
Stop-List Slicing

Keith Gallagher David Binkley Mark Harman

University of Durham Loyola College in Maryland King’s College London

South Road 4501 N. Charles St. Strand, London

Durham DH1 3LE, UK Baltimore, MD. 21210 USA WC2R 2LS, UK.

k.b.gallagher@durham.ac.uk binkley@cs.loyola.edu Mark.Harman@kcl.ac.uk

Abstract

Traditional program slicing requires two parameters:

a program location and a variable, or perhaps a set of

variables, of interest. Stop-list slicing adds a third pa-

rameter to the slicing criterion: those variables that are

not of interest. This third parameter is called the stop-

list. When a variable in the stop-list is encountered,

the data-flow dependence analysis of slicing is termi-

nated for that variable. Stop-list slicing further focuses

on the computation of interest, while ignoring compu-

tations known or determined to be uninteresting. This

has the potential to reduce slice size when compared to

traditional forms of slicing.

In order to assess the size of the reduction obtained

via stop-list slicing, the paper reports the results of three

empirical evaluations: a large scale empirical study into

the maximum slice size reduction that can be achieved

when all program variables are on the stop-list; a study

on a real program, to determine the reductions that

could be obtained in a typical application; and quali-

tative case-based studies to illustrate stop-list slicing in

the small. The large-scale study concerned a suite of

42 programs of approximately 800KLoc in total. Over

600K slices were computed. Using the maximal stop-

list reduced the size of the computed slices by about

one third on average. The typical program showed a

slice size reduction of about one-quarter. The case-

based studies indicate that the comprehension effects

are worth further consideration.

1 Introduction

Program slicing has been shown to be an effective
source code manipulation technique that can isolate
parts of a program relevant to a particular computa-
tion. The slicing process removes irrelevant computa-

tion. However, it may be that some of the (data flow)
relevant computations included in the slice are not of
interest to the programmer. For instance, in any piece
of software there are variables that do the computa-
tion (e.g., outputs), and variables that help to do the
computation (e.g., counters, indices, and temporaries).
We consider whether eliminating the data-flow on these
helper variables can reduce the slice size significantly
enough to merit further consideration.

This paper proposes stop-list slicing. In stop-list
slicing, the slicing criterion is augmented to contain
two sets of variables. The first set is the set of vari-
ables from the traditional slicing criterion; these are
the variables of interest that capture the computation
to be sliced out of the whole program. The second
set is the stop-list variable set; the variables that are
considered uninteresting.

The problem of finding variables of non-interest is
similar to the problem of finding variables of inter-

est. Locating these interesting/uninteresting variables
is not the immediate focus of this work; we presume
that both the variables of interest and those of non-
interest have been obtained in some fashion. In this
work, we are interested only in determining if pursu-
ing this idea has merit by determining the reductions
that could be obtained if uninteresting variables were
tagged for exclusion in the same way the interesting
variables are tagged for inclusion in a program slice.

Recent empirical studies of slice size [5] have indi-
cated that the typical size of a static slice is about
one third of the size of the program from which it is
constructed. However, the results also indicate a high
degree of variance in slice sizes. Reducing the size of
the slices obtained by any slicing process is the driving
force that underpins all applications of program slicing.
The motivation for stop-list slicing is to attempt to re-
duce the size and complexity of program slices, while
maintaining their utility.

The paper introduces stop-list slicing and presents
results from three approaches to the evaluation of the
technique. These evaluation studies aim to address the
following three research questions:

1. Can stop-list slicing produce large enough reduc-
tions in slice size to be worthy of further consider-
ation?

2. How does it perform on a typical stop-list?

3. Are the slices that result any use?

To answer these three questions, the paper con-
tributes three related studies: one a large scale empir-
ical study concerned with research Question 1 above,
backed up by two case–based studies which concern
typical behaviour and the more qualitative questions of
usefulness. Specifically, the contributions of the studies
presented in the paper are as follows:

1. Results are presented from a large scale empirical
study into the largest possible reduction that can
be achieved using stop-list slicing. The motiva-
tion for this study is derived from Amdahl’s Law
[1]: if the largest reduction that can be achieved
is small then the technique is not worthy of fur-
ther consideration. Fortunately, the results reveal
that large reductions in slice size are possible us-
ing maximal stop-lists. The results of this study
therefore suggest that stop-list slicing is worthy of
further investigation.

2. The second evaluation study considers a case
study in stop-list slicing applied to the European
Space Agency program copia. The results for
maximal stop-list slicing are compared to those
for a more ‘typical’ stop-list. In this study, stop-
list slicing with respect to a more typical stop-list
reduces slice size by about one quarter.

3. The final case study considers three programs
for which the stop-list slices themselves are small
enough to be presented in the paper. This study
seeks to present case-based evidence for the more
qualitative question: are stop-list slices any use?

The rest of this paper is organized as follows: Sec-
tion 2 introduces stop-list slicing, while Sections 3, 4
and 5 evaluate it. Section 3 presents the results of a
large scale empirical study into the maximum size re-
duction possible, using a maximal stop-list, while Sec-
tion 4 considers the effect of a more ‘typical’ stop-list on
case study. Section 5 presents three smaller case studies
that are sufficiently small to allow a more qualitative
evaluation of the effect of stop-list slicing in terms of

the slices themselves. Section 6 presents threats to va-
lidity. Section 7 presents related work and Section 8
concludes.

2 Stop List Slicing

Stop-list slicing is the application of a stop-list to
the computation of backward program slices. The se-
lection of variables to go on the stop-list is akin to
the selection of variables with respect to which a slice
is constructed in the traditional slicing paradigm. In
some sense, their selection can be considered ‘the dual’
of slice variable selection. When program slicing, an
engineer selects variables ‘of interest;’ when stop-list
slicing, the engineer also picks a set of variables ‘of
non-interest.’

For example, consider a statistics program that com-
putes a number of statistics based on the computation
of the sum of the values of an input data set. If the
computation of the average value is incorrect, but the
other statistics are correct then the variable sum might
be included on the stop-list; it appears to be innocent
because the computation of the other statistics (which
use it) is correct. In this case the results would be
similar to the corresponding program dice [14].

Other recent work [4] has shown the presence of de-
pendence clusters. These clusters contain large sets of
statements, all of which are mutually dependent. We
have found that some of these dependence clusters arise
because of dependencies that one might wish to ignore
in certain contexts. For example, the open source text
editor ed was found to contain a huge dependence clus-
ter that consumed almost the entire program [4]; every-
thing depends upon everything else in ed through the
text buffer. For this program it might be useful to have
a static analysis that allows one to say ‘I know that the
paste operation depends on the cut operation because
of the text buffer, naturally, but is there any other de-
pendence between the two operations?’ Stop-list slicing
supports just this kind of static analysis question.

In order to evaluate stop-list slicing and to address
the three research questions highlighted in the intro-
duction, we implemented a stop-list slicer, as an exten-
sion to the popular slicing tool, CodeSurfer[11]. Before
computing a slice using the standard graph reachabil-
ity algorithm [12], all data dependences that originate
from inputs and simple assignments to the stop-list
identifiers are removed from the dependence graph (the
underlying representation used by the slicer [11]). The
present system removes dependences for all definitions
of each stop-list variable. A refinement would allow
each stop-list entry to include a scope in addition to
an identifier name.

The goal of stop-list slicing is to remove assignments
to variables that are on the stop-list and that cannot
assign to any other variables. The kinds of assignment
that qualify as ‘simple’ are described in Table 1. In
essence, each allows the defined variable to be easily
determined. More sophisticated analysis seeking, for
example, singleton points-to sets, would allow further
removal of dependences and thus a reduction in stop-
list slice size.

As with traditional slicing, minimal stop-list slicing
(removing all computation on the stop-list variables)
can be shown to be uncomputable. The proof fol-
lows exactly the corresponding proof structure used by
Weiser [19] to show that statement minimal slices are
not computable. Therefore, any attempt at removing
stop-list assignments is necessarily a conservative ap-
proximation, in which some stop-list assignments may
remain in the slice.

Deleted

Assignments

v = ... (v = ...

v++ v--

++v --v

*v++ *v--

v <op>= ... v[...] = ...

Table 1. Stop List Statement Types.

3 Quantitative Empirical Study

The results presented in this section address the re-
search question:

“what is the maximum reduction in slice size
achievable using the proposed stop-list tech-
nique?”

The maximum reduction is obtained by placing ev-

ery variable on the stop-list; we call these full stop-

lists. Notice that this is not the same as removing all
data dependences as only data dependences associated
with ‘simple’ assignments are removed. Those data de-
pendences from non-simple assignments (e.g., through
pointers) and control dependences are not elided.

The subject programs used in the study are de-
scribed in Table 2. The maximal reductions for each
program, are shown in Table 3. The table includes
the number of slices taken and the average slice size
using an empty stop-list and a stop-list of every vari-
able in the program, a full stop-list. The final column
presents the percent reduction for each program. Sum-
mary statistics over all program are presented in the
last five rows of the table.

Size (Loc)
Program wc sloc

a2ps 63,600 40,222
acct 10,182 6,764
barcode 5,926 3,975
bc 16,763 11,173
byacc 6,626 5,501
cadp 12,930 10,620
compress 1,937 1,431
copia 1,170 1,110
csurf-pkgs 66,109 38,50
ctags 18,663 14,29
cvs 101,306 67,828
diffutils 19,811 12,705
ed 13,579 9,046
empire 58,539 48,800
EPWIC-1 9,597 5,719
espresso 22,050 21,780
findutils 18,558 11,843
flex2.4.7 15,813 10,654
flex2.5.4 21,543 15,283
ftpd 19,470 15,361
gcc.cpp 6,399 5,731
gnubg-0.0 10,316 6,988
gnuchess 17,775 14,584
gnugo 81,652 68,301
go 29,246 25,665
ijpeg 30,505 18,585
indent 6,724 4,834
li 7,597 4,888
named 89,271 61,533
ntpd 47,936 30,773
oracolo2 14,864 8,333
prepro 14,814 8,334
replace 563 512
sendmail 46,873 31,491
space 9,564 6,200
spice 179,623 136,182
termutils 7,006 4,908
tile-forth 4,510 2,986
time 6,965 4,185
userv 8,009 6,132
wdiff 6,256 4,112
which 5,407 3,618
wpst 20,499 13,438

sum 1,156,546 824,935
average 26,896 19,185

Table 2. The subject programs with simple
line counting metrics.

Average Slice Size Average as Percent

Program Slices Empty Full Empty Full Reduction

Taken Stop-List Stop-List Stop-List Stop-List

a2ps 58,280 26,937 21,747 46% 37% 19%
acct 7,250 826 498 11% 7% 40%
barcode 3,908 1,700 1,080 44% 28% 37%
bc 5,132 3,827 2,755 75% 54% 28%
byacc 10,150 2,407 1,346 24% 13% 44%
cadp 15,672 1,906 1,337 12% 9% 30%
compress 1,084 315 140 29% 13% 56%
copia 4,686 2,113 1,449 45% 31% 31%
csurf-pkgs 43,044 11,122 8,773 26% 20% 21%
ctags 20,578 12,427 9,762 60% 47% 21%
cvs 103,264 75,247 58,784 73% 57% 22%
diffutils 17,092 4,894 3,592 29% 21% 27%
ed 16,532 11,001 8,698 67% 53% 21%
empire 120,246 56,279 44,582 47% 37% 21%
EPWIC-1 12,492 1,817 419 15% 3% 77%
espresso 29,362 12,917 8,950 44% 30% 31%
findutils 14,444 5,369 3,698 37% 26% 31%
flex2-4-7 11,104 3,885 2,258 35% 20% 42%
flex2-5-4 14,114 3,996 2,367 28% 17% 41%
ftpd 25,018 12,630 7,174 50% 29% 43%
gcc.cpp 7,460 4,442 2,750 60% 37% 38%
gnubg-0.0 9,556 3,372 2,491 35% 26% 26%
gnuchess 15,068 8,084 4,759 54% 32% 41%
gnugo 68,298 33,331 29,205 49% 43% 12%
go 35,862 28,803 18,917 80% 53% 34%
ijpeg 24,028 9,734 7,019 41% 29% 28%
indent-1.10.0 6,748 3,496 2,129 52% 32% 39%
li 13,690 8,292 5,514 61% 40% 33%
named 106,828 58,939 44,675 55% 42% 24%
ntpd 40,198 16,026 12,234 40% 30% 24%
oracolo2 11,812 2,161 1,036 18% 9% 52%
prepro 11,744 2,110 989 18% 8% 53%
replace 1,734 162 104 9% 6% 36%
sendmail 47,344 22,792 16,406 48% 35% 28%
space 11,276 2,239 1,080 20% 10% 52%
spice 212,620 67,515 41,932 32% 20% 38%
termutils 3,112 1,136 575 37% 18% 49%
tile-forth-2.1 12,076 6,653 6,105 55% 51% 8%
time-1.7 1,044 165 113 16% 11% 31%
userv-0.95.0 12,516 3,515 2,441 28% 20% 31%
wdiff.0.5 2,420 373 240 15% 10% 36%
which 1,162 474 175 41% 15% 63%
wpst 20,888 3,547 2,702 17% 13% 24%

sum 626,646
average 29,759 13,925 10,124 40% 28% 34%
max 212,620 75,246 58,783 80% 57% 77%
min 1,044 162 104 9% 3% 8%
stdev 40,339 19,530 14,545 19% 15% 13%

Table 3. Reductions possible using stop-list slicing

Over all programs the reduction ranges from 8% to
77% with an average reduction of 34%. The data from
this table allows a simple application of Amdahl’s Law
[1] to indicate the potential benefit of stop-list slicing.
For example, if the reduction were only 2 or 3 percent
using full stop-lists, then the technique would be of
little interest. The percentages in Table 3 represent
significant enough reduction to warrant further study.

4 Quantitative Case Study

The previous section showed that stop-list slicing
can produce a considerable reduction is slice size. How-
ever, the results concerned full stop-lists. This section
presents a case study in the application of stop-list slic-
ing to a single program to obtain results that indicate
the effects of stop-list slicing for ‘realistic’ choices of
stop-list variables. For the case study the European
Space Agency program, copia, was selected.

Two principal methods for populating the stop-list
are used. The first considers the identifiers in isola-
tion. The stop-list is constructed by including those
identifiers that are obvious loop counters and tempo-
raries. The second technique requires more thorough
examination of the code.

For example, the first technique was used to gener-
ate the list of variables on the representative stop-list
shown in Table 4. This list was chosen in a conserva-
tive fashion. The identifiers of copia were extracted
and considered in isolation. Those picked for the rep-
resentative stop-list (e.g., errno and temp optind) are
unlikely to be of interested to the programmer slicing
the program. Given a more focused task, additional
variables would most likely be added to the stop-list;
thus, increasing the reduction for the ‘reasonable’ list.
These additions fall under the second technique.

Table 5 shows the average slice size computed us-
ing an empty stop-list, then with all variables on the
stop-list, and finally the representative stop-list. For
copia, including all variables on the stop-list results
in a 41% reduction in average size size. While, as ex-
pected, the average reduction obtained using the repre-
sentative stop-list was smaller; however, at 25% it still
represents a significant reduction in average slice size.

5 Detailed Qualitative Case Studies

This section presents three examples that illustrate
the application of stop-list slicing ‘in the small’ to give a
more qualitative evaluation of its effect. We start with
the program wordcount, shown on the left of Figure 1.
The center of the figure is the static program slice on

RAND SEED ALARM CLOCK

FILE SYSTEM HEAP

PROCESS UMASK adx

ady dot dot dot

errno fp

i j

m max

min n

p p1

ptr q

q1 seed

temp FILE SYSTEM temp ALARM CLOCK

temp FILE SYSTEM temp HEAP

temp dot dot dot temp optind

temp star stderr temp star stdin

temp star stdout temp star stream

temp star strm vm

y z

Table 4. The ‘Reasonable’ Stop-List for pro-
gram copia.

variable nw, the number of words, at the last statement
(Line 30), which includes definitions and references to
the variable inword, the status variable that indicates
whether or not the scanner is advancing over white
space, and to variable c, the input variable. The slice
omits only 5 statements from the original program.

The right of Figure 1 shows the corresponding
stop-list slice computed using the stop-list of c and
inword. It thus ignores assignments to these vari-
ables. Clearly we have lost execution semantics,
for now the program is effectively equivalent to
while (<constant>) { ...}. In a display environ-
ment, the sliced statements might be dithered to indi-
cate that they were elided via the stop-list. But note
that by simple line counting, we have reduced the slice
size by 31%, from 26 lines to 18.

Stop-list Average Slice Reduction
Size Size in Percent
Empty 13,035
All variables 7,723 41%
‘Reasonable’ 9,810 25%

Table 5. Average slice size for copia with var-
ious stop-lists. The ‘Reasonable’ stop-list is
given in Table 4.

1 #include <stdio.h> #include <stdio.h> #include <stdio.h>

2 #define YES 1 #define YES 1 #define YES 1

3 #define NO 0 #define NO 0 #define NO 0

4 main() main() main()

5 { { {

7 int c, nl, nw, nc, inword; int c, nw inword; int c, nw inword;

8 inword = NO; inword = NO; inword = NO;

9 nl = 0;

10 nw = 0; nw = 0; nw = 0;

11 nc = 0;

12 c = getchar(); c = getchar();

13 while (c != EOF) while (c != EOF) while (c != EOF)

14 { { {

15 nc = nc + 1;

16 if (c == ’\n’)

17 nl = nl + 1;

18 if (c == ’ ’ || if (c == ’ ’ || if (c == ’ ’ ||

19 c == ’\n’ || c == ’\n’ || c == ’\n’ ||

20 c == ’\t’) c == ’\t’) c == ’\t’)

21 inword = NO; inword = NO;

22 else else else

23 if (inword == NO) if (inword == NO) if (inword == NO)

24 { { {

25 inword = YES; inword = YES;

26 nw = nw + 1; nw = nw + 1; nw = nw + 1;

27 } } }

28 c = getchar(); c = getchar();

29 } } }

30 printf("%d "%d "%d \n", printf("%d "%d "%d \n", printf("%d "%d "%d \n",

nl, nw, nc); nl, nw, nc); nl, nw, nc);

31 } } }

Figure 1. Wordcount program on the left. The program slice on variable nw at the last statement of
Wordcount program in the center. On the right a stop-list slice of the program with assignments to
inword and c, and their respective declarations, removed.

The question arises: is the fragment on the right of
Figure 1 comprehensible? We argue that it is in the

context of a comprehension exercise. A similar situ-
ation arises in information retrieval [15, 18]. If one is
presented with a piece of prose from which ‘stop words’
have been removed, a reasonable guess at its sense can
be obtained. The same argument applies to the frag-
ment: we know it is a stop-list slice and in this context
we can make some reasonable assumptions about the
intent of missing variables, and the probable actions
where the assignments are deleted.

Thus, when a programmer knows that a stop-list
slice is presented, we submit that eliminating assign-

ments to the input variable, c, does not adversely affect
comprehension of this slice. Nor does eliding assign-

ments to inword. That the loop depends on variable c
is easily seen; likewise, the assignment to nw depends on

inword. This is because control dependences are not
removed from the stop-list slice, just data dependences
for simple assignments.

Before presenting the second example, we switch to
a more precise measure of slice size. To introduce the
fundamental concepts of stop-list slicing and illustrate
the sizes of reductions obtained, the proceeding exam-
ple counted statements. This technique of text compar-
ison and line counting is imprecise (e.g., it is impacted
by programming style changes); thus, in subsequent
examples of this section and in the next section, we
switch to using vertex counts from the System Depen-
dence Graph (SDG) [12] for measuring sizes and thus
the percent reduction, rather than statement counts.
For ease of presentation, we will continue to present
snippets of code (rather than dependence graphs) to
illustrate the stop-list slices.

1 main() main()

2 { {

3 char in_binary[32]; char in_binary[32];

4 int i; int i;

5 int max = 0; int max = 0;

6 int number;

7 scanf("%d", &number);

8 while (1 << max <= number)

9 {

10 max++;

11 }

12 for(i=0; i<max-1; i++) for(i=0; i<max-1; i++)

13 { {

14 int current_digit = 1 << max - i - 1; int current_digit = 1 << max - i - 1;

15 in_binary[i] = current_digit <= number) in_binary[i] = current_digit <= number)

? ’1’ : ’0’; ? ’1’ : ’0’;

16 if (current_digit <= number) if (current_digit <= number)

17 number = number - current_digit; number = number - current_digit;

18 } }

19 in_binary[i] = ’\0’; in_binary[i] = ’\0’;

20 printf("%s\n", in_binary); printf("%s\n", in_binary);

21 } }

Figure 2. The fragment to the right shows the stop-list slice of the fragment on the left using a stop-list
of {i, number} and slicing with respect to the value of in binary at line 20.

The second example, which writes out the binary
representation of the value received as input is shown
on the left of Figure 2. The first loop (Lines 8-11) serves
only to compute the number of iterations of the second
loop (Lines 12-18). Placing variable i on the stop-list
causes the stop-list slice to exclude the first loop; a
reduction of 37%. Assuming the source of the vari-
able number (Line 7) is also trusted and thus adding
variable number to the stop-list removes Line 7. This
stop-list slice is shown on the right of Figure 2. The
reduction in this instance is from 19 to 11 vertices or
42%.

Finally, the third example, shown in Figure 3, is
from the utility slowcat [6]. A utility that pauses while
‘cat’ing a file after a certain number of bits have been
output; thus, ‘cat’ing the file slowly. Within the main
loop (Lines 34-42) pauses are inserted after a certain
number of bits have been output. The main input-
output loop is preceded by standard command line pro-
cessing (Lines 15-31).

The main loop of slowcat is

while ((c = getc(infile)) != EOF) { ... }.

The slice on this loop includes 18 vertices while the
slice on the counter increment ‘bits read += 8’ (Line
37) includes 21 vertices. The stop-list slice using c as
the stop-list taken with respect to ‘bits read += 8’
includes only 9 vertices (a 57% reduction). What is
being excluded here is opening the file, deciding the
file name, etc. The reduction occurs because c has a
data dependence on infile and data dependences on
c are ignored.

6 Threats to Validity

There are two external threats to these results: pro-
gram selection and slice selection. Most of the pro-
grams come from the open-source community. There
are no event-driven, real-time or embedded systems

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include <unistd.h>

5 #define DEFAULT_RATE 14400

6 #define DELAY_POINT 256

7 void main(int argc, char* argv[]){

8 FILE *infile;

9 long rate = DEFAULT_RATE;

10 int bits_read = 0;

11 int c;

12 unsigned long delay_time;

13

14 /**/

15 if ((argc < 2) || (strcmp(argv[1],"-h") == 0)){

16 printf("usage:\n %s file_name [bits/sec]\n",argv[0]);

17 printf(" The default time is 14400 bits/sec.\n");

18 exit(0);

19 }

20 if (argc >= 3){

21 rate = atol(argv[2]);

22 if (rate <= 200){

23 fprintf(stderr,"%s: illegal rate %s\n",argv[0],argv[2]);

24 exit(-1);

25 }

26 }

27 infile = fopen(argv[1],"r");

28 if (infile == NULL){

29 fprintf(stderr,"%s: unable to open %s for read\n",argv[0],argv[1]);

30 exit(-1);

31 }

32 /**/

33 delay_time = DELAY_POINT * 1000000 / rate;

34 while ((c = getc(infile)) != EOF){

35 putc(c,stdout);

36 fflush(stdout);

37 bits_read += 8;

38 if (bits_read > DELAY_POINT){

39 usleep(delay_time);

40 bits_read = 0;

41 }

42 }

43 fclose(infile);

44 }

Figure 3. Slowcat source. The stop-list slice eliminates the argument processing. The elided source
is noted between the starred lines

in the sample. Thus, these results may not extend
to these domains. The sample size assuages the con-
cern that the sample does not represent ‘typical’ pro-
grams. The slice selection threat is assuaged by taking
all slices; this eliminates concerns that a bias may be
introduced by a programmer selected criterion. How-
ever, it does raise the concern that computing all slices
is not representative of engineering activity. In this
case we argue that, as our sample comprises all slices,
it would include any slice chosen at random.

The only internal threat to these results is errors
that may be in CodeSurfer itself or the stop-list exten-
sion, thereby compromising the data. CodeSurfer is a
mature ‘industrial strength’ tool and the extension was
carefully checked and tested.

7 Related Work

Previous work has also considered ways to reduce
and refine slices, this section considers previous ap-
proaches to the problem. First, the SeeSlice [3] sys-
tem has the ability to limit the graph edge distance
considered by a slicer. The distance limitation per-
mits the programmer to ‘drill down’ into a specific area
(distance) of interest. Our work would integrate nicely
into the CodeSurfer or SeeSlice environments. The only
enhancement required would be to tell the underlying
slicing engines to ignore selected data dependences.

The canto maintenance environment of Antoniol,
et al. [2] uses an incremental technique to integrate
software and architecture. canto can be used to con-

struct stop-list slices, although it was not designed to
do so. The construction of the slice is controlled by the
programmer. We just provide the stop-list slice.

Orso, et al., [16] use an incremental technique to ex-
pand slices in steps by using types to elide subtle data
dependences and statements. The contribution of this
work is a more accurate slice that regards the semantic
information contributed by the data types of the vari-
ables under consideration. Our distinction from it is
that we are not refining the slice to be more accurate;
we are eliminating information to assuage information
overload.

Program dicing uses the information that some vari-
ables fail some tests, whilst other variables pass all
tests, to automatically identify a set of statements
likely to contain the bug [14]. A program dice is ob-
tained using set operations on backward program slices.
Dices relate to this work insofar as they eliminate state-
ments from program slices.

Decomposition slice equivalence can be used to sig-
nificantly reduce the number of slices a programmer
needs to comprehend, by forming equivalence classes

of slices that were exactly the same, regardless of the
slice criteria [9]. The slices computed by this technique
are still large. The current work enhances the reduc-
tion by further reducing the size of the slice that must
be comprehended.

Steindl’s work on a data flow-aware programming
environment, supports among other things, the ability
for the programmers to ‘disable’ selected aliases if ‘he
knows (by some oracle) that two variables will never
be aliases’ [17]. Similarly, the set of potential dynamic
types can be restricted. At the lowest level individual
dependence can be excluded.

Steindl also describes a bidirectional feedback ap-
proach in which not only does the tool feed information
in the programmer, but the programmer feeds infor-
mation back to the tool [17]. Such an approach would
work well with stop-list slicing where, when consider-
ing a slice, a programmer may gain insights on variables
that are not of interest.

The closest previous work to stop-list slicing is
Krinke’s work on barrier slicing, which allows stop

points to be specified [13] within the System Depen-
dence Graph. Slicing stops when it reaches a stop-
point or barrier. Stop-list slicing can be implemented
in terms of barrier slicing by placing barriers at all as-
signments to a variable.

Therefore, stop-list slicing can be viewed as high
level a method for specifying barriers for the barrier
slicing method. That is, the programmer simply spec-
ifies program variables of interest so that the stop-
list forms a part of the slicing criterion, whereas with
(pure) barrier slicing, the programmer has to consider
the dependence graph and the locations at which to
introduce barriers.

8 Conclusions and Future Work

The central premise of slicing is that all variables are
not of equal importance for all tasks. Stop-list slicing
develops this premise: there are certain idioms and pat-
terns that are repeatedly used and can be considered
as background noise in a comprehension environment.
Examples of these are for-statements and their asso-
ciated counter and program command-line argument
processing code.

The paper used this motivation to introduce an aug-
mented slicing criterion and associated slicing tech-
nique that allows uninteresting computations to be
identified and removed from a slice. ‘Stop-list slic-
ing’ approach was evaluated in three ways: through
detailed qualitative case study, through quantitative
case study for a ‘typical’ choice of stop-lists, and by a
large scale empirical study for maximal choices of stop-

lists. The results indicate that large reductions in slice
size are possible.

One thread of future work will consider analytical
ways to obtain stop-list variables. A possibility in this
instance is using the variable classification from decom-
position slicing [10]. In a decomposition slice, variables
are classified as changeable or unchangeable. The un-
changeable variables seem to be obvious candidates for
a stop-list. In the wordcount example, the variable
c is unchangeable with respect to the (maximal) de-
composition slice on nw. The unchangeable variables
are used in other computations and thus cannot be
changed. The variable inword is changeable with re-
spect to this decomposition. However, inspecting the
graph of decomposition slices ordered by is-contained-

in reveals that the slice on inword is properly contained
in the decomposition slice in nw. The variables defin-
ing decomposition slices that are properly contained in
the slice of interest may be likely candidates for the
stop-list.

Other future work will consider generalization of
stop-list slicing. For example, both stop-list slicing and
Krinke’s barrier slicing suggest the possibility of ‘pred-
icate slicing’ in which a predicate P is used to deter-
mine if a slice should stop. Predicates could be defined
in terms of local information. For example, P might
specify a single dependence to be ignored, the set of
all dependence through a particular point, all depen-
dences related to some variables, or a combination of
these and other techniques. Predicates could also be
defined in terms of non-local information. For exam-
ple, based on the program’s input. This would require
a combination of forward and backward conditioning
[7, 8].

References

[1] G. Amdahl. Validity of the single processor approach
to achieving large-scale computing capabilities. In
AFIPS Conference Proceedings, volume 30, pages 483–
485, 1967.

[2] G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, S. Zan-
fei, and E. Merlo. Program understanding and main-
tenance with the canto environment. In ICSM ’97:
Proceedings of the International Conference on Soft-
ware Maintenance, page 72. IEEE Computer Society,
1997.

[3] T. Ball and S. Eick. Visualizing program slices. In
Proceedings of the Tenth International Symposium on
Visual Languages, 1994.

[4] D. Binkley and M. Harman. Locating dependence
clusters and dependence pollution. In 21st IEEE Inter-
national Conference on Software Maintenance, pages
177–186, Los Alamitos, California, USA, 2005. IEEE
Computer Society Press.

[5] D. W. Binkley and M. Harman. A survey of empirical
results on program slicing. Advances in Computers,
62:105–178, 2004.

[6] R. W. Buccigrossi and E. P. Simoncelli. EP-
WIC: Embedded Predictive Wavelet Image Coder.
http://www.cns.nyu.edu/ eero/EPWIC/.

[7] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned
program slicing. Information and Software Technology
Special Issue on Program Slicing, 40(11 and 12):595–
607, 1998.

[8] S. Danicic, M. Daoudi, C. Fox, M. Harman, R. M.
Hierons, J. Howroyd, L. Ouarbya, and M. Ward. Con-
sus: A lightweight program conditioner. Journal of
Systems and Software, 77(3):241–262, 2004.

[9] K. Gallagher and D. Binkley. An empirical study of
computation equivalence as determined by decomposi-
tion slice equivalence. In Proceedings of the 10th Work-
ing Conference on Reverse Engineering, WCRE–03,
2003.

[10] K. B. Gallagher and J. R. Lyle. Using program slic-
ing in software maintenance. IEEE Transactions on
Software Engineering, 17(8):751–761, August 1991.

[11] Grammatech Inc. The codesurfer slicing system, 2002.
[12] S. Horwitz, T. Reps, and D. Binkley. Interprocedural

slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12(1):35–46,
January 1990.

[13] J. Krinke. Barrier slicing and chopping. In IEEE Inter-
national Workshop on Source Code Analysis and Ma-
nipulation (SCAM 2003), pages 81–87, Los Alamitos,
California, USA, Sept. 2003. IEEE Computer Society
Press.

[14] J. R. Lyle and M. D. Weiser. Automatic program bug
location by program slicing. In Proceeding of the Sec-
ond International Conference on Computers and Ap-
plications, pages 877–882, Peking, China, June 1987.

[15] T. Pedersen.
www.d.umn.edu/˜ tpederse/Group01/wordnet.html.

[16] A. Orso, S. Sinha, and M. J. Harrold. Incremental slic-
ing based on data-dependence types. In Proceedings of
the IEEE International Conference on Software Main-
tenance (ICSM 2001), pages 158–167, Firenze, Italy,
november 2001.

[17] C. Steindl. Benefits of a data flow-aware programming
environment. In Workshop on Program Analysis for
Software Tools and Engineering, pages 105–109, 1999.

[18] C. J. Van Rijsbergen. Information Retrieval. Butter-
worths, London, 1979.

[19] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10:352–357, July 1984.

