5’s @Target
meta-annotation allowing for finer control on what elements
can an annotation be used. With it, it is possible to state that
an annotation can only be placed on interfaces, for example.
The @Validator defines a single attribute:

• value(): The type of the target element. This
type is expressed by the class that represents the el-
ement in Spoon’s compile-time model. For example
CtInterface.class if it is an interface.

@Inside This validator states that the current annotation
must occur within the lexical scope of another annotation.
For example, a method annotation @Foo can only be used
on methods that belong to classes that are annotated @Bar,
then @Foo is inside @Bar. This @Validator defines a single
attribute:

• value(): The type of the parent annotation (For ex-
ample Parent.class)

@Prohibits This validator states that if a code element is
annotated with the current annotation, then it prohibits the
use of another (given) annotation. This @Validator defines
a single attribute:

• value(): The type of the forbidden annotation.

@Requires This validator is the dual of the @Prohibits.
It states that the current annotation must occur in elements
that are also annotated with another annotation. This @Val-
idator defines a single attribute:

• value(): The type of the required annotation.

3.2.2 Value Validators

Value Validators reason on the attributes of the annotations.
They allow to overcome Java5 restriction on the types al-
lowed for annotation’s attributes (primitive types, Classes,
etc). Also they allow for domain-specific semantic checks.

@RefersTo This validator states that the value of the at-
tribute must refer (be equal) to the value of another anno-
tation somewhere in the program. This @Validator defines
the following attributes:

• value(): The target annotation type to which the
current attribute refers to.

• attribute(): The attribute in the target annotation
type to which the current attribute refers to.

@Matches This validator applies on attributes of type
String, and it checks that the values of the attribute match
the provided Java regular expression.This @Validator de-
fines a single attribute:

• value(): The regular expression.

@Unique This validator checks that a given attribute
value is unique for a given program. That is, two program
elements annotated with the same annotation type cannot
have the same value in an Unique attribute. This @Valida-
tor defines no attributes of its own.

@A("http://localhost/")
public class Foo{
//...
}

a. Base Program

public @interface A{
@URLValue
String value();
}

b. @DSL annotation

@Implementation(URLValueValidator.class)
public @interface URLValue{}

c. @Validator

public class URLValueValidator
implements Validator<URLValue>{

public void check(
ValidationPoint<URLValue> vp){

String attribName = vp.getDslElementName();
String value =

(String)vp.getDslAnnotationValue(attribName);

try{
new URL(value);

}catch(MalformedURLException ex) {
//Report error

}

}
}

d. Validation implementation

Figure 4. Custom Validator

3.3. Extending Validators

We have found, as it will be discussed in section 4, that
the generic validators shown before cover many validation
needs. However, there are cases in which it is difficult
or even impossible to translate a given domain rule into
generic validators; for these cases we have implemented a
way to extend the @Validator set for a particular domain.

New validators require two things: a new @Validator
annotation, and its corresponding implementation. @Val-
idators are normal Java annotations that are themselves an-
notated with their corresponding implementation. The im-
plementation of a @Validator is a class that implements
the Validator interface parametrized by the type of the
@Validator. This interface defines a check method that is
up called whenever the validated annotation is found. Val-
idator implementations have access to the complete meta-
model of the program, in particular to the annotated base
program, the @DSL annotation and annotation definition,
and the @Validator. These elements of the meta-model are
encapsulated in a ValidationPoint object.

To illustrate the process of definition of a new validator,
suppose that a domain rule requires that the value of the
attribute value() of the annotation A is a valid URL (fig.
4b.). To this end, we define a @Validator URLValue (fig.
4c.). The class URLValueValidator is responsible for
checking that the values of the @A are in fact URLs (fig.
4d.).

By providing access to the program’s compile-time
model and using Java, it is possible to implement com-
plex validators, for example @RefersTo, that take into ac-
count the complete program, or validate with regard to ex-
ternal resources, such as checking an XML specification, or
database schema.

4. Case Studies

In this section we present two Attribute-oriented speci-
fications using Java5 annotations. Fraclet [12], an annota-
tion framework for the Fractal component model [1] and the
JSR181 for definition of web services [16]. We show how
our proposal allows for a clear definition of the rules of use
of these specifications.

4.1. Fraclet

Fraclet is an annotation framework for the Fractal com-
ponent model. The Fractal component model defines the
notions of component, component interface, and binding
between components. Each of these main notions is re-
flected in the @DSL defined by Fraclet. There are two im-
plementations of Fraclet, one using XDoclet2, and the other

one using Java5 annotations and Spoon annotation proces-
sor. The annotations defined by Fraclet/Spoon are summa-
rized in table 1.

The rules for the use of each of the annotations in Fra-
clet/Spoon are as follows:

@FractalComponent A Fractal component in Fra-
clet/Spoon is a Java class that defines a number of com-
ponent attributes, bindings and operations. The @Target
annotation provided by Java only allows to define that the
annotation can be placed on types (classes or interfaces),
therefore, the @Validator @AValTarget is used to restrict
the Fractal components to being only classes. The complete
definition of the annotation is shown below.

@AValTarget(CtClass.class)
public @interface FractalComponent {
String controllerDesc() default "";

}

@FractalItf A Fractal business interface is a Java inter-
face that defines a set of related operations in a component.
The interface must contain a name that is unique for the ap-
plication, and it must define if the interface is optional, and
its cardinality. @Validators are provided to check all these
rules:

@AValTarget(CtInterface.class)
public @interface FractalItf {
@Unique String name();
Class signature() default None.class;
@Matches("(singleton|collection)")
String cardinality() default "singleton";

@Matches("(mandatory|optional)")
String contingency() default "mandatory";

}

@FractalAC A field annotated as FractalAC describes an
attribute of the Fractal component, therefore, only fields that
belong to a Fractal component class are allowed to be anno-
tated @FractalAC. Also, since Fractal attributes and Frac-
tal bindings are both represented using fields, it makes no
sense to annotate a single field with both @FractalAC and
@FractalBC. @Validators for these rules are included in the
definition of the annotation:

@Inside(FractalComponent.class)
@Prohibits(FractalBC.class)
@Target(ElementType.FIELD)
public @interface FractalAC {

String argument() default "";
String value() default "";

}

@FractalBC A Fractal binding represents a binding be-
tween a component and a Fractal interface. The binding
is represented as a field in a Fractal component class, and

Annotation Location Parameter Description
@FractalComponent Class controllerDesc Annotation to describe a Fractal component.
@FractalItf Interface name, signature, cardinality, contingency Annotation to describe a Fractal business inter-

face.
@FractalAC Field argument, value Annotation to describe an attribute of a Fractal

component.
@FractalBC Field name, signature, cardinality, contingency Annotation to describe a binding of a Fractal

component.
@FractalImportedInterface Class interfaces Annotation to specify that the component pro-

vides a server interface which is not annotated
with a @FractalItf.

@FractalRC Field - Annotation to get the component part interface

Table 1. Overview of Fraclet annotations

therefore, is only valid in fields of classes annotated with
@FractalComponent. It defines the name of the Fractal in-
terface that is bound to (which must exist in the program),
as well as the signature, cardinality, and contingency of the
binding. These last three attributes follow the same rules
than those of @FractalItf.

@Inside(FractalComponent.class)
@Prohibits(FractalAC.class)
@Target(ElementType.FIELD)
public @interface FractalBC {
@RefersTo(value = FractalItf.class,attribute="name")
String name();

Class signature() default None.class;

@Matches("(singleton|collection)")
String cardinality() default "singleton";

@Matches("(mandatory|optional)")
String contingency() default "mandatory";

}

@FractalImportedInterface Fractal components imple-
ment interfaces that may not be Fractal business interfaces,
but that still need to be exposed in the component; for ex-
ample java.lang.Runnable. These interfaces are de-
clared as imported interfaces in the definition of the Fractal
component, therefore, it makes no sense to annotate a class
with @FractalImportedInterface if it is not a Fractal compo-
nent. Note that the interfaces() attribute is an array
of @FractalItf, and therefore it is checked using the rules
defined for Fractal business interfaces.

@Requires(FractalComponent.class)
public @interface FractalImportedInterface {
FractalItf[] interfaces();

}

4.2. JSR 181

The JSR181 [16] is a specification for the description of
web services using pure Java objects. The JSR defines a set
of annotations and their mapping to the XML-Based Web
Service Description Language. In section 2.5.1 of the spec-
ification, it is stated that implementations of the JSR must
provide a validation mechanism that performs the seman-
tic checks on the Java Bean web service definition. Table
2 summarizes the six of the ten annotations defined by the
JSR.

Rules defined for the JSR describe restrictions not only
on the use of the annotations, but also on certain properties
of the annotated elements, for example that the web service
implementation must not define a finalize() method,
or that a one-way operation must have no return value. For
this domain specific restrictions we extend the validation
framework with a new @Validator for each annotation. This
@Validator encapsulates all checks regarding the contents
of the annotated element. The selected annotations of the
@DSL are discussed below.

@WebService This annotation marks a Java class as a
service implementation bean, or a Java interface as an end-
point interface. As the same annotation is used to describe
two entities: service implementation and endpoint inter-
face, the constraints on the annotated element vary depend-
ing on if the annotation is placed on a Java class or an in-
terface. Regardless of where the annotation is placed, the
wsdlLocation() attribute must be a valid URL.

If a class is annotated @WebService, it must be an
outer class and it must not be final nor abstract, it
must also define a default public constructor. These rules
are validated by the ValidWebServiceBean @Valida-
tor. If an interface is annotated @WebService, it is re-
quired that the interface is public and the annotation is
not allowed to define values for the serviceName() and
endPointInterface. These rules are validated by the

Annotation Location Parameter Description
@WebService Class, Interface name, targetNamespace, serviceName,

wsdlLocation, endpointInterface
Class or Interface defining a web service

@WebMethod Method operationName, action Method exposed as a web service operation
@OneWay Method – Indicates that a given web server operation has

only input messages and no output.
@WebParam Method Parameter name, targetNamespace, mode, header Maps an individual operation parameter to a web

service message
@WebResult Method name, targetNamespace Maps the operation’s return value to a web ser-

vice result
@HandlerChain Class, Interface file, name Associates an externally defined handler chain to

a web service

Table 2. Overview of JSR-181 annotations

ValidEndPointInterface @Validator.

@Target({ ElementType.TYPE })
@ValidWebServiceBean
@ValidEndPointInterface
public @interface WebService {
String name() default "";
String targetNamespace() default "";
String serviceName() default "";
@URLValue
String wsdlLocation() default "";
String endpointInterface() default "";

};

@WebMethod This annotation marks a method as being
a web operation for the web service. The method must be
public, and its parameters and return type conform to
the rules defined in the JAX-RPC specification [3]. The
checks of the signature of the method are implemented in
the ValidWebOperation @Validator.

@Target({ ElementType.METHOD })
@Inside(WebService.class)
@ValidWebOperation
public @interface WebMethod {
String operationName() default "";
String action() default "";

};

@Oneway This annotation states that a given WebMethod
has only an input message, and no return value. The meth-
ods annotated @Oneway cannot declare checked excep-
tions, or define IN or INOUT parameters. The checks on
the signature of the web methods are carried out by the
ValidOneway @Validator.

@Requires(WebMethod.class)
@ValidOneway
public @interface Oneway {
};

@WebParam This annotation defines the properties for
parameters of web methods. The specification does not de-
fine particular rules about this annotation other than that it
must be defined only on parameters of web methods.

@Target({ ElementType.PARAMETER })
@Inside(WebMethod.class)
public @interface WebParam {
public enum Mode {

IN, OUT, INOUT
};

String name() default "";
String targetNamespace() default "";
Mode mode() default Mode.IN;
boolean header() default false;

}

5. Evaluation

As discussed in previous sections, AVal has been applied
to two @OP frameworks. In the case of Fraclet/Spoon
we were able to check all the rules using only generic val-
idators (3.2), without having to implement Fraclet-specific
ones. Given that Fraclet/Spoon uses the same source-code
transformation tool than AVal, we were able to integrate the
@Validators seamlessly to the @OP framework. AVal is
included in the latest release of Fraclet/Spoon.

In the case of the JSR181, rules about the relationship
between annotations and rules that restrict the values of the
annotation’s attributes are encoded using generic validators,
while restrictions on the program elements are validated by
custom-made @Validators. It is interesting to note that the
restrictions on the program elements are not directly related
to the @DSL itself, but to the domain in which the annota-
tions are used. Indeed, the rule that states that a class that
implements a web service must not be final is independent
of the way in which the class is marked as a web service. In
this regard, the @Validators not only check annotations, but
also domain related restrictions.

A weakness identified during the case studies is that, in
order to attach the @Validators to the annotations defined in
the @DSL, the developer needs to modify the definition of
the annotations. This presents a problem when the @DSL
is part of an external library (such as the Reference Imple-
mentation of the JSR181). This fact restricts the use of AVal
to cases in which the @OP framework developer is also in
charge of the @DSL definition, we do not believe this to be
a too strong assumption.

5.1. Future Work

For the continuation of AVal, we expect to apply it to
more complex @OP frameworks such as EJB3 (which de-
fines more than fifty persistence annotations) and AspectJ5.
The AValidation of these frameworks will allow us to verify
and expand the number of generic validators, as well as to
test the performance of the approach against large applica-
tions.

We would like also to explore the possibility of extend-
ing AVal to non-annotation based frameworks. The idea
would be to annotate elements in the framework with @Val-
idators that would check that they are correctly used. The
tests would be similar as those performed by the @Vali-
dEndPointInterface and @ValidWebServiceBean defined in
Section 4.2.

6. Related Work

Static Validation Static validators allow developers to
check properties of their code that go beyond of that what is
provided by normal compilers. Lint [9] is one of the first
tools to provide such checks by relying on (lightweight)
static analysis. To reduce the amount of noise (false
positives) that is normally generated by Lint-like tools,
LCLint [5], and later Splint [6], guide the validation of pro-
grams through annotations (stylized code comments) that
explicit programmer assumptions and intents. This use of
annotations is comparable that of AVal’s @Validators.

In [7], Hedin proposes an extensible, attribute-based
static validator. In it, the grammar of a language is ex-
tended to check that custom programming conventions are
followed. These extensions are similar in spirit to those pos-
sible with AVal; nevertheless, they lack the modularity and
cohesion of implementing each extension in a separate class
as is done in AVal, since the extension of the grammar is
done by attributing each individual node of the AST and
then acting upon these attributes, thus lacking locality.

By regarding validation as a crosscutting concern in a
program’s code, it is possible to encode it by means of As-
pect Oriented techniques, this has been explored by Shom-
rat et. al. in [13]. Nevertheless, in an Aspect Oriented
language such as AspectJ[8], no extra reflection facilities

are provided, so the validation programmer must rely only
on Java reflection which does not reify the body of methods
and, since reflection is implemented at runtime, the @OP
framework must be modified so that annotations are kept
until runtime (using a special Java meta annotation). This
restricts the domain of validations that can be performed

Annotation Validation Previous to the introduction of
annotations in Java, XDoclet [15] relied on modified
javadoc comments called tags to specify metadata for pro-
gram elements. In XDoclet2, a form of tag validation is
performed by tagging the tag definitions. The set of val-
idations is fixed, and no special facilities are provided for
extending them.

Cepa and Mezini’s work [2] follows an approach simi-
lar to ours. They propose a meta annotation for the cus-
tom attribute facility in the .Net framework. However, they
concentrate on dependencies between annotations (what we
call structural validations 3.2.1) and do not foresee exten-
sions to their model. In a later work [4], they propose an
approach that is more general since it allows to validate
constraints between different artifacts in the system (source
code, configuration files, etc.). However,these constraints
are expressed by means of a separate XML-based language,
which in our opinion, goes against the idea of @OP which
strives to reduce the use of external configuration files as
much as possible.

7. Conclusion

We have presented AVal, an approach based on meta-
annotations for the validation of the use of annotations in
@OP Java applications. AVal is a declarative, expres-
sive and extensible way to define and reuse validations of
annotations. Also, it enhances the readability of @DSL
source code definitions by embedding semantic information
in their declaration. We have provided as case studies two
@OP frameworks: Fraclet and the JSR181 for web ser-
vices, and shown how to use AVal to include syntactic as
well as semantic checks in them.

References

[1] E. Bruneton, T. Coupaye, and J.-B. Stefani. Recursive and
Dynamic Software Composition with Sharing. In Proceed-
ings of 7th International Workshop on Component-Oriented
Programming (WCOP’02), Malaga, Spain, June 2002.

[2] V. Cepa and M. Mezini. Declaring and enforcing depen-
dencies between.NET custom attributes. In G. Karsai and
E. Visser, editors, GPCE, volume 3286 of Lecture Notes in
Computer Science, pages 283–297. Springer, 2004.

[3] R. Chinnici. Java API for XML-based Remote Procedure
Call (JAX-RPC) Specification. Sun Microsystems, Oct.
2003. JSR-101.

[4] M. Eichberg, T. Schäfer, and M. Mezini. Using Annotations
to Check Structural Properties of Classes. In M. Cerioli,
editor, Fundamental Approaches to Software Engineering,
8th International Conference, volume 3442 of Lecture Notes
in Computer Science, pages 237–252, Edinburgh, Scotland,
2005. Springer.

[5] D. Evans, J. Guttag, J. Horning, and Y. M. Tan. LCLint: A
tool for using specifications to check code. In Proceedings
of the ACM SIGSOFT ’94 Symposium on the Foundations of
Software Engineering, pages 87–96, 1994.

[6] D. Evans and D. Larochelle. Improving security using exten-
sible lightweight static analysis. IEEE Software, 19(1):42–
51, Jan./Feb. 2002.

[7] G. Hedin. Attribute extensions - a technique for enforcing
programming conventions. Nord. J. Comput, 4(1):93–122,
1997.

[8] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ.
In AOSD ’04: Proceedings of the 3rd international confer-
ence on Aspect-oriented software development, pages 26–
35, New York, NY, USA, 2004. ACM Press.

[9] S. Johnson. Lint, a C Program Checker, 1978.
[10] L. D. Michel and M. Keith. Enterprise JavaBeans, Version

3.0. Sun Microsystems, May 2006. JSR-220.
[11] R. Pawlak. Spoon: annotation-driven program transforma-

tion — the AOP case. In AOMD ’05: Proceedings of the
1st workshop on Aspect oriented middleware development,
pages 1–6. ACM Press, 2005.

[12] R. Rouvoy, N. Pessemier, R. Pawlak, and P. Merle. Us-
ing attribute-oriented programming to leverage fractal-based
developments. In Proceedings of the 5th International
ECOOP Workshop on Fractal Component Model (Frac-
tal’06), Nantes, France, July 2006.

[13] M. Shomrat and A. Yehudai. Obvious or not?: regulating ar-
chitectural decisions using aspect-oriented programming. In
AOSD ’02: Proceedings of the 1st international conference
on Aspect-oriented software development, pages 3–9, New
York, NY, USA, 2002. ACM Press.

[14] H. Wada and J. Suzuki. Modeling turnpike frontend sys-
tem: A model-driven development framework leveraging
UML metamodeling and attribute-oriented programming. In
MoDELS, pages 584–600, 2005.

[15] C. Walls, N. Richards, and R. Oberg. XDoclet in Action.
Manning Publications, 2004.

[16] B. Zotter. Web Services Metadata for the Java Platform,
Version 1.0. BEA Systems, June 2005. JSR-181.

