
Syntactic Identifier Conciseness and Consistency

Dawn Lawrie Henry Feild David Binkley
Loyola College Loyola College Loyola College
Baltimore MD Baltimore MD Baltimore MD

21210-2699, USA 21210-2699, USA 21210-2699, USA
lawrie@cs.loyola.edu hfeild@cs.loyola.edu binkley@cs.loyola.edu

Abstract
Readers of programs have two main sources of domain infor-

mation: identifier names and comments. It is therefore important
for the identifier names (as well as comments) to communicate
clearly the concepts that they are meant to represent. Deißenböck
and Pizka recently introduced rules for concise and consistent
variable naming. One requirement of their approach is an expert
provided mapping from identifiers to concepts.

An approach for the concise and consistent naming of variables
that does not require any additional information (e.g., a mapping)
is presented. Using a pool of 48 million lines of code, experiments
with the resulting syntactic rules for concise and consistent nam-
ing illustrate that violations of the syntactic pattern exist. Two
case studies show that three quarters of the violations uncovered
are “real”. That is they would be identified using a concept map-
ping. Techniques for reducing the number of false positives are
also presented. Finally, two related studies show that evolution
does not introduce rule violations and that programmers tend to
use a rather limited vocabulary.

Keywords
Identifier Quality, Part-of-speech

1. Introduction

Concise and consistent variable naming, as described by
Deißenböck and Pizka, can improve code quality through im-
proved identifier names [5]. The motivation for their work is the
observation that “lousy naming in one place spoils comprehen-
sion in numerous other places,” while the basis for their work is
found in the quote “research on the cognitive processes of lan-
guage and text understanding shows that it is the semantics in-
herent to words that determine the comprehension process” [5].
Other studies have also pointed to the importance of good identi-
fier names. For example, Rilling and Kelmola observe “In com-
puter programs, identifiers represent defined concepts” [11], while
Caprile and Tonella point out that “Identifier names are one of the
most important sources of information about program entities” [4].

Deißenböck and Pizka’s technique, requires a mapping from
the domain of identifiers to the domain of concepts. Such a map-
ping must be constructed by an expert. For new projects, this
mapping can be constructed alongside the program with minimal
addition cost. For existing programs, however, the cost can be

prohibitively expensive. This paper considers syntactic concise
and consistent naming. In other words, by only considering the
syntactic makeup of identifiers, can a useful approximation to the
techniques of Deißenböck and Pizka be achieved?

In more detail, Deißenböck and Pizka define three rules, one
for concise and two for consistent identifier names. An identifier is
concise if its semantics exactly match the semantics of the concept
it is used to represent. For example, output file name concisely
represents the concept of the name of an output file. (A related
notion, correctness allows an identifier to represent a more gen-
eral concept. For example, file name correctly, but not concisely,
represents the concept of the name of an output file, while the iden-
tifier foo neither correctly nor concisely represents the concept.)

There are two rules related to consistent identifiers. They
identify inconsistencies caused by identifier homonyms and syn-
onyms. In natural language, a homonym is one of two or more
words spelled and pronounced alike but different in meaning (e.g.,
‘waste’ and ‘waist’) [14]. A synonym is one of two or more
words or expressions of the same language that have the same or
nearly the same meaning in some or all senses (e.g., ‘baby’ and
‘infant’) [14].

In a program, an identifier is a homonym if it is associated with
more than one concept from the program. For example, in a pro-
gram dealing with both absolute and relative directory paths (two
different concepts), the identifier path is a homonym as it is as-
sociated with more than one concept. As Deißenböck and Pizka
emphasize, accurately knowing the set of all concepts used in a
program is important. The identifier path is not a homonym in a
program with only one path concept. Thus, it is important that only
concepts from the program be considered. Otherwise, the concept
space becomes too large and unwanted inconsistencies occur.

The second inconsistency involves synonyms: two identifiers
that can be associated with a common concept. For example, the
identifiers hash and hash value are synonyms as each can repre-
sent the concept of an object’s hash value. As a second example,
the identifiers list head and list front are also synonyms (head
and front are synonyms in English).

Identifiers that fail to be concise or consistent increase the com-
prehension complexity and its associated costs [5]. Such failures
can be identified using Deißenböck and Pizka’s techniques pro-

1



vided a mapping from identifiers to concepts is available. In the
absence of such a mapping, it is still possible to identify a subset of
these naming failures. Techniques for doing so are introduced and
empirically investigated in this paper. In more detail, the primary
contributions of this paper are the following:

1. The definition of syntax-based conciseness and consistency
that does not require an expert-constructed mapping from
identifiers to concepts.

2. An empirical investigation of a tool based on the syntactic def-
inition. The experiments, which study almost 50 million
lines of code, consider the prevalence of conciseness and
consistency failures. Statistical models are used to better
understand the collected data.

3. Two case studies. The first exhaustively considers all con-
ciseness and consistency failures from two small programs.
This study compares the tool’s output to that produced by
a human “oracle”. The second case study considers a sam-
pling of the conciseness and consistency failures from the
larger program eMule, a 170 KLoC C++ program.

4. An empirical investigation of an observation by Antoniol et
al., that programmers use a rather limited vocabulary [3, 2].
In particular, incorporating natural language synonyms does
not dramatically increase conciseness and consistency fail-
ures.

5. Finally, a longitudinal study addresses the question “does evo-
lution introduce conciseness and consistency failures?”

The rest of this paper first presents some necessary background
material in Section 2. Definitions of syntactic conciseness and
consistency are given in Section 3, followed by empirical studies
in Section 4. Related work is then considered in Section 5. Finally,
the paper concludes with a discussion of some topics for future
investigation and a summary in Sections 6 and 7.

2. Background

This section provides context for the technique described in
Section 3 and the empirical evidence presented in Section 4. It
first, describes the WordNet tool used to obtain natural language
synonyms and part of speech information and then the identifier
splitting tool used to break identifiers up into their constituent
parts. Information on the subject programs studied is then pre-
sented followed by information on the statistical tests used.

2.1 WordNet
WordNet is a lexical database of the English language devel-

oped by the Cognitive Science Laboratory at Princeton University
[6]. WordNet contains 155,327 different words classified as nouns,
verbs, adjectives, and adverbs. The power of WordNet comes from
the relationships that have been identified, which includes topical
relationships, synonym relationships, and homonym relationships
to name a few. For example, WordNet identifies head and mind
as synonyms. This ontology has been used by many researchers
including those in the field of information retrieval [9] and data
mining [8]. There is now an international conference devoted to
WordNet which has reported on the creation of WordNet for other
languages – Russian, Arabic, Persian, Korean, etc., and applica-
tions of the tool.

2.2 Identifier Splitting

Following others who study identifiers, identifiers are divided
into their constituent parts for analysis [5, 4, 11, 2]. Herein, these
parts are called “words” – sequences of characters with which
some meaning may be associated. Two kinds of words are consid-
ered: hard words and soft words. Hard words are demarked by the
use of word markers (e.g., the use of CamelCase or underscores).
For example, the identifiers sponge bob and spongeBob both
contain the well separated hard words sponge and bob.

For many identifiers, the division into hard words is sufficient.
This occurs when all the hard words are dictionary words or known
abbreviations. When the hard word is neither, the identifier con-
tains non-well-separated words. The identification of these “soft
words” is the goal of identifier splitting. For example, the identifier
zeroindeg includes a single hard word because there are no word
markers; thus, division into hard words is insufficient. The splitter
divides this hard word into the three soft words zero-in-deg (i.e.,
zero, in, and deg, a known abbreviation). The algorithm does this
by using a greedy approach that recursively compares the longest
prefix and suffix that are in the dictionary or a known abbreviation
list.

2.3 Subject Programs

The analysis includes empirical data collected from 186 pro-
grams. Up to 70 versions of a program were considered to support
the longitudinal studies. Ignoring multiple versions, 78 unique
programs were considered. All but 12 were open source programs.
Programs ranged in size from 1,423 to 3,087,545 LoC and covered
a range of application domains (e.g., aerospace, accounting, oper-
ating systems, program environments, movie editing, games, etc.)
and styles (comment lines, GUI, real-time, embedded, etc.). Most
of the code was written in C. Significant C++ and Java code were
also studied along with a small amount of 30 year old Fortran code.
Several of the programs were written by programmers whose na-
tive language was not English. For these programs the analysis
was performed using a dictionary for the programmer’s native lan-
guage or, if multiple languages were evident in the code, the union
of the respective dictionaries. (The publicly available dictionaries
that accompany the Linux spell checker ispell version 3.1.20 were
used.)

Figure 1 shows 10 representative C, C++, and Java subject pro-
grams. The two Fortran programs are not shown in the figure.
They are PLM compilers from 1975 and 1981 and include 9,704
and 11,478 LoC, respectively.

The figure reports code sizes for C, C++, and Java (and their
sum) as counted by the Unix utility wc (excluding header files).
In addition, the total number of non-comment non-blank lines of
code, as reported by sloc [15], is shown. The average percentage
of non-comment non-blank lines varies by language with 66% of
the C code, 72% of the C++ code, and 58% of the Java code being
non-comment non-blank lines. The last two columns present the
start year of the project and its release year. These dates were
extracted from program documentation (internal and external). In
general, the release year is more accurate as in can be difficult
to determine the start year for a program that includes third party
libraries written before the program “started”.

2



wc sloc year
program C C++ Java Total Total start release

cinelerra-2.0 1,044,996 106,357 0 1,151,353 820,980 1996 2004
cpm68k1-v1.2a 132,171 0 0 132,171 102,252 1978 1984
empire server 85,548 0 0 85,548 62,793 1985 1998
eMule0.46c 1,759 172,164 0 173,923 135,567 1999 2005
I4.2 2,109,050 398,463 502,965 3,010,478 1,704,823 1993 2004
jakarta-tomcat-5.5 68,003 0 353,604 421,607 219,766 1999 2005
LEDA-3.0 41,610 0 0 41,610 27,425 1988 1992
minux-2.0 326,210 0 0 326,210 244,033 1980 1996
mozilla-1.4 1,047,741 1,949,292 6,493 3,003,526 2,107,436 1998 2003
quake3-1.32b 353,806 57,431 0 411,237 281,432 1999 2005
Totals for all code not just that shown above
open source 19,170,546 14,587,482 6,327,380 40,106,590 27,129,263
proprietary source 7,167,689 787,094 582,107 8,536,890 5,391,815
all 26,338,235 15,374,576 6,909,487 48,643,480 32,521,078

Figure 1. Subject Programs (proprietary programs are named I#).

Figure 2 summarizes statistics regarding the identifiers along
with some demographic information (e.g., dominant programming
language, and the start and release years of the program). The
top 14 rows of the table present a representative sample of the
programs. The bottom seven rows summarize the data over all
programs (not just that of the representative programs in the top
of the table). Summaries include two orthogonal groupings (open
source versus proprietary, and by programming language) and all
the data taken collectively.

2.4 Statistical Tests

Several statistical techniques are used in the interpretation of
the data gathered during the study. This section introduces these
techniques and can be skipped by those familiar with statistics.

When a simple linear association is of interest, Pearson’s lin-
ear regression model, which measures linear correlations between
variables, is built. For the effect of explanatory variables X , Y ,
and Z on response variable A, the resulting model coefficients,
mi, belong to the linear equation A = m1X + m2Y + m3Z + b.

Each coefficient has an associated p-value. A p-value less than
0.05 represents a significant explanatory variable.

For more complex models, linear mixed-effects regression
models [13] are used to analyze the data. Such models allow the
examination of important effects that are associated with the re-
sponse variables. The initial model includes explanatory variables
and a number of interaction terms. The interaction terms allow
the effects of one variable on the response variable to change de-
pending upon the value of another variable. Backward elimination
of statistically non-significant terms (p > 0.05) yields the final
model. Note that some non-significant variables and interactions
are retained to preserve a hierarchical well-formulated model [10].

In these models, Tukey’s highly significant difference method
for multiple comparisons is used. However, computing a standard
t-value for each comparison and then using the standard critical
value increases the overall probability of a Type I error. Thus, Bon-
ferroni’s correction is made to the p-values to account for multiple
comparisons. In essence each p-value is multiplied by the number

of comparisons and the adjusted p-value is compared to the stan-
dard significance level (0.05) to determine significance. Tukey’s
method and Bonferroni’s correction were chosen because they are
both rather conservative tests.

With both Pearson’s test and the linear mixed-effects regression
models, the coefficient of determination, R2, is reported. This co-
efficient is interpreted as the proportion of the variability of the re-
sponse variable that is explained by the selected explanatory vari-
ables. This coefficient ranges from 0 to 1; the closer to 1, the better
the model.

3. Technique

Deißenböck and Pizka describe a formal model for adequate
identifier naming that includes rules for the correct and concise
naming of identifiers [5]. Their rules makes use of the set of all
concepts relevant to a program and provide “a formal model based
on bi-jective mappings between concepts and names.”

The rules include three requirements involving homonyms,
synonyms, and conciseness. These three can be formalized as fol-
lows: an identifier i is a homonym if it represents more than one
concept from the program (e.g., the identifier file in Figure 3a).
Two identifiers i1 and i2 are synonyms if the concepts associated
with i1 have a non-empty overlap with the concepts associated
with i2 (e.g., the identifiers file and file name share the concept
file name in Figure 3b). Finally, an identifier i for concept c is
concise provided no concept less general than c is represented by
another identifier (an example is given in the next paragraph).

Deißenböck and Pizka present a case study in which mainte-
nance introduces the seven identifiers pos, apos, abspos, relpos,
absolute position, relative position, and position representing
two concepts c1 = “absolute position” and c2 = “relative posi-
tion”. The identifier position fails the homonym consistency re-
quirement as it is associated with more than one concept from the
program (in this case concepts c1 and c2). In addition, the study
determined that relpos and relative position were both used for
concept c2, which violates the synonym consistency requirement.
Finally, the identifier position would concisely represents the con-
cept absolute position provided that the program did not include

3



dominant start release LoC unique id hard soft percent‡

program language year year (wc) ids instances words words increase
cinelerra-2.0 C 1996 2004 1,151,353 84,612 1,833,424 209,059 261,793 25.2%
cpm68k1-v1.1 C 1974 1983 73,172 4,167 79,660 4,560 8,193 79.7%
eclipse-3.2m4 Java 2001 2005 3,087,545 167,662 3,893,272 554,068 612,632 10.6%
gcc-2.95 C 1987 1999 841,633 44,941 897,728 110,060 146,474 33.1%
I1 C 1987 1997 454,609 30,092 482,228 48,125 82,307 71.0%
I4.2 C 1993 2004 3,010,478 113,662 2,694,901 328,079 422,364 28.7%
I6.6 C 2000 2002 237,257 10,791 104,290 29,207 34,549 18.3%
jakarta-tomcat-5.5.11 Java 1999 2005 421,607 19,202 351,487 48,537 54,471 12.2%
mozilla-1.6 C++ 1998 2004 2,919,307 189,916 3,649,329 563,448 659,396 17.0%
mysql-5.0.17 C++ 1996 2005 1,293,270 50,383 1,023,362 132,249 163,363 23.5%
plm80s Fortran 1975 1977 9,704 581 22,314 581 886 52.5%
quake3-1.32b C 1999 2005 411,237 31,114 542,664 75,474 94,144 24.7%
sendmail-8.7.5 C 1983 1996 78,757 2,877 62,075 4,492 6,828 52.0%
spice3f4 C 1985 1993 298,734 12,388 452,423 24,599 34,882 41.8%

Totals for hard soft
(over all code not instances words words LoC unique id hard soft percent
just that shown) per id per id per id (wc) ids instances words words increase

open source 19.2 2.7 3.2 40,106,590 2,504,937 48,098,029 6,817,779 8,040,625 17.9%
proprietary 19.6 2.7 3.5 8,536,890 385,792 7,543,663 1,055,329 1,331,327 26.2%
C 18.6 2.5 3.1 26,338,235 1,566,289 2,9074,119 3,956,372 4,821,045 21.9%
C++ 19.3 2.9 3.5 15,375,576 965,402 18,836,801 2,835,896 3,341,987 17.8%
Java 22.1 3.0 3.4 6,909,487 356,225 7,885,428 1,076,709 1,203,537 11.8%
Fortran 18.0 1.4 1.8 21,182 2,238 40,273 3,141 3,993 27.1%
All 19.3 2.7 3.2 48,643,480 2,890,153 55,638,621 7,872,119 9.370,562 19.0%

Figure 2. Basic counts from 14 selected programs. Some of the programs from Figure 1 are repeated
for comparison, other’s were selected to provide diversity in the presented data. ‡Percent increase
is the percent increase from hard words to soft words.

any other position concepts (e.g., relative position). As the pro-
gram included multiple specific kinds of positions, the identifier
position fails the conciseness requirement.

In most instances, when the homonym requirement is violated
the synonym requirement is also violated. Figure 3 illustrates this.
The identifier file is a homonym associated, in different parts of
the program, with the concept of a file name and elsewhere a file
pointer. If the two concepts are to be referred to in the same scope
(at least in a strongly typed language) then at least one additional
identifier would be required as shown in Figure 3b. However, the
inclusion of this second identifier introduces a synonym violation
as the identifiers file and file name both refer to the same concept.

In this example any function that opens a file would need to re-
fer to both the file name and file pointer concepts. As an example
in which it is plausible that a homonym would exist in the absence
of a synonym, consider the situation shown in Figure 3c in the con-
text of a program that reads a directory path into the variable path
and then passes it to either function f1 or f2 depending on the path
being relative or absolute. If f1 and f2 use the name path for their
formal parameter, then the program includes two concepts relative
path and absolute path and only uses one identifier, path, to refer
to them. This violates the homonym rule, but not the synonym
rule.

The absence of a concept mapping precludes the discovery of
identifiers that violate the homonym restriction only. Testing that
identifiers satisfy a restricted form of synonym consistency and
conciseness, can be achieved syntactically (i.e., without the iden-
tifier to concept mapping). It turns out that a similar pattern in-
dicates a violation of the syntactic-synonym consistency require-
ment and the syntactic conciseness requirement. Both involve an
identifier being contained in another. Here containment results

when one identifier includes, in the same order, all the soft words
from another. For example, the identifier relative position in-
cludes two hard words each composed of a single soft word. Thus
this identifiers includes, in order, all the soft words from the iden-
tifier position.

An important implication of this containment is that the con-
cepts associated with the two identifiers have a non-empty in-
tersection; thus, violating Deißenböck and Pizka concept space
by definition. The presence of a second containing identifier
(e.g., absolute position), which also contains position, implies
Deißenböck and Pizka rule for conciseness has also been violated.
It does so because the two containing identifiers imply the pro-
gram includes two separate concepts, but the contained identifier
does not precisely represent either of them. More formally, the
two violations are defined as follows.

Definition 3 Syntactic Synonym Consistency and Conciseness.
Let identifier id1 be the sequence of soft words
sw1 sw2 · · · swn1. Identifiers id1 and id2 fail the syntactic
synonym consistence requirement if id2 includes the se-
quence of soft words w1 w2 · · · sw1 sw2 · · · swn1 · · · wn2

(i.e., id2 = w1 w2 · · · id1 · · · wn2). Furthermore, id1

fails the syntactic conciseness requirement if there exists a
third identifier id3 that includes the sequence of soft words
u1 u2 · · · sw1 sw2 · · · swn1 · · · un3.

Section 4 empirically investigates two important questions re-
lated to this definition. First, do synonym consistency and concise-
ness failures exist in real code? Obviously, the technique is of lit-
tle interest if violations are infrequent or non-existent. Second, are
syntactic violations indicative of violations using the Deißenböck
and Pizka concept-map based definitions? If the syntactic ap-

4



file pointer
file name

file

file pointer
file name

file file_name

Space
Concept

Name
Space

path

 absolute path
 relative path

(b)(a) (c)

Figure 3. Illustration of the two types of syntactic violation. Figure (a) shows a homonym violation.
Figure (b) shows how a synonym violation is also introduced by the function that opens a file. Finally,
Figure (c) shows a plausible homonym only example.

proach can identify a useful subset of the violations, without the
need for a concept mapping, then it forms the core of a useful tool.

Section 4 also investigates a related hypothesis suggested by
the following observation of Antoniol et al., “Programmers tend
to process application-domain knowledge in a consistent way
when writing code: program item names of different code re-
gions related to a given text document are likely to be, if not
the same, at least very similar” [3, 2]. This observation sug-
gests programmers use a limited vocabulary and can be tested
using WordNet to identify all possible synonyms for each soft
word in an identifier. More formally, assume that for soft word
w, S(w) denotes the natural language synonyms of w. In
Definition 3 replace w1 w2 · · · sw1 sw2 · · · swn · · · wm with
w1 w2 · · · s1 s2 · · · sn · · · wm, where si ∈ S(swi) and the cor-
responding replacement for id3. For example, using WordNet,
the identifiers list head and list front violate the synonym rule as
head and front are natural (English) language synonyms.

This section concludes by considering one of several refine-
ments to syntactic conciseness and consistency. Section 6 (future
work) describes others. Definition 3 is a straightforward restriction
of Deißenböck and Pizka’s work in the absence of an identifier to
concept mapping. It is possible to improve upon this by exploiting
certain grammatical patterns that indicate different concepts.

For example, one common pattern seen in the empirical stud-
ies is to have two identifiers where one is a noun phrase and an-
other that includes a verb with this noun phrase. For example,
tree node and visit tree node. Syntactically, tree node is con-
tained in visit tree node and thus a (syntactic) violation. How-
ever, these two identifiers are associated with different (related)
concepts and thus no violation exists in the Deißenböck and Pizka
sense. Using WordNet to identify parts of speech, this pattern is
easy to detect. Section 4 empirically investigates the frequency of
this pattern.

4. The Study

Data regarding syntactic consistency and conciseness failures
found in the 186 programs is presented through five empirical
studies. The first summarizes statistics over all programs. Next,
two case studies are considered, one exhaustive and one sampling.
Finally, a longitudinal study and an investigation of the impact of
incorporating natural language synonyms into identifiers are con-
sidered.

4.1 Statistics over all Programs

The ability to identify syntactic conciseness and consistency
failures is of little value if the pattern does not occur in practice.
Figure 4 shows the percent failure for 42 representative programs
along with the number of unique identifiers in each program and
the percentage of severe failures in which the contained identifier
includes at least three soft words. The chart below the table, shows
the failure percents for all 186 programs. Synonym and concise-
ness failures are sorted independently; thus, vertical comparisons
do not reflect a particular program. The shape of the curves pro-
vides a general feel for the distribution of the data. Based on the
last row in the table, an average program includes just over 2900
identifiers that fail the synonym requirement and just over 1300
that fail the conciseness requirement. This indicates that sufficient
violations exist in practice to warrant further study.

From the table in Figure 4, it appears that the percentage of syn-
onym failures is not strongly correlated to the number of unique
identifiers. This is statistically true (R2 = 0.12). To better model
the percentage of synonym failures, backward elimination start-
ing with the explanatory variables program size, start year, re-
lease year, programming language, and open source was used.
The resulting model includes only release year and programming
language. Notably absent is any measure of program size. The
model’s R2 value of 0.48 means that it explains just under half of
the variation in the percentage. This model indicates an increases
of 0.42% synonym failures for each year later a project is released
and a 4.3% increase for Java programs (no other language made a
significant difference).

The model for the percentage of conciseness failures is less in-
formative and more complicated. Its R2 value of 0.22 indicates
that less than a quarter of the variation in the percentage of con-
ciseness failures is explained by the model. The final model in-
cludes the following explanatory variables: start and release years,
program language, and open-source. The main complication in
this model is an interaction between open source and release year.
Thus release year has a different effect on open and proprietary
source code. In this case, an increase in release year brings an in-
crease of 0.14% to the percentage of conciseness failures in open
source code while it brings a reduction of 0.28% in the percent-
age of conciseness failures in proprietary code. Neither of these
percentages are large. In addition, every year later a project was
started it has 0.12% fewer failures and, as with the synonym fail-
ures, Java brings a greater percentage. In this case 1.9% more
conciseness failures.

5



unique Failures Severe Failures
identi Syno Concise Syno Concise

program fiers nym ness nym ness
LEDA-2.1.1 2226 21% 10% 2% 2%
LEDA-3.1.2 2946 20% 8% 1% 1%
a2ps-4.12 3593 22% 10% 3% 2%
apache 1.3.29 8040 19% 8% 4% 3%
barcode-0.98 344 21% 6% 5% 1%
*byacc.1.9 507 20% 9% 1% 0%
cinelerra-2.0 71995 21% 9% 6% 4%
*compress 164 11% 5% 0% 0%
cpm68k1-v1.3 2417 12% 6% 0% 0%
cvs-1.11.1p1 5552 20% 9% 3% 2%
eMule0.46c 21372 17% 8% 6% 4%
eclipse-2.1 83207 26% 11% 10% 6%
eclipse-3.2m4 155932 25% 9% 11% 4%
*genesis-all-3.0 2110 33% 12% 13% 5%
ghostscript-7.07 26546 19% 9% 6% 4%
gnuchess-4.0 1198 16% 8% 1% 1%
*gnugo-1.2 114 15% 8% 0% 0%
gnugo-2.0 627 15% 6% 1% 1%
gnugo-3.0.0 3118 21% 9% 3% 2%
httpd-2.0.48 16975 19% 9% 5% 3%
I1 29619 17% 12% 5% 4%
*I4.1 92547 21% 11% 10% 7%
I4.2 110727 21% 11% 10% 7%
I6.1 9869 16% 8% 5% 4%
I6.6 10583 16% 8% 5% 4%
I9 41189 20% 9% 7% 5%
I12 1098 19% 11% 4% 3%
jakarta-tomcat-3.0 3920 24% 9% 5% 3%
jakarta-tomcat-5.5 18416 25% 10% 7% 4%
javabb 073 1716 27% 9% 5% 2%
minux-2.0 21076 15% 7% 1% 1%
mozilla-1.0 173124 22% 9% 8% 5%
mozilla-1.6 176318 22% 9% 8% 5%
mysql-5.0.17 46297 21% 9% 7% 4%
*pacifi3d0.3 1139 11% 5% 1% 1%
*plm80s 539 8% 4% 0% 0%
quake3-1.32b 28676 18% 8% 5% 3%
samba-3.0.0 22553 20% 9% 8% 4%
spice3f4 9845 18% 10% 5% 4%
*tile-forth-2.1 661 34% 22% 2% 2%
uupc 147 12% 7% 1% 1%
Min 114 8% 4% 0% 0%
Max 181032 34% 22% 13% 7%
Average 14512 20% 9% 4% 3%

Figure 4. Percent synonym-consistency and
conciseness failures. (A “*” marks programs
with a minimum or a maximum value. Propri-
etary programs are named I#.)

4.2 Exhaustive Case Studies

Given that a significant number of syntactic synonym and con-
ciseness violations occur, the next question to address is “are these
violations real?” There are two possible differences between the
violations that the syntactic approach reports and those obtained
using a concept mapping. Clearly the syntactic approach will miss
violations when the identifiers do not share common source words.
For example, the identifiers file, fp, and fin might be synonyms (all
representing the file pointer concept), but syntactic approach can-
not determine this.

The other difference involves identifiers for which the syntactic
approach identifies a violation, but no violation exists when using
the associated concepts. To determine how many such false posi-
tives the syntactic approach produces, hand inspection of all viola-
tions from two of the smaller programs was performed. As shown
in the following table, this inspection produced five categories.
The encouraging news is that 72% of the synonym violations and
76% of the conciseness violations were true violations. For exam-
ple, the identifiers status and file status violate the synonym con-
sistence requirement while the identifiers home dir and in home
indicate two refinements of the concept home, which means the
identifier home fails the syntactic conciseness requirement.

Description Synonym Conciseness
(1) violation 49 72% 22 76%
(2) non violations 6 9% 3 10%
(3) attribute 9 13% 1 3%
(4) verb-noun phrase 3 4% 3 10%
(5) struct field 1 1% 0 0%

All 68 100% 29 100%

Many of the remaining identifiers were non-violations (9% of
the synonym violations and 10% of the conciseness violation). For
example, prefix is contained in isolate tilde prefix. While pre-
fix could be replaced with string prefix in the string concatena-
tion routing where it is found, isolate tilde prefix is a function
whose associated concept does not overlap with that of prefix. A
conciseness example from uucp is the identifiers FILE, copy file,
file mode, and log file. As FILE is a type, it’s concept is sepa-
rate from the others, although the syntactic algorithm cannot, at
present, make this determination.

The remaining three categories all suggest refinements to the
technique. The third category includes what Ada refers to as at-
tributes and C# as properties. For example, the two identifiers
cwd and cwd len (a synonym failure), and the three identifiers re-
sult, result index, and result size (a conciseness failure) include
variable properties. Here, by convention, programmers recognize
identifiers such as cwd and result as the underlying value of which
the other identifiers are properties.

The fourth category was mentioned at the end of Section 3.
An example includes the identifiers home dir and get home dir,
which violate the syntactic synonym rule, but are associated with
different concepts. Using part-of-speech information, this case can
be identified when two identifiers differ by a verb. This pattern is
explored further in Section 4.5.

6



The final category includes a structure field adr and the local
identifier next adr. Deißenböck and Pizka do not explicitly dis-
cuss structure fields, but including the structure name (letter in
the case), seems a straight forward extension of their work that
removes the synonym failure in this example.

4.3 eMule Case Study
The case study from the previous section considers all the vi-

olations in two small programs. This section presents a “selective
case study” of eMule a 170 KLoC C++ program chosen at random
from the larger programs. Examining eMule’s 3725 synonym fail-
ures and 1762 conciseness failures is prohibitively expensive. In-
stead seven representative examples were selected. Each includes
three parts: the base (contained) identifier, the identifiers that con-
tain it, and a discussion.

(1) m strHost (the contained identifier)
m strHostName

The first case is the classic synonym violation in which
a concept that already has a name receives another.
In this case, the identifier m strHost and the identifier
m strHostName both denote to the same concept (the
string representation of the host computer to connect to).

(2) CheckDiskspace
CheckDiskspaceTimed

As a second classic example, eMule includes two methods
for checking if sufficient disk space exists to write a file.
Their names, CheckDiskspace and CheckDiskspace-
Timed, clearly fail to satisfy Deißenböck and Pizka’s def-
inition of consistency as they both refer to the concept of
a timed disk check. In this instance, one obvious fix would
be to rename the first method CheckDiskspaceUntimed or
something similar. This would disambiguate the names for
the two concepts of timed and un-timed disk space checks.

(3) IcmpCloseHandle
lpfnIcmpCloseHandle

The third example illustrates a case in which synonym re-
striction is formally violated, but knowing a little about the
identifiers removes any real issue. EMule includes the class
type IcmpCloseHandle and the variable lpfnIcmpClose-
Handle of that type. Both identifiers represent the same
concept, but knowing that one is a type name disambiguates
the two.

(4) m n file
m n file size

The identifiers m n file and m n file size form a less
egregious synonym violation. The method “int CZIP-
File::GetCount() { return m nFile; }” suggests that
consistency could be attained by renaming m nFile to
m nFileCount

(5) m wndSplitter
m wndSplitterchat
m wndSplitterirc
m wndSplitterstat
· · ·

The eMule class CSplitterControl implements a window
splitter control. The server window includes a window
splitter, under the name m wndSplitter, as do several
other windows. For example, the “chat” window includes
m wndSplitterchat which, like m wndSplitter is of type
CSplitterControl. (Note that this identifier is not well sepa-
rated and thus identifier splitting into soft words is required
to uncover this conciseness failure.) It is hard to know if
the program’s evolution began with a single splitter (in the
server class) and the others were subsequently introduced
or not, but in order to have concise names, m wndSplitter
should be renamed m wndSplitterServer.

(6) GetFileType
GetFileTypeDisplayStr
GetFileTypeByName
GetFileTypeSystemImageIdx
GetFileTypeDisplayStrFromED2KFileType

The penultimate example involves five identifiers. The ex-
istence of the second, indicates a synonym violation and
means that the first needs to be replaced to separate its con-
cept from that of getting a displayable string representation
for a file type. One naive way of doing so is to replace
the first identifier with GetFileTypeNonDisplayStror Get-
FileTypeInternalStr. Note that the latter of these conflicts
with the third identifier.

A snippet showing the definition of the third identifier ap-
pears in Figure 5(a). As is clear from the comments pro-
ceeding the definition, to achieve conciseness, the third
identifier should be replacement with something like Get-
FileTypeInternalByName. Similarly, to achieve concise-
ness, with the fourth identifier, the first would need to be
separated from the concept of an “image index”.

Finally, part of the definition of the fifth identifier is shown
in Figure 5(b). Here the comment proceeding the defini-
tion muddies the water as the method produces an inter-
nal file type, but unlike GetFileTypeByName, this one
appears to be appropriate for the GUI. This implies that
internal file type names can be suitable for the GUI or
not. Something the names of the two methods fail to
make clear. For example, the identifier GetFileTypeBy-
Name should bear more in common with GetFileTypeDis-
playStrFromED2KFileType as it too returns an internal,
type name. As with the others, this identifier also conflicts
with the first. The name for GetFileType would need to
take all these concepts into account. To the extent that this
example seems confusing, it is an excellent indication of the
value of concise and consistent identifiers, as they would
have had helped make clear the various concepts related to
type names.

(7)

ident
IPHeader.ident (a field)
m bLogSecureIdent
m htiLogSecureIdent
· · ·

7



// Return file type as used internally by eMule,
// examining the extension of the given filename
CString GetFileTypeByName(LPCTSTR pszFileName)
{

...
}

(a)

// Returns a file type which is used eMule internally only (GUI)
CString GetFileTypeDisplayStrFromED2KFileType(LPCTSTR pszED2KFileType)
{
...

}

(b)

Figure 5. Code snippets for the conciseness case study.

Figure 6. Two example programs from the lon-
gitudinal study.

The final example, is really a non-example. The identifier
ident, which is contained in 37 other identifiers, exists in
two separate contexts. First, it is a local variable of the
method CIrcMain::Connect(). As there is no real conflict
with the associated concepts for this local variable, it sug-
gests that scope information might play a role in suggesting
to an engineer when a violation might be a false positive.
The second use of ident is as a field of the structure IP-
Header. One might view it’s full name as IPHeader.ident
which would be a more concise name. Deißenböck and
Pizka do not discuss using context provided by a scope or
a type (class or structure), but it seems a straight forward
improvement.

4.4 Longitudinal Study

Does evolution introduce synonyms? In principal, as a pro-
gram ages, if it takes on new concepts then identifiers that were
previously consistent and concise may become inconsistent and
“un-concise”. This occurs when software evolution introduces
new identifiers (and their associated concepts). For example, the
program which, actually the getopt library, originally only pro-

cessed the short-form command line options. Later, a long form
was added. The current code includes the identifiers options and
long options. Knowing the code’s history, options is understood
to be associated with the concept of short options. While options
was originally a consistent identifier, the introduction of the con-
cept of long options, means that it is no longer consistent. As as
second example, position concisely represents the concept abso-
lute position provided that the program does not include any other
kind of position (e.g., relative position).

Seven of the programs studied included four or more versions.
Statistically, modeling the percentage of synonym and conciseness
failures as a function of the version number, there is essentially no
evidence that evolution introduces synonyms. This is visually ap-
parent with the two examples shown in Figure 6. Leda is typical
of most of the programs showing some ups and downs but no sig-
nificant trend. Gnugo shows a slight increase early, but then levels
out and remaining flat from versions 10 through 70.

4.5 WordNet

As introduced in Section 2, WordNet is a powerful tool for
processing natural language. Identifiers are often composed of dic-
tionary words, and thus WordNet can aid in their analysis. Two
applications of WordNet are considered in the section. The first
examines the breadth of the vocabulary used by programmers and
the second considers how certain false positives can be identified
using part of speech information.

When inspecting the identifiers in source code several authors
(e.g., Antoniol et al. [2] and Caprile and Tonella [3]) essentially
observed that programmers use a limited vocabulary. For example,
free can be an adjective, a verb, or adverb, but Caprile and Tonella
discovered that it was only ever used as a verb. One implication of
this is that similar concepts are given similar names. To formally
investigate this observation, the consistencies and conciseness fail-
ures in all programs were recomputed after factoring in natural lan-
guage synonyms. Doing so allows the tool to correctly determine
that the identifiers list head and list front are synonyms as head
and front are natural language synonyms in English. Finding very
few additional violations, this experiment supports the observation
the programmers use a limited vocabulary.

8



Figure 7. Incorproating natural language
symonyms from WordNet. The x-axis shows
each prorgam sorted seperately for syn-
onym and concisness violations without us-
ing WordNet.

Statistically, for synonym violations, incorporating WordNet
increases the number of violations 2.8% (R2 = 0.998). This is
shown graphically by the two black lines of Figure 7. The black
jagged (solid) line shows the impact of using WordNet as com-
pared to the non-WordNet data shown by the dashed line. For con-
ciseness violations the increase is only 2.1% (R2 = 0.996). This is
shown graphically by the two lower gray lines. The rather minimal
increase for both synonym and conciseness violations supports the
observation that programmers use a limited vocabulary.

The second use of WordNet is to categorize identifiers based
on certain grammatical patterns. This is, in essence, the start of
a grammar-based technique similar to function-name grammar of
Caprile and Tonella [4]. Two patterns were used in this prelimi-
nary study. Both are based on studies of the tool’s output. They
match identifiers that include a noun-phrase and a single additional
soft word that is either a verb or an adjective. This additional soft
word may come before or after the noun phrase. The verb form
comes from functions that act upon data (the noun phrase). Exam-
ples, found by the tool, are shown in the top of Figure 8. Here the
verb typically comes before the noun phrase. The adjective form
comes from variables that represent attributes of other variables.
Examples, found by the tool, are shown in the bottom of Figure 8.
Again, the adjective typically comes before the noun phrase.

The verb-noun phrase analysis is conservative in that only
words that are exclusively used as verbs are considered. For ex-
ample, consider the identifiers edit clip and free node. The word
“edit” only appears as a verb in English, while the word “free”
can also be used as a noun, adjective, and adverb; thus, edit clip
was counted, but free node was not. Similarly, the adjective-
noun phrase form required words that only occur as adjectives.

Numerically, the verb form accounts 4.5% of the synonym vi-
olations. This is consistent with the percentage identified in the
exhaustive case study of Section 4.2. The adjective form accounts
for 2.2%, or about half as many of the violations. Together the
two grammar based patterns identifier 6.7% of the violations. As-
suming that the case study from Section 4.2 is representative, this
represents about one quarter of the false positives.

Verb-noun phrase
absolute path get absolute path
birth day get birth day
base name parse base name
user name send user name
arena unlock arena
clip clip edit

Adjective-noun phrase
background color background color selected
bit highest bit
history previous history
token preceding token
tokens saved tokens
child previous child

Figure 8. Grammar examples.

5. Related Work

This section considers four related projects that focus on iden-
tifier names. First, Anquetil and Lethbridge consider extracting in-
formation from type names in a large Pascal application [1]. They
define two records to implement the same concept if they have
similar field names and types (though they are lax on enforcing
type equivalence). Thus, this work provides a framework in which
to study a form of concept identification (or at least concept equiv-
alence) through types.

Taking type information into account is an example of the kind
of information that a fact extractor (e.g., Columbus [7]) can ex-
tract about identifiers. For example, tree node is contained in
visit tree node, and position is contained in absolute position.
Knowing that visit tree node is a function and tree node a for-
mal parameter of the function indicates that the two are associated
with different concepts and thus not a violation of the synonym
rule in the same way that two global integer variables position
and absolute position are.

Caprile and Tonella analyze function identifiers by considering
their lexical, syntactical, and semantical structure [3]. They later
present an approach for restructuring function names aimed at im-
proving their meaningfulness [4]. The analysis involves breaking
identifiers into well separated words (i.e., hard words). The re-
structuring involves two steps. First, a lexicon is standardized by
using only standard terms as composing words within identifiers.
Second, the arrangement of standard terms into a sequence has to
respect a grammar that conveys additional information. For ex-
ample, the syntax of an indirect action, where the verb is implicit,
is different from the syntax of a direct action. They were able to
come up with an effective grammar for the restricted domain of
function identifiers. Extending this to all identifiers is a non-trivial
task, but the resulting grammar would be useful in refining the
notion of syntactic consistency and conciseness.

Deißenböck and Pizka stress the value of identifiers in source
code [5] as they make up a significant amount of the unique in-
formation available from the source. For example, Eclipse 3.0M7
has 94,829 different identifiers which is around the same number
of words as in Oxford Advanced Learner’s Dictionary. They also
introduce a tool that enforces the rules for consistent and concise

9



identifiers during program construction. This is done with the aid
of an identifier dictionary. The tool improves the productivity of
programmers.

Finally, Takang et al. note that there is some controversy on the
value of dictionary word identifiers [12]. For example, Shneider-
man and Mayer report that “variable names had a statistical sig-
nificance on comprehension.” However, their study included only
beginning students as participants. On the flip side, Sheppard et
al. observe that “variable names did not have a statistical signifi-
cance on the subject’s performance.” This was based on an exper-
iment that involved 36 professional programmers. In this second
experiment, the programs were quite small (they varied between
26 to 57 lines of code), which may have been too short to bring
out differences especially with professional programmers.

6. Future Challenges
The current tool does not discover the violation that oc-

curs between absolute path given and abs path because abs
is an abbreviation of absolute. Definition 3 could be broad-
ened to include such cases as follows: for soft word w,
let A(w) denote the set of all dictionary words appearing
in the program that map to the same concept as w. In
Definition 3 replace w1 w2 · · · sw1 sw2 · · · swn · · · wm with
w1 w2 · · · a1 a2 · · · an · · · wm, where ai ∈ A(swi) and the cor-
responding replacement for id3. As absolute is in A(abs) the
above violation would be detected.

While presently unimplemented, the abbreviation relation, A,
could be approximated by performing a wild-card search in the
the documentation (both internal and external). For example, the
search for “a.b.s.” where “.” represents any sequence of valid
identifier characters in the mozilla source yields a single dictio-
nary word, absolute. Two other examples occurring in the case
study were extracted with the help of the unix utilities grep and is-
pell include horiz abbreviating horizontal and triag abbreviating
one of the words triangle or triangulate.

Finally, in generating the examples used in the case studies it
became clear that following the rules produced improved code that
was easier to comprehend. However, this is an ideal that may be
difficult to reach. For example, consider trying to motivate re-
placing buf with buf value to avoid a conflict with the identifier
buf len. By convention, most programmers would understand that
buf referred to the buffer’s value. Empirical evidence as to the im-
pact of allowing such “violations” on programmer comprehension
is another area of future investigation.

7. Summary
Deißenböck and Pizka’s propose the enforcement of rules for

consistent and concise identifiers using a tool that incrementally
builds and maintains an identifier dictionary as a system is being
developed. The identifier dictionary “explains the language used
in the software system, aids in consistent naming, and improves
productivity of programmers by proposing suitable names depend-
ing on the current context.” [5]. This paper studies the restriction
and extension of Deißenböck and Pizka’s rules that is computable
without a mapping from names to concepts. As the empirical evi-
dence shows, these syntactic rules are useful in identifying consis-
tent and conciseness identifiers.

8. Acknowledgments
This work is supported by National Science Foundation grant

CCR0305330.

9. References
[1] N. Anquetil and T. Lethbridge. Assessing the relevance of identifier

names in a legacy software system. In Proceedings of the 1998
conference of the Centre for Advanced Studies on Collaborative
Research, Toronto, Ontario, Canada, November 1998.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo.
Recovering traceability links between code and documentation.
IEEE Transactions on Software Engineering, 28(10), October 2002.

[3] B. Caprile and P. Tonella. Nomen est omen: analyzing the language
of function identifiers. In Working Conference on Reverse
Engineering, pages 112–122, Altanta, Georgia, USA, October 1999.

[4] B. Caprile and P. Tonella. Restructuring program identifier names.
In ICSM, pages 97–107, 2000.

[5] F. Deißenböck and M. Pizka. Concise and consistent naming. In
Proceedings of the 13th International Workshop on Program
Comprehension (IWPC 2005), St. Louis, MO, USA, May 2005.
IEEE Computer Society.

[6] C. Fellbaum, editor. WordNet – An Electronic Lexical Database.
MIT press, 1998.

[7] R. Ferenc, ?. Besz?des, M. Tarkiainen, and T. Gyim?thy. Columbus
- reverse engineering tool and schema for c++. In IEEE
International Conference on Software Maintenance (ICSM 2002),
pages 3–6, Montreal, Canada, October 2002. IEEE Computer
Society Press, Los Alamitos, California, USA.

[8] I. Jonyer, D.J. Cook, and L.B. Holder. Graph-based hierarchical
conceptual clustering. Machine Learning Research Archive, 2:19 –
43, March 2002.

[9] R Mandala, T Takenobu, and T Hozumi. The use of wordnet in
information retrieval - group of 5. In Proceedings of Coling-ACL,
pages 31–37, 1998.

[10] C. Morrell, J. Pearson, and L. Brant. Linear transformation of linear
mixed effects models. The American Statistician, 51:338–343, 1997.

[11] J. Rilling and T. Klemola. Identifying comprehension bottlenecks
using program slicing and cognitive complexity metrics. In
Proceedings of the 11

th IEEE International Workshop on Program
Comprehension, Portland, Oregon, USA, May 2003.

[12] A. Takang, P. Grubb, and R. Macredie. The effects of comments and
identifier names on program comprehensibility: an experiential
study. Journal of Program Languages, 4(3):143–167, 1996.

[13] G. Verbeke and G. Molenberghs. Linear mixed models for
longitudinal data. Springer-Verlag, New York, second edition, 2001.

[14] Webster. Collegiate Dictionary, 11
th Edition. Merriam-Webster,

2003.

[15] David A. Wheeler. SLOC count user’s guide, 2005.
http://www.dwheeler.com/sloccount/sloccount.html.

10


