
Abstract Interpretation of PIC programs through Logic Programming

Kim S. Henriksen
Computer Science

Roskilde University
Roskilde, Denmark

kimsh@ruc.dk

John P. Gallagher
Computer Science

Roskilde University
Roskilde, Denmark

jpg@ruc.dk

Abstract

A logic based general approach to abstract interpreta-
tion of low-level machine programs is reported. It is based
on modelling the behavior of the machine as a logic pro-
gram. General purpose program analysis and transforma-
tion of logic programs, such as partial evaluation and con-
vex hull analysis, are applied to the logic based model of
the machine.

A small PIC microcontroller is used as a case study. An
emulator for this microcontroller is written in Prolog, and
standard programming transformations and analysis tech-
niques are used to specialise this emulator with respect to a
given PIC program. The specialised emulator can now be
further analysed to gain insight into the given program for
the PIC microcontroller.

The method describes a general framework for apply-
ing abstractions, illustrated here by linear constraints and
convex hull analysis, to logic programs. Using these tech-
niques on the specialised PIC emulator, it is possible to ob-
tain constraints on and linear relations between data regis-
ters, enabling detection of for instance overflows, branch
conditions and so on.

1 Introduction

In this article we demonstrate source code analysis based
on an implementation of the semantics of the language to be
analysed, in logic programming. Applying general analysis
techniques, programming transformation tools etc. for logic
programs, it is possible to obtain e.g. liveness analysis re-
sults and perform a convex hull analysis.

We have used a small PIC microprocessor as a case-
study. However, the method described is not specific to a
particular language or abstract machine. It can easily be ap-
plied to other languages or abstract machines in the same
manner as described here.

The method is not efficient in terms of resources needed
to perform the analysis; but it is a very general approach,
where well documented program analysis and transforma-
tion techniques and existing program transformation tools
are applied to an emulator of the language or abstract ma-
chine. Once the emulator has been implemented, the fol-
lowing specialisation steps requires little or no tweaking to
produce analysis results.

Using logic programming as the language for analysing
the PIC processor has a few advantages. Analysis and trans-
formation tools are readily available and it is a language
well suited for both. Reasoning about or even proving cor-
rectness of methods and results are also easier to do for a
high level language, such as Prolog.

The analysis consists of five parts:

• an emulator is written in Prolog for the language or
abstract machine

• a control flow analysis is performed of the given pro-
gram to be analysed

• the emulator is partially evaluated wrt. the given pro-
gram and the results of the control flow analysis

• program transformation tools can now be applied to
the specialised emulator to gain e.g. liveness analysis
results

• a bottom-up evaluation of the partially evaluated emu-
lator uses the Parma Polyhedra Library to solve con-
straints on data memory

The result will be a set of constraints on the live data
registers, forming a convex hull, for each program point in
the program to be analysed. For the PIC micro-controller
that we use as a case-study, software is developed in as-
sembly language. Debugging can be difficult since the only
interface to the micro-controller are the I/O ports. The con-
straints can serve as an aid to programmer to determine un-
der which conditions a given register will overflow, reach
zero and so on.

1

A web-based interface for the analysis tools has been
built, that will allow a PIC programmer to upload a pro-
gram and have the constraints presented along the with pro-
gram. The application of the specialisation and transforma-
tion tools can all be done automatically. The PIC program-
mer need not see any specialised logic programs.

An overview of the process is shown in Figure 1.P I C P r o g r a m(a s s e m b l y) C o n t r o l F l o w(D a t a l o g)
P I C E m u l a t o r(P r o l o g)O f f � l i n eP a r t i a lE v a l u a t i o n

R e d u n d a n tA r g u m e n tF i l t e r i n g
M a g i c S e tT r a n s f o r m a t i o n

C o n v e x H u l lA n a l y s e r
Figure 1. Overview of the analysis process

2 Emulating an abstract machine

We have previously used the procedure described in this
section for analysing read/write patterns of data memory,
dead code etc. of abstract machines [13]. The procedure
followed here differs on the representation of the machine
state and the initial Control Flow Analysis.

As an example abstract machine to work with, we have
chosen the PIC microcontroller. It is a very small device,
used in e.g. wearable computing. One of its advantages
is its low power consumption. We have chosen a particu-
lar model number to emulate, namely the PIC16F84, which
has 35 single word instructions, 1024 words of program me-
mory, 68 bytes of data memory, an eight-level deep hard-
ware stack and two I/O ports.

The emulator is implemented in Prolog, and a predicate
called execute contains the main loop that executes each
instruction.

execute(Prog,State,Env) :-
fetchInst(Prog,State,Instr,Arg1,Arg2),
execInst(Instr,Arg1,Arg2,State,State1),
simulateEnv(State1,StateOut,Env),
execute(Prog,StateOut,Env).

A state is a grouping of lists and values of the form
state(Regs,PC,Acc,Stack). The environment can
be used to simulate external input to the processor. The ar-
gument Regs contains the state of the data memory. It is a
list of the form [RegisterNumber - Value].

There exists an execInst-clause for every machine in-
struction in the PIC instruction set.

Example 1 As an example the addwf instruction that
performs an add operation between the accumulator and a
register, storing the result back into the accumulator, would
be implemented as shown.

execInst(addwf,Arg1,0,
state(RegIn,Stack,PC,Acc),
state(RegOut,Stack,PCOut,AccOut)) :-

retrievedata(PC,RegIn,Ru1,Arg1,X),
intAdd(Wt,X,Acc),
reduceBits(Wt,AccOut),
intShiftR(C,Wt,8),
updatez(PC,Ru1,Rt,AccOut),
updatec(PC,Rt,RegOut,C),
PCOut is PC + 1.

The implementation is not efficient but it is generic. The
data stored in a state and the instruction set can easily be
changed to emulate other processors or microcontrollers.

3 Partial Evaluation of Emulator

The emulator described in Section 2 is specialised with
respect to a given program, and a set of Control-Flow facts
generated from a Control Flow Analysis of the PIC program
- these are facts of the form nextInstr(PC,PCnext).
In Section 5 the Control Flow Analysis, and how these
nextInstr/2 facts are derived, is described in detail.

For the specialisation step we use an off-line partial eval-
uator for Prolog, called Logen [17]. The PIC program and
any environment data supplied are static inputs. In the
execute-loop, everything is unfolded except the loop it-
self. Every execInst is unfolded completely, only in the
integer domain operations we memo those operators cal-
culating the (new) values in the machine state. The later
Convex Hull Analyser step will be based on those memo’ed
operations.

The return-instruction is unfolded wrt. to the
nextInstr/2-facts. The stack content will not be
known at specialisation time, but the unfolding of the
nextInstr/2-fact will ensure that control flow is
returned to any possible instruction that could occur at the
top of the stack, at that particular return-instruction. The
implementation of the return-instruction is shown below.

2

execInst(return, , ,
state(RegIn,StackIn,PC,Acc),
state(RegIn,StackOut,PCOut,Acc)) :-

popstack(StackIn,StackOut,PCOut),
nextInstr(PC,PCOut).

The result of this specialisation is a new Prolog program,
with a numbered execute-predicate for every program
point in the original PIC program. The control flow of the
PIC program is now embedded in the calls from one exe-
cute clause to the next. PIC instructions that can alter con-
trol flow of the program will have more than version of a
given numbered execute-clause. Instructions modifying
the hardware status register (containing among other things,
the carry and zero bit) will also have more than one version,
depending on wether the results would set or not set a bit in
the status register.

Example 2 An example of such an execute-clause
after specialisation is shown below; this particular clause
corresponds to the addwf instruction whose execInst-
implementation was shown earlier in Example 1.

execute 5(S,Q,O,M,K,I,G,E,D,B,C, ,F,H,J,L,N,
P,R,A) :-

T is Q+A,
0 is T>>8,
T \== 0,
is 24 /\ 251,

U is 24 /\ 254,
is +1,

execute 6(S,Q,O,M,K,I,G,E,D,B,C,U,F,H,J,L,
N,P,R,T).

Two status bits can be modified, so 4 different versions
are generated; control flow of the program can only pass
on to the following instruction, so all execute__5s will
continue with execute__6.

The Logen specialiser is available online1. An example
of the PIC emulator is provided. To try it out, select picemul
from the list of example programs and continue. Predefined
annotations are provided.

4 Machine State Liveness

The specialised emulator resulting from the partial evalu-
ation described in previous sections is an automatically gen-
erated program. Such automatically generated programs of-
ten contains redundant parts, that can be eliminated by gen-
eral purpose program transformations without affecting the
correctness of the program. The clause shown in Example 2
contains various redundancies including a large number of
arguments for the predicate execute_5 and some redun-
dant operations in the clause body.

1http://www.stups.uni-duesseldorf.de/˜pe/weblogen/

After specialisation of the emulator, the semantics of the
PIC program is now embedded in the execute-clauses of
the specialised emulator. The machine state is embedded
into the arguments of the execute-clauses. To simplify
later specialisation and analysis steps, the machine state can
be reduced to only the live state. Eliminating dead elements
of the state, will not alter the semantics of the program.

Two approaches to liveness analysis of PIC programs
have been considered: a method based on Datalog program
properties (see Section 5.2) and a general program transfor-
mation technique for logic programs. We describe the latter
approach in this section.

A liveness analysis would typically consist of

• a flow graph

• an annotation of the flow graph along the edges, with
reference and definition statements, where reference is
the use of a data element and definition is the assign-
ment of a data element.

• a method based on the flow graph and its annotation,
for solving which data elements contain live values at
which program points.

4.1 Liveness Analysis Using Redundant Argu-
ment Filtering

Leuschel and Sørensen [18] proposed a general logic
program transformation called “redundant argument filter-
ing”. This transformation removes predicate arguments that
are never “used”. There are two forms of the transforma-
tion, corresponding to top-down and bottom-up propagation
of information. The main motivation for the transforma-
tion was the simplification of programs produced by other
transformations, in particular by conjunctive partial deduc-
tion [9]. We focus here on the transformation called FAR
(Section 5 of [18]). In this section we show how the FAR
algorithm is a generalisation of liveness analysis and can be
applied to the specialised PIC emulator to eliminate dead
registers at each program point. The result is a simplified
program for program analysers.

4.1.1 Correct Erasures

The FAR algorithm computes a correct erasure for a given
logic program P ; an erasure is a set of predicate argu-
ment positions that can be eliminated without affecting the
computed answers for any goal. More precisely, let an
erasure E be a set of predicate arguments (p, j) that are
to be removed. For example suppose an erasure contains
{(p, 1), (p, 3), (p, 4)}. Then this means that the first, third
and fourth arguments of predicate p are to be removed.
Given a program P and erasure E, denote by P |E the

3

result of striking out the arguments in E from all occur-
rences of the predicates in P . In the case of the era-
sure {(p, 1), (p, 3), (p, 4)} an occurrence of an atomic for-
mula for p such as p(t1, t2, t3, t4, t5), would be replaced by
p(t2, t5).

An erasure E is correct for program P if the following
property holds. For every computation of P with a goal
G, the answers and finite failures are the same (for the non-
erased arguments) as the computation of P |E with G|E (the
result of applying the erasure to G).

4.1.2 Algorithm for Computing a Correct Erasure
(FAR)

The algorithm presented by Leuschel and Sørensen suc-
cessively identifies arguments that are “needed”. Initially,
the erasure for P is the set of all argument positions of
predicates in P . On each iteration, arguments are re-
moved from the erasure until a correct erasure is computed.
FAR Algorithm Input: program P.
Initialise

i = 0;
E0 = the set of all predicate arguments;

while (there exists a (p, k) ∈ Ei

and a clause p(t1, . . . , tn)← B in P
such that

1. tk is not a variable; or
2. tk is a variable occurring more

than once in p(t1, . . . , tn); or
3. tk is a variable occurring in B|Ei

do Ei+1 = Ei \ {(p, k)}; i = i + 1;
return Ei

It is provable that if conditions 1-3 checked in the loop
are false for all argument positions then the corresponding
erasure is correct.

4.1.3 Liveness Analysis using the FAR algorithm

We now show that the FAR algorithm can be used as a live-
ness analyser. In fact it is more general than a liveness anal-
yser; as will be seen, it can remove redundancies other than
dead variables. To do this we build a straightforward trans-
lation from control-flow graphs and logic programs called
control-flow programs. Then we show that the classical
liveness analysis on control-flow graphs [1] is mimicked by
the action of the FAR algorithm on control-flow programs.
Note that the flow-programs and flow-graphs considered in
this section are not part of the PIC case study; they are just
defined in order to show that the FAR algorithm can perform
liveness analysis.

We take flow-graphs to consist of a set of vertices (pro-
gram points) and directed edges labelled either by an as-
signment statement x = e or a boolean expressions b. Con-
ditional branches are represented by edges labelled with a
boolean expression, and control flows along that edge if
the condition evaluates to true. Control flow graphs with

branch instructions and goto statements could be defined
instead, without altering anything essential in the procedure
below.

Let x1, . . . , xm be the set of all variables appearing in the
graph (i.e. in assignment statements or in boolean expres-
sions). For each vertex j define a unique predicate pj with
m arguments. The control-flow program resulting from a
given graph is defined to be the set of clauses of the follow-
ing form.

1. pi(x1, . . . , xm) ← x′
l = e, pj(x1, . . . , x

′
l, . . . xm),

where xl = e is an assignment statement on the edge
(i, j) and x′

l is a variable different from x1, . . . , xm.

2. pi(x1, . . . , xm) ← b, pj(x1, . . . , xm), where b is a
boolean expression on the edge (i, j).

Let 0 be the entry vertex of the flow-graph. We observe
that there is a computation in the flow-program that calls
some sequence of predicates p0, pi1 , pi2 , pi3 , . . . iff there is
a legal computation in the flow-graph passing through ver-
tices 0, i1, i2, i3, The arguments of a call to predicate pi

represent the state of the variables in the program at vertex
i in the corresponding flow-graph execution.

Now consider the application of the FAR algorithm to
this program. Initially, E0 contains every pair (pj , k) where
j is a vertex and 1 ≤ k ≤ m. (We assume that the argu-
ments of the equality predicate and the boolean expression
predicates that appear in the program are not erased.) We
argue informally that the iterations of the FAR algorithm
acting on the flow-program correspond to the iterations of
the classical liveness algorithm. Consider an edge (i, j) la-
belled by an assignment statement xl = e. Define, as is
usual, use(i) = vars(e) and def (i) = {xl}. If the edge is
labelled by a boolean expression b then use(i) = vars(b)
and def (i) = {}.

Consider some erasure; let the set of arguments that are
not erased from pi be called in(i). Let the set of arguments
that are not erased from all predicates pj such that there is
and edge (i, j) be called out(i). Then we can show that
the FAR algorithm solves the classic dataflow equations for
liveness, namely in(i) = use(i) ∪ (out(i) − def (i)), and
out(i) =

⋃
j∈succ(i) in(j), where succ(i) is the set of j

such that there is an edge (i, j). The algorithm iterates start-
ing from initial values in(i) = out(i) = {} in the classic
liveness analysis; this corresponds to the fact that the initial
erasure consists of all predicate arguments. When the FAR
algorithm terminates, the sets in(i) contain the set of argu-
ments that are not erased from predicate pi, that is, the live
variables at vertex i. The detailed proof argues that the FAR
loop terminates exactly when the above dataflow equations
are satisified.

Claim 1 Given a control flow-graph containing variables
x1, . . . , xm and the corresponding control-flow program as

4

defined above. Then according to the classical liveness ana-
lysis, a variable xj is live at a given node i of the control
flow graph (xj ∈ in(i)) iff the FAR algorithm returns an
erasure that does not include (pi, j).

4.1.4 Application of Redundant Argument Filtering

The specialised emulator described in Section 3 has a
similar structure to the flow-programs described above.
The state of the registers is held in the arguments of
the execute predicates, and there is one version of the
execute predicate for each PIC program point. Appli-
cation of the FAR algorithm to the specialised emulator
results in the erasure of all register arguments from say
executei that are dead at the program point correspond-
ing to executei. The number of registers live at a point is
often a small fraction of the total set of registers, and hence
the FAR algorithm yields a program that can be much more
efficient to analyse, without losing any essential informa-
tion about the program.

In fact, redundant argument filtering does more than just
removing dead arguments. It also allows some operations
in the body of the execute clauses to be eliminated as
they definitely succeed. Example 3 shows an example of the
clause for the same predicate execute_5 shown in Exam-
ple 2. Note that the number of arguments of execute_5
has been drastically reduced and the clause body is simpler.

Example 3 An example of an execute-clause after spe-
cialisation and redundant argument filtering is shown be-
low.

execute 5(B,A) :-
C is B+A,
0 is C>>8,
C \== 0,
D is 24 /\ 254,
execute 6(D,B,C).

5 Flow Properties Expressed as Datalog Pro-
grams

It was mentioned earlier that the specialisation of
return instructions in the emulator requires the ad-
dition to the emulator of a set of facts of the form
nextInstr(X,Y). In PIC programs, there is no syntac-
tic structure identifying procedures; when a subroutine is
invoked by a call-instruction, the program point follow-
ing the call-instruction is pushed onto a stack. Upon exit
from the subroutine by a return-instruction, the stack is
popped and control is returned to the program point at the
top of the stack. There may be several calls to the same sub-
routine at different program points. Thus calls and returns
are matched dynamically and some flow analysis is required
in order to generate the possible call points matching a given
return.

In this section we show how to generate a set of facts
nextInstr(X,Y) such that for a given return point X
the set of facts nextInstr(X,Y) shows at least all the
possible points to which control can continue. Note that the
set of points Y such that nextInstr(X,Y) is in general
an over-approximation of the set of values that can appear
at runtime at the top of call stack when return instruction
X is reached. We could of course easily generate the facts
nextInstr(R,C) where R is any return program point
and C is any call program point. This would be safe but
would in general lead to much larger specialised programs
and preclude the detection of some cases of dead code. The
method described below gives a more precise result.

5.1 Datalog as a property modelling language

Datalog [20] is a logic programming language in which
there are no function symbols with arity greater than zero.
Efficient techniques for computing Datalog models have
been studied extensively in research on deductive database
systems. Recently, Datalog has been applied successfully
in program analysis tasks. The approach is simple: express
some properties of interest as Datalog predicates, provide
Datalog rules and facts (that is, a Datalog program) defin-
ing their intended interrelationships, and then compute the
least model of the complete Datalog program to obtain an
explicit listing of the properties as a set of facts. Note that
least models of Datalog programs are finite and that nega-
tions in Datalog programs can be handled provided that they
are stratified. An efficient BDD-based toolset for comput-
ing Datalog program models is available [22], and it has
been applied to Java programs containing thousands of lines
[21, 16]. In previous work we have also used Datalog pro-
grams as abstractions of full logic programs [12] and in that
work the same bddbddb-package was used.

5.1.1 Datalog rules for PIC control flow

We now present a Datalog program representing the control
flow of a PIC program. Each instruction of the machine is
given a unique number, and for each instruction, we anno-
tate it with a set of facts that describe the behaviour of that
particular instruction. Note that this is done once and for all
for a given machine language, not for each user program.

For the control flow analysis, a single fact for each in-
struction in the PICs instruction set will suffice, so we only
need to categorise each instruction depending on its modifi-
cation of the control flow of the program. For the PIC there
are five different types of instructions:

• Straight line instruction: Upon execution of such an
instruction, the control flow of the program continues
with the next instruction in the program.

5

• Branch instruction: When a branch instruction is exe-
cuted, either the following instruction in the program is
executed or it will be skipped and the second following
instruction will be executed.

• Goto instruction: Control flow of the program will
continue with the instruction number given as an ar-
gument to the goto-instruction.

• Call instruction: Same as a goto-instruction, but it is
distinguished from the gotos since the matching return
instruction can redirect control flow of the program, to
the instruction following the call.

• Return instruction: The instruction to be executed after
a return instruction will depend on the call context of
that return instrucion.

All programs are assumed to start at program point 0, so
we add that as a fact as well - entryPoint(0).

The program is encoded as a set of facts of the form
pp(PC,I,A1,A2), where PC is the program memory lo-
cation of that instruction, I is the instruction code and A1
and A2 are the arguments to that instruction.

As Datalog does not allow for arithmetic expressions,
a simple increment predicate will be need for the Control
Flow Analysis. A set of increment facts are added to the
Datalog program. The increment operator is defined as
increment(0,1). increment(1,2). etc. up to
the maximum number of instructions in the program.

Once every instruction has been annotated with the facts
described above, and the PIC program has been appended,
rules can be written to detect properties of the associated
program.

Example 4 Program point N is a branch instruction
if the instruction located in the program memory at
that address is a branch instruction. This translates
into the rule branchInstr(N) :- pp(N,I, ,),
branchInst(I).

A next instruction procedure can be defined in terms of
the facts from the control flow list. For each type of fact,
a rule like the one shown in Example 4 is created. The
next instruction procedure has a rule for each type of fact.
nextInstr(N1,N2) :- straightLineInstr(N1),

increment(N1,N2).
nextInstr(N1,N2) :- branchInstr(N1),

increment(N1,N2).
nextInstr(N1,N3) :- branchInstr(N1),

increment(N1,N2), increment(N2,N3).
nextInstr(N1,R1) :- gotoInstr(N1,R1).
nextInstr(N1,R1) :- callInstr(N1,R1).
nextInstr(N1,N3) :- returnInstr(N1),

calledFrom(N1,N2), increment(N2,N3).

The branch instruction has two rules. Conditions for
branch instructions are not taken into account, and control

flow can therefore either continue with the following or the
second following instruction. Depending on which abstract
machine is being modeled, e.g. branch instructions can be-
have differently.

Note that the next instruction following a return in-
struction is defined using a predicate calledFrom. The
calledFrom procedure determines the call contexts for a
given instruction. A call context corresponds to the latest
call instruction that was encountered in the control flow
of the program. The calledFrom procedure is defined
in terms of the facts from the control flow category and the
following rules:

calledFrom(0,0).
calledFrom(N1,N2) :- increment(N3,N1),

straightLineInstr(N3), calledFrom(N3,N2).
calledFrom(N1,N2) :- increment(N3,N1),

branchInstr(N3), calledFrom(N3,N2).
calledFrom(N1,N2) :- increment(N3,N1),

increment(N4,N3), branchInstr(N4),
calledFrom(N4,N2).

calledFrom(N1,N2) :- gotoInstr(N3,N1),
calledFrom(N3,N2).

calledFrom(R1,N1) :- callInstr(N1,R1).
calledFrom(N1,N2) :- increment(N3,N1),

callInstr(N3,), calledFrom(N3,N2).

All programs are assumed to start at instruction at me-
mory location 0, so initially the call context is 0. Since a
subroutine can be called from more than one place in the
program, an instruction can belong to more than one call
context.

The clauses above are augmented with the facts defin-
ing a particular program (the pp(N,I,A1,A2) facts).
The model of this program is computed and the resulting
nextInstr(,) facts represent the edges of the pro-
gram’s flow-graph. The facts are inserted into the emulator
before specialising, as explained in Section 3.

5.1.2 Dead code detection

Dead code are instructions in the program that will never be
executed. A more optimal use of the program memory can
be achieved by eliminating these instructions.

An instruction is dead if it is not reachable from any
trace in the program starting at program point 0. This can
be expressed by the following Datalog rules:

reachable(0).
reachable(N1) :- nextInstr(N2,N1),

reachable(N2).
unreachable(N) :- pp(N, , ,),

!reachable(N).

We introduce the exclamation mark as negation. The rule
states that reachable instructions are those that can be traced
back to program point 0, and the unreachable instructions
are any instruction in the program that are not reachable.

Using this method on program examples provided by

6

the Wearable Computing Lab. at University of Bristol2,
we found 2 dead instructions in a hand optimised program
of 400 instructions (arising from over-defensive program-
ming!) and 56 dead instructions in a 231-instruction pro-
gram (apparently arising from partially redundant code that
had been ported from another application).

5.2 Liveness Analysis using Datalog

A similar approach can be used to compute the set of
registers live at a given program point. Space does not al-
low a detailed description. However, in ongoing work we
are showing how properties expressible in standard mono-
tonic dataflow frameworks can be systematically expressed
and solved in Datalog. This provides a flexible and easily
implemented approach to many flow analysis problems.

6 Convex Hull Analysis

The program resulting from the specialisation of the
emulator as described up until now, is a logic program
equivalent to the initially supplied PIC program. Existing
analysis tools and techniques for logic programs can now
be applied to the specialised emulator, to reason about the
PIC program - e.g. CiaoPP [14], a global program analy-
sis, source to source transformation and optimisation tool
for Logic Programs.

In this section we describe a method for applying a par-
ticular numerical analysis method, Convex Hull Analysis,
to the specialised emulator. We have developed our own
tool for this purpose to accommodate the particular boolean
operations, like AND, OR and NOT, that are found in the spe-
cialised emulator.

A convex hull analysis is a numerical abstraction of the
variables in a program. The abstraction is a set of con-
straints and relations between the variables. Polyhedral
Convex Hulls, first applied in program analysis by Cousot
and Halbwachs [8], have been used for a variety of purposes
in program analysis , including in the field of logic and con-
straint logic programming [3, 4], e.g. for argument-size
analysis, time-complexity analysis and termination analysis
[15].

Parma Polyhedra Library For a convex hull analyser
a few polyhedra operations are required. These are pro-
jection, emptiness checking, inclusion testing and convex
hulls. The Parma Polyhedra Library (PPL) is a program-
ming library targeted especially at analysis and verification
[2]. It implements the operations needed for a convex hull
analysis and it has interfaces for a variety of programming
languages including Ciao Prolog [5].

2http://wearables.cs.bris.ac.uk/

6.1 Bottom up analysis

Our analyser is based on a bottom up evaluator for logic
programs, developed by Michael Codish [6]. Prolog pro-
grams are evaluated top down, but bottom-up analysis com-
puting the least model of the program provides sound in-
formation about the set of all possible answers obtained in
top-down computations. Additionally, using standard trans-
formations such as “magic-set” transforms and other query-
answer transforms, bottom-up evaluation can provide ac-
curate information about the calls that arise in a particular
top-down computation.

The naive bottom up interpreter is a small Prolog pro-
gram, where each clause, h ← b1, ..., bn in the program
P to be analysed, is represented as facts of the form
user clause(h, [b1, ..., bn]). The program is evaluated it-
eratively until a fix point is reached. In each iteration, heads
whose body can be proven from existing facts, are asserted
as new facts themselves. A fixpoint is reached, when no
new heads can be asserted.

For the Convex Hull Analysis, the naive interpreter is
modified so each head is associated with a set of constraints
that are asserted along with the head. Proving the body of
a clause is performed by substituting each operator with an
equivalent constraint. If the set of constraints is satisfiable,
it are projected onto the head, and the head is asserted with
the constraints. In each iteration the constraints are widened
to ensure termination of the analysis.

6.2 Query-Answer transformation

The specialised emulator is a Prolog program where data
flow is propagated in a top-down fashion, and similarly, the
execution strategy of the program is in a top-down man-
ner. Furthermore, many PIC programs are not intended to
terminate and “succeed” - they simply run forever. Such
programs may have an empty model and so bottom-up ana-
lysis returns no useful information. Query-answer transfor-
mation provides a way to use a bottom-up analysis tool to
return information about the computations themselves, in
particular, on the set of calls to each predicate in the pro-
gram [10].

We illustrate the query-answer transformation for the
specialised emulator clauses. Take the clause shown in Ex-
ample 3.

execute 5(B,A) :-
C is B+A,
0 is C>>8,
C \== 0,
D is 24 /\ 254,
execute 6(D,B,C).

If we are interested in obtaining information about the
calls to execute__6(D,B,C) we write the following
clause, which “inverts” the original clause.

7

execute 6 query(D,B,C) :-
execute 5 query(B,A),
C is B+A,
0 is C>>8,
C \== 0,
D is 24 /\ 254.

When provided with some initially called goal as a fact,
typically execute__0_query, the bottom-up analyser
generates a model for each query predicate.

6.3 Linear approximation

Each execute-clause of the specialised emulator con-
sists of a number of equalities, inequalites, arithmetic and
boolean operations (see Example 2).

For the polyhedra operations the constraints must be li-
near expressions, so each of these operations must be ap-
proximated by a linear expression before they can be pro-
jected onto the clause head.

Equalities and inequalites: These are straightforward.
The terms X is Y and X = Y both translates into the
constraints X = Y . Similarly for the inequalities, e.g.
X >= Y translates into the constraints X ≥ Y . Terms
containing not-equals are ignored since they have no linear
approximation.

The right hand side of the term contains the operations
that needs approximation.

6.3.1 Approximation of arithmetic operations

For the arithmetic operations this is also straight forward.
The addition and subtraction operations are both linear and
e.g. X is Y + Z translates to X = Y +Z iff linear(Y)∧
linear(Z).

The multiplication operator can also be approximated by
a linear constraint, if either of the operands is a constant.
So the term X is Y * Z translates into X = Y × Z iff
const(Y) ∨ const(Z). At present, expressions that are not
linear are simply ignored, so that their variables are com-
pletely unconstrained. Of course it is possible to make li-
near approximations in many cases but we have not yet ap-
plied these techniques.

6.3.2 Approximation of boolean operations

In this category are the boolean operators AND, OR, NOT,
left and right bit shift.

The approximation of the unary operator NOT depends
on the maximum integer size of the abstract machine we
are modelling. In our case, the 8 bit PIC processor, the max.
integer value is 255.

The term X is \Y (bitwise negation) is approximated
by the expression X = 255− Y .

For the AND operator it is not possible to give an ex-
act numerical approximation if either of the operands is
not known. The results however can never be greater than
smaller of the two operands, and never less than zero. The
term X is Y /\ Z can be approximated by the con-
straints X ≤ Y ∧X ≤ Z ∧X ≥ 0.

Similarly with the OR operator. If either of the operands
is not known, an exact approximation cannot be given. The
result of an OR operation however, can never be greater than
the sum of the operands and never smaller than the largest
operand. The term X is Y \/ Z can be approximated
by the constraints X ≤ Y + Z ∧X ≥ Y ∧X ≥ Z.

These constraints are not very precise. As shown in Ex-
ample 5 the constraints on registers whose values are the
result of a series of boolean operations, are correct but not
precise.

Example 5 This example is a small PIC program con-
taining a loop of 10 iterations in which a register in each
iteration is incremented by two. This is implemented with
an OR and an ADD instruction. The instruction decfsz
decrements CNT and skips the following instruction if the
result is 0.

1: movlw D’10’
2: movwf CNT
3: movlw D’0’
4: movwf SUM
5: movlw D’1’
6: loop1
7: iorwf SUM,1
8: addwf SUM,1
9: decfsz CNT
10: goto loop1
11: goto MAIN

Running it through the analyser produces the constraints
shown below; only the constraints on the instructions in the
loop are interesting in this case. Multiple (possibly disjoint)
sets of constraints can be generated for each instruction.
The constaints are on the registers prior to the execution of
the listed instruction. Acc is the accumulator - its value
is 1 from instruction 5 and to the end of the program. The
actual value of SUM after the loop terminates, is 20. It is
less than or equal to 20 as the constraints show, but it is
not precise.

7: CNT=10,SUM=0
7: Acc*CNT <= 9,2*CNT+ Acc*SUM <= 20
8: Acc*SUM=1,CNT=10
8: Acc*CNT <= 9,2*CNT+ Acc*SUM <= 21
9: Acc*SUM=2,CNT=10
9: Acc*CNT <= 9,2*CNT+ Acc*SUM <= 22
10: Acc*CNT <= 9,2*CNT+ Acc*SUM <= 20
11: Acc*SUM<= 20

Bit shift: The PIC processor has a bit shift instruction for
left shifting bits and and operation for right shifting bits.
Bits can only be shifted one position at a time. Left-shifting

8

bits one position equals multiplication by 2 - this case has
already covered under the arithmetic operations. Right-
shifting is division by 2 and rounding down.

6.4 Widening

In the numerical domain arithmetic operations have no
upper or lower bounds. For infinite chains of operations
some mechanism must be implemented to ensure or accel-
erate the convergence of the fixpoint computations. This
is what the polyhedral widening operator ensures. Various
widening operators are provided by the PPL library. Apply-
ing these operators generally means losing precision.

In our specialised emulator loops can occur - even non
terminating loops. Widening will ensure termination of the
convex hull analysis, but at the cost of precision. Typically
this will be evident in a lack of either upper or lower bounds.

Example 6 Take for example the small PIC program
shown below; a simple loop of 10 iterations, in which 10 is
added to a register in each iteration of the loop (when the
loop terminates the register contains the value 100).

1: movlw D’0’
2: movwf SUM
3: movlw D’10’
4: movwf CNT
5: loop1
6: addwf SUM,1
7: decfsz CNT
8: goto loop1
9: goto MAIN

The register containing the loop counter (CNT)
lacks the lower bound ”1” inside the loop. Apart
from that, the register containing the sum of 10’s,
has the right relation with the loop counter. Isola-
ting SUM in the constraints for instruction 7 yields the
follwing equation: SUM = 110 − 10 ∗ CNT , for
CNT ∈ [1...10]⇒ SUM ∈ [10, 20, 30...100] or the exact
values SUM will be assigned in the loop.

6: 1*Acc=10,CNT=10,SUM=0
6: 1*CNT<= 9,10*CNT+1*SUM=100,1*Acc=10
7: 1*SUM=CNT,1*Acc=10,CNT=10
7: 1*CNT<= 9,10*CNT+1*SUM=110,1*Acc=10
8: 1*CNT<= 9,10*CNT+1*SUM=100,1*Acc=10
9: 1*SUM=100,1*Acc=10

The widening problem is a general problem with con-
vex hull analysis. Techniques for enhancing precision of
widening, such as delayed widening, could also be used in
our analyser. This has not yet been implemented.

7 Related work

The Hoist [19] project is closely related to our work.
This project is also based on applying abstract interpreta-

tion to embedded software, to aid the programmer in pro-
ducing reliable and efficient programs. In this project two
domain are explored; an interval domain and a bitwise do-
main. Hoist does not rely on the programmer writing a sim-
ulator for the target processor, but can use existing simu-
lators to automatically construct abstract operations. Hoist
does not capture numerical relations between data registers
and is limited to 8 bit machines.

8 Future Work

The emulator can be extended or ”instrumented” with
additional state information. For example a global clock
could be added to the state. Applying the convex hull anal-
yser to this extended emulator, could be used to approxi-
mate Worst Case Execution Time (WCET), where execu-
tion time would depend on values in registers e.g. loop
counters or input values.

In this paper we focused on a numerical abstraction. This
domain is not well suited for programs relying heavily on
boolean operations. Other abstraction can be applied to the
specialised emulator to give more precise results. A dif-
ferent domain being explored is a bit-size domain based on
regular types and pre-interpretations [11, 12]. Registers are
assigned a type based on which bit is the most significant
bit in the value contained in the registers. The result of a
boolean operation, take OR as an example, between to re-
gisters, is the largest bit-size of the two operands. Simi-
larly bit shift increases or reduces the bit-size. Overflows
would be detected by bit-sizes larger than the machine’s bit
size. This abstraction can complement the numerical ab-
straction in order to produce more precise results. Upper
and lower bounds of boolean operations can be added to
the constraints based on the bit-sizes obtained from the pre-
interpretation.

9 Conclusion

We have shown how a set of general-purpose logic pro-
gram transformation tools can be applied effectively to the
analysis of programs for a simple microprocessor. While
some of the analyses are standard, the advantage of this
approach lies in the relative ease of developing tools for
a new language and processor, and taking advantage of
highly-developed libraries attached to logic program ana-
lysis toolsets, such as the PPL and the Datalog model eval-
uation tools. We also claim that the approach allows new
analyses for logic programs, which are emerging constantly,
to be immediately applied to other target languages. Fur-
thermore, techniques for combining existing logic program
analyses using the abstract interpretation framework can
gain precision compared to the individual analyses (the re-
duced produce approach [7]). Again, such techniques can

9

be applied directly to the logic representations of other lan-
guages. We intend to combine boolean approximation do-
mains with numeric approximation in the PIC case study.

Note that the PIC (or other target language) programmer
need not be aware of the existence of the logic programming
layer implementing the analysis. In our prototype imple-
mentation, a front- and back-end have been implemented so
that the translation to Prolog and the transfer of the analysis
results back to the PIC program are done transparently.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: princi-
ples, techniques, and tools. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1986.

[2] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possi-
bly not closed convex polyhedra and the parma polyhedra
library. In SAS ’02: Proceedings of the 9th International
Symposium on Static Analysis, pages 213–229, London, UK,
2002. Springer-Verlag.

[3] F. Benoy and A. King. Inferring argument size relationships
with CLP(r). In Logic Program Synthesis and Transforma-
tion, pages 204–223, 1996.

[4] F. Benoy, A. King, and F. Mesnard. Computing convex hulls
with a linear solver.

[5] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-
Garcı́a, and G. Puebla. The Ciao prolog system. reference
manual. Technical Report CLIP3/97.1, School of Computer
Science, Technical University of Madrid (UPM), August
1997. Available from http://www.clip.dia.fi.upm.es/.

[6] M. Codish. Efficient goal directed bottom-up evaluation
of logic programs. The Journal of Logic Programming,
38(3):354–370, 1999.

[7] P. Cousot and R. Cousot. Systematic design of program ana-
lysis frameworks. In Conference Record of the 6th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, San Antonio,Texas, pages 269–282.
ACM Press, New York, U.S.A., 1979.

[8] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Proceedings of
the 5th Annual ACM Symposium on Principles of Program-
ming Languages, pages 84–96, 1978.

[9] D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel,
B. Martens, and M. H. Sørensen. Conjunctive Partial De-
duction: Foundations, control, algorithms, and experiments.
Journal of Logic Programming, 41:231–277, November
1999.

[10] S. K. Debray and R. Ramakrishnan. Abstract interpretation
of logic programs using magic transformations. J. Log. Pro-
gram., 18(2):149–176, 1994.

[11] J. P. Gallagher and K. S. Henriksen. Abstract domains based
on regular types. In V. Lifschitz and B. Demoen, editors,
Proceedings of the International Conference on Logic Pro-
gramming (ICLP’2004), volume 3132 of Springer-Verlag
Lecture Notes in Computer Science, pages 27–42, 2004.

[12] J. P. Gallagher, K. S. Henriksen, and G. Banda. Tech-
niques for scaling up analyses based on pre-interpretations.

In M. Gabbrielli and G. Gupta, editors, Proceedings of
the 21st International Conference on Logic Programming,
ICLP’2005, volume 3668 of Springer-Verlag Lecture Notes
in Computer Science, pages 280–296, 2005.

[13] K. S. Henriksen and J. P. Gallagher. Analysis and speciali-
sation of a pic processor. In Proceedings of the 2004 IEEE
Conference on Systems, Man and Cybe rnetics, The Hague,
Netherlands, October 10-13 2004.

[14] M. Hermenegildo, F. Bueno, G. Puebla, and P. López. Pro-
gram analysis, debugging, and optimization using the ciao
system preprocessor.

[15] A. King, K. Shen, and F. Benoy. Lower-bound time-
complexity analysis of logic programs. In ILPS ’97: Pro-
ceedings of the 1997 international symposium on Logic pro-
gramming, pages 261–275, Cambridge, MA, USA, 1997.
MIT Press.

[16] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin,
D. Avots, M. Carbin, and C. Unkel. Context-sensitive pro-
gram analysis as database queries. In C. Li, editor, PODS,
pages 1–12. ACM, 2005.

[17] M. Leuschel and J. Jørgensen. Efficient specialisation in
Prolog using the hand-written compiler generator LOGEN.
Elec. Notes Theor. Comp. Sci., 30(2), 1999.

[18] M. Leuschel and M. H. Sorensen. Redundant argument fil-
tering of logic programs. In Logic Program Synthesis and
Transformation, pages 83–103, 1996.

[19] J. Regehr and A. Reid. Hoist: a system for automatically de-
riving static analyzers for embedded systems. In ASPLOS-
XI: Proceedings of the 11th international conference on Ar-
chitectural support for programming languages and oper-
ating systems, pages 133–143, New York, NY, USA, 2004.
ACM Press.

[20] J. Ullman. Principles of Knowledge and Database Systems;
Volume 1. Computer Science Press, 1988.

[21] J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In
W. Pugh and C. Chambers, editors, PLDI, pages 131–144.
ACM, 2004.

[22] J. Whaley, C. Unkel, and M. S. Lam. A bdd-
based deductive database for program analysis, 2004.
http://bddbddb.sourceforge.net/.

10

