
Evaluating C++ Design Pattern Miner Tools

Lajos Fülöp, Tamás Gyovai and Rudolf Ferenc
University of Szeged, Department of Software Engineering

evosoft Hungary Ltd.
{flajos|ferenc}@inf.u-szeged.hu

tamas.gyovai@evosoft.com

Abstract

Many articles and tools have been proposed over the
years for mining design patterns from source code. These
tools differ in several aspects, thus their fair comparison is
hard. Besides the basic methodology, the main differences
are that the tools operate on different representations of the
subject system and that the pattern definitions differ as well.

In this paper we first provide a common measurement
platform for three well-known pattern mining systems,
Columbus, Maisa and CrocoPat. Then we compare these
tools on four C++ open-source systems: DC++, WinMerge,
Jikes and Mozilla. Columbus can discover patterns from the
C++ source code itself, while Maisa and CrocoPat require
the representation of a software system in a special textual
format, so we extended Columbus to provide the common
input for the two other tools.

We compared these tools in terms of speed, memory con-
sumption and the differences between the hits. While the
first two aspects showed comparable results, the recogni-
tion capabilities were quite diverse. This is probably due to
the significant difference in how the patterns to be recog-
nized and formalized by the tools. Therefore we conclude
that a more precise and formal description of design pat-
terns would be desirable.

Keywords

Design pattern mining, Tool evaluation, Columbus,
Maisa, CrocoPat, Program understanding

1 Introduction

Design patterns are well-known structures in the soft-
ware development community. They describe good
and well-tried solutions for common recurring problems.
Gamma et. al. [12] collected several object oriented design
patterns, and they gave an informal definition for them. It is

very important that these definitions were informal, because
this way a pattern can be used in a wider context. Due to
the imprecise pattern definitions the implemented structures
based on them could vary in different contexts. Design pat-
terns also differ in the aspect that they are used intentionally
or only in a casual way. A programmer can apply a design
pattern, without actually knowing about it.

Design patterns are employed in many areas of software
development. Originally, their main aim was to develop bet-
ter software systems by using good solutions. Another good
property of design patterns is, that their documentation in a
software system can simplify maintenance and program un-
derstanding. This is especially true for large software sys-
tems. Unfortunately, the developers usually do not provide
this documentation, so there is a big need to discover design
patterns from source code. Therefore, in the past years var-
ious design pattern miner tools have been developed. These
tools differ in several aspects.

One of the important aspects is the programming lan-
guage. There are tools for discovering patterns from Java
source code like Ptidej [13, 21] and Fujaba [11], and tools
also exist for mining patterns from C++ code like Colum-
bus [2, 9]. Certain tools like CrocoPat [3] and Maisa [20]
work based on special own textual format which describe
facts about the source code needed to find design patterns.
These tools are general, because they can work on any pro-
gramming language, only the appropriate textual input has
to be prepared from the source code.

Another aspect is the method used to discover design pat-
terns, which can be quite diverse. Columbus uses graph
matching, while Maisa solves constraint satisfaction prob-
lems (CSP). CrocoPat has a new method to find structures
in large graphs, it makes an effective representation of rela-
tions in graphs. Other special and interesting methods also
exist, like pattern inference, which was presented by Tonella
and Antoniol [22].

Our aim in this article was to compare three design pat-
tern miner tools: Columbus, Maisa and CrocoPat. We chose
these tools, because it was possible to prepare a common



input for them with our front end, Columbus. Our previous
work enabled us to provide the input for Maisa [10], while
in case of CrocoPat we created a new plug-in for Columbus
which is able to prepare the appropriate input. Finally, the
tools have been compared in three aspects: differences be-
tween the hits, speed and memory requirements. We think
that these are the most important aspects in a design pattern
miner tool. We did not analyze if a found design pattern hit
is true or false, we examined these tools only with the con-
sideration of structural hits and differences in this aspect.

We will proceed as follows. In Section 2, we will discuss
some works similar to ours. In Section 3 we will introduce
the design pattern miner tools, which were compared. Sec-
tion 4 describes our comparison approach, and our results
are presented in Section 5. Finally, in Section 6 we will
present some conclusions and outline directions for future
work.

2 Related Work

In this section we show some similar works to ours, and
we also present new and interesting methods in the area of
design pattern mining.

In our previous work we have presented a method to dif-
ferentiate true and false hits [8]. We employed machine
learning methods to filter out false design pattern hits. First,
we ran our design pattern miner tool that discovers patterns
based on structural descriptions. Afterwards, we classified
these hits as being true or false, and finally we calculated
predictive information for the hits. We trained a decision
tree based on classified values and on the predictive infor-
mation, from which we were able to mine true design pat-
tern hits more accurately.

Design pattern detection was also accomplished by the
integration of two existing tools – Columbus [9] and
Maisa [20] – in our previous work [10]. This method com-
bined the extraction capabilities of the Columbus reverse
engineering system with the pattern mining ability of Maisa.
First, the C++ code was analyzed by Columbus. Then the
facts collected were exported to a clause-based design nota-
tion understandable for Maisa. Afterwards, this file was an-
alyzed by Maisa, and instances were searched that matched
the previously given design pattern descriptions. Maisa ap-
proached the recognition problem as a constraint satisfac-
tion problem. We will get back to this method in Sec-
tion 3.1.

Beyer et. al. [3, 4] have developed a system that is able to
work with large graphs effectively. The effectiveness of the
system is based on binary decision diagrams which repre-
sent the relations compactly. They have developed the rela-
tion manipulation language (RML) for manipulating n-ary
relations and a tool implementation (CrocoPat) that is an
interpreter for the language. The RML language is very ex-

pressive thus it is able to describe design patterns, design
metrics or other structures. In section 3.2 we will present
this tool in detail.

Arcelli et. al. [1] proposed three categories for design
pattern mining tools, considering the information which
was used during the detection process. These categories are
the “entire” representation of design patterns, the minimal
set of key structures that a design pattern consists of, and the
sub-components of design patterns. They have dealt with
the last category, and two tools concerning this, FUJABA
and SPQR were introduced and compared. The base of the
comparison was how a tool decomposes a design pattern
into smaller pieces. The conclusion was, that the decompo-
sition methods of the two examined systems are very simi-
lar, and finally they argued the benefits of sub-patterns.

Guéhéneuc et. al. [14] introduced a comparative frame-
work for design recovery tools. The purpose of the authors’
framework was not to rank the tools but to compare them
with qualitative aspects. This framework contained eight
aspects: Context, Intent, Users, Input, Technique, Output,
Implementation and Tool. These aspects were sorted into 53
criteria which were demonstrated on two systems, Ptidej
and LiCoR. The major need for this framework is that, al-
though there are a lot of design recovery tools, the compari-
son between them is very hard due to the fact that they have
very different characteristics in terms of representation, out-
put format and implementation techniques. This framework
provides an opportunity for comparing not only similar sys-
tems, but also systems, which are different. We note that
this comparison differs from ours because we compare sys-
tems in a practical way. Namely, we want to show and com-
pare how many patterns a tool can find, and how much time
and memory it needs for searching, while their comparison
is rather theoretical, it does not compare the discovering ef-
fectiveness of tools.

Kaczor et. al. [16] proposed a bit-vector algorithm for
design pattern identification. The algorithm initialization
step converts the design pattern motif and the analyzed pro-
gram model into strings. To model the design patterns
and the analyzed program, six possible relations can be
used between elements: association, aggregation, compo-
sition, instantiation, inheritance and dummy. The authors
gave an efficient Iterative Bit-vector Algorithm to match
the string representation of the design patterns and the
analyzed program. They compared their implementation
with explanation-based constraint programming and metric-
enhanced constraint programming approaches.

Costagliola et. al. [6] based their approach on a visual
language parsing technique. The design pattern recogni-
tion was reduced to recognizing sub-sentences in a class
diagram, where each sub-sentence corresponds to a design
pattern specified by an XPG grammar. Their process con-
sist of two phases: the input source code is translated into a

2



class diagram represented in SVG format; then DPRE (De-
sign Pattern Recovery Environment) recovers design pat-
terns using an efficient LR-based parsing approach.

Tonella and Antoniol [22] presented an interesting ap-
proach to recognize design patterns. They did not use a
library of design patterns as others did but, instead, discov-
ered recurrent patterns directly from the source code. They
employed concept analysis to recognize groups of classes
sharing common relations. The reason for adapting this ap-
proach was that a design pattern could be considered as a
formal concept. They used inductive context construction
which then helped them to find the best concept.

3 Participating Systems

In this study we compared the design pattern mining
capabilities of three tools, namely Maisa, CrocoPat and
Columbus. Maisa and CrocoPat cannot analyze source
code, so we extended our Columbus framework (whose
original task was to analyze C++ source code and build
an ASG – Abstract Semantic Graph representation from
it) to produce input files for the two tools. So, our study
was based on the same input facts, this way ensuring a
fair-minded comparison, because eventual parsing errors af-
fected all tools in the same way. We illustrate this process
in Figure 1.

In the next sections we will introduce the compared
design pattern miner tools. We will show every tools’
design pattern description language on the well-known
Factory Method design pattern.

3.1 Maisa

Maisa is a software tool [20] for the analysis of software
architectures developed in a research project at the Univer-
sity of Helsinki. The key idea in Maisa is to analyze design
level UML diagrams and compute architectural metrics for
early quality prediction of a software system.

In addition to calculating traditional (object-oriented)
software metrics such as the Number of Public Methods,
Maisa looks for instances of design patterns (either generic
ones such as the well-known GoF patterns or user-defined
special ones) from the UML diagrams representing the soft-
ware architecture. Maisa also incorporates metrics from dif-
ferent types of UML diagrams and execution time estima-
tion through extended activity diagrams.

Maisa uses constraint satisfaction [17], which is a
generic technique that can be applied to a wide variety of
tasks, in this case to mining patterns from software archi-
tectures or software code. A constraint satisfaction problem
(CSP) is given as a set of variables and a set of constraints
restricting the values that can be assigned to those variables.
Maisa’s design pattern description language is very similar

to Prolog. Figure 2 shows the description of the Factory
Method pattern in Maisa.

class(”Product”).
class(”ConcreteProduct”).
extends(”ConcreteProduct”,”Product”).
!same(Product,ConcreteProduct).
class(Creator).
method(”Creator.FactoryMethod()”).
has(”Creator”,”Creator.FactoryMethod()”).
returns(”Creator.FactoryMethod()”,”Product”).
class(”ConcreteCreator”).
extends(”ConcreteCreator”,”Creator”).
method(”ConcreteCreator.FactoryMethod()”).
has(”ConcreteCreator”,”ConcreteCreator.FactoryMethod()”).
creates(”ConcreteCreator.FactoryMethod()”,”ConcreteProduct”).
implements(”ConcreteCreator.FactoryMethod()”,”Creator.FactoryMethod()”).
returns(”ConcreteCreator.FactoryMethod()”,”Product”).
!same(Creator,ConcreteCreator).
!same(Product,Creator).
!Object.
binded(Object).
same(Product,Object).

Figure 2. Factory Method pattern in Maisa

3.2 CrocoPat

In Section 2 we already introduced the CrocoPat tool [3]
briefly, and now we will describe it in detail. First we will
show how the CrocoPat interpreter works, and then we will
introduce the relational manipulation language. Finally we
will also mention the binary decision diagrams (BDD).

Previously, we mentioned that CrocoPat is an interpreter,
and it executes RML programs. First, CrocoPat reads the
graph representation in rigi standard file format (RSF) [19]
from the standard input. Afterwards, the RML description
is processed and a BDD representation is created from it.
Finally, the RML program is executed and an RSF output is
produced.

The RML (Relational Manipulation Language) is very
similar to logic programming languages like Prolog, but it
contains techniques of imperative programming languages
too. Hence, it is very expressive and it can describe design
patterns among other structures. Unfortunately, we have not
found any design pattern library in RML, so we had to cre-
ate the descriptions of the patterns by ourselves. Figure 3
shows the Factory Method description in CrocoPat.

To sum up, the main goals of Beyer et. al. [4] was effi-
ciency and easy integration with other tools when they de-
veloped CrocoPat. Integration was facilitated by the im-
port and export of relations in the simple Rigi Standard For-
mat (RSF), and efficiency was achieved by representing the
relations as binary decision diagrams [5].

3



Source
Columbus
FrontEnd ASG CAN2Maisa

CAN2Dpm

CAN2CrocoPat File

File

result of Columbus

result of Maisa

result of CrocoPat

Maisa

CrocoPat

Columbus Framework

Figure 1. Common framework

AbstractClass(X) := CLASS(X) & ABSTRACT(X);
Product(X) := AbstractClass(X);
ConcreteProduct(Cpr,Pr) := CLASS(Cpr) & Product(Pr) &

TC(INHERITANCE(Cpr,Pr));

Creator(Cr,Pr) := AbstractClass(Cr) & ASSOCIATION(Cr,Pr) & Product(Pr) &
Cr != Pr;

CreatMethods(Cr,Pr,M) := Creator(Cr,Pr) & HASMETHOD(Cr,M);
CreatorFM(Cr,Pr,FM) := CreatMethods(Cr,Pr,FM) & VIRTUAL(FM) &

PUREVIRTUAL(FM) & RETURNS(FM,Pr);
CreatorAM(Cr,Pr,AM,FM) := CreatMethods(Cr,Pr,AM) &

CreatorFM(Cr,Pr,FM) & CALLS(AM,FM);

ConcreteCreator(Ccr,Pr,Cr,Cpr) := CLASS(Ccr) & ASSOCIATION(Ccr,Pr) &
Product(Pr) & Creator(Cr,Pr) & TC(INHERITANCE(Ccr,Cr)) &
ConcreteProduct(Cpr,Pr) & Ccr != Pr;

CCreatorFM(Ccr,Pr,Cpr,M) := ConcreteCreator(Ccr,Pr, ,Cpr) &
HASMETHOD(Ccr,M) & VIRTUAL(M) & !PUREVIRTUAL(M) &
RETURNS(M,Pr) & CREATES(M,Cpr);

FactoryMethod(Prod,Creat,CProd,CCreat,CreatFM,CreatAM,CcreatFM) :=
Product(Prod) &
Creator(Creat,Prod) &
ConcreteProduct(CProd,Prod) &
ConcreteCreator(CCreat,Prod,Creat,CProd) &
CreatorFM(Creat,Prod,CreatFM) &
CreatorAM(Creat,Prod,CreatAM,CreatFM) &
CCreatorFM(CCreat,Prod,CProd,CcreatFM) &
CProd != CCreat &
Creat != CProd;

Figure 3. Factory Method pattern in CrocoPat

3.3 Columbus

Columbus is a reverse engineering framework, which has
been developed in cooperation between FrontEndART Ltd.,
the University of Szeged and the Software Technology Lab-
oratory of Nokia Research Center. Columbus is able to an-
alyze large C/C++ projects and to extract facts from them.
The main motivation to develop the Columbus system has
been to create a general framework to combine a number of
reverse engineering tasks and to provide a common inter-
face for them. Thus, Columbus is a framework tool which
supports project handling, data extraction, data representa-
tion, data storage, filtering and visualization. All these ba-
sic tasks of the reverse engineering process for the specific
needs are accomplished by using the appropriate modules

(plug-ins) of the system. Some of these plug-ins are pro-
vided as basic parts of Columbus, while the system can be
extended to meet other reverse engineering requirements as
well. This way we have got a versatile and easily extendible
tool for reverse engineering.

One of the plug-ins is CAN2Dpm, which discovers
design patterns. The design patterns were described in
DPML (Design Pattern Markup Language) files, which
store information about the structures of the design patterns.
CAN2Dpm recognizes design patterns in the following way.
First, Columbus analyzes the source code and builds an Ab-
stract Semantic Graph (ASG) that contains all the informa-
tion about the source code. Then CAN2Dpm loads a DPML
file which also basically describes a graph. Afterwards it
tries to match this graph to the ASG using our algorithm
described in previous work [2]. Figure 4 shows the Factory
Method description in Columbus.

The other two plug-ins of Columbus shown in Figure 1,
CAN2Maisa and CAN2CrocoPat, are responsible for creat-
ing the input files for Maisa and CrocoPat, respectively.

4 Comparison Approach

In this section we will present the comparison approach
of the investigated design pattern mining tools concerning:

• The found design pattern instances. Differences are
caused by several reasons. The different tools use dif-
ferent techniques to define and describe what is a de-
sign pattern. The recognition algorithms are also dif-
ferent. The comparison of the found design pattern
instances is just one of the several kinds of evaluation
that should be considered, therefore we measure other
important characteristics like speed and memory.

• Speed. Speed is measured by the amount of the time
taken by the tool to perform the selected design pattern
mining on the selected C++ project. The differences
in the time of the measuring process in the examined
systems are described in Section 5.2.

4



<?xml version=’1.0’?>
<!DOCTYPE DesignPattern SYSTEM ’dpml-1.6.dtd’>

<DesignPattern name=’Factory Method’>
<Class id=’id10’ name=’Creator’ isAbstract=’true’>

<Association ref=’id30’ />
<Operation id=’id11’ name=’FactoryMethod’ kind=’normal’

isVirtual=’true’ isPureVirtual=’true’>
<hasTypeRep ref=’id50’/>

</Operation>
<Operation id=’id12’ name=’AnOperation’ kind=’normal’>

<calls ref=’id11’/>
<hasTypeRep ref=’id54’/>

</Operation>
</Class>

<Class id=’id20’ name=’ConcreteCreator’>
<Base ref=’id10’ />
<Association ref=’id30’ />
<Operation id=’id21’ name=’FactoryMethod’ kind=’normal’

isVirtual=’true’ isPureVirtual=’false’>
<creates ref=’id40’ />
<hasTypeRep ref=’id50’/>

</Operation>
</Class>

<Class id=’id30’ name=’Product’ isAbstract=’true’>
</Class>

<Class id=’id40’ name=’ConcreteProduct’ isChangeable=’true’ >
<Base ref=’id30’ />

</Class>

<TypeRep id=’id1’/>

<TypeRep id=’id50’>
<TypeFormerPtr/>
<TypeFormerFunc>

<hasReturnTypeRep ref=’id52’/>
</TypeFormerFunc>

</TypeRep>

<TypeRep id=’id52’>
<TypeFormerType ref=’id30’/>

</TypeRep>

<TypeRep id=’id54’>
<TypeFormerFunc>

<hasReturnTypeRep ref=’id56’/>
</TypeFormerFunc>

</TypeRep>

<TypeRep id=’id56’>
<TypeFormerType ref=’id1’/>

</TypeRep>
</DesignPattern>

Figure 4. Factory Method pattern in DPML

• Memory usage. Memory usage is another performance
measure. We measured the total memory required for
the design pattern mining task. It was complicated be-
cause the memory usage of CrocoPat is fixed, and only
the Columbus source code was available to extend it to
provide us with memory usage statistics. The applied
memory measuring method for the examined tools are
described in Section 5.3.

We did the comparison on four open source small-to-
huge systems, to make the benchmark results independent
from system characteristics like size, complexity and appli-

cation domain. These four real-life, freely available C++
projects are the following.

• DC++ 0.687. Open-source client for the Direct Con-
nect protocol that allows to share files over the internet
with other users [7].

• WinMerge 2.4.6. Open-source visual text file differen-
tiating and merging tool for Win32 platforms [23].

• Jikes 1.22-1. Compiler that translates Java source files
as defined in The Java Language Specification into the
byte-coded instruction set and binary format defined in
The Java Virtual Machine Specification [15].

• Mozilla 1.7.12. All-in-one open source Internet appli-
cation suite [18]. We used a checkout dated March 12,
2006.

Table 1 presents some information about the analyzed
projects. The first row shows how many source and header
files were analyzed in the evaluated software systems. The
second row lists the size of these source and header files in
megabytes.

The last two rows were calculated by the metric calcu-
lator plug-in of Columbus, and gives information about the
total lines of code (LOC) and the number of classes. Under
the term of LOC we mean every line in source code that is
not empty and is not a comment line (also known as “logical
lines of code”).

Size info. DC++ WinMerge Jikes Mozilla
No. of files 338 512 74 11,325
Size (MB) 3 5.3 3 127
LOC 12,727 49,809 52,169 1,288,869
No. of classes 68 174 258 5,467

Table 1. Size information of the projects

All tests are run on the same computer so the measured
values are independent from the hardware and thus the re-
sults are comparable. Our test computer had a 3 GHz Intel
Xeon processor with 3 GB memory. In the next chapter we
will describe our benchmark results and evaluate them in
detail.

5 Results

In this section we will present our results concerning
the differences between the design pattern instances found,
the running-time and the memory requirements. In the
next subsection we will start with the discovered pattern in-
stances, and then compare the time efforts of the tools. Fi-
nally, we will show the memory requirements of the design
pattern mining tools.

5



5.1 Discovered Pattern Instances

Design Pattern Columbus Maisa CrocoPat
Abstract Factory 0 0 0
Adapter Class 0 2 0
Adapter Object 0 0 0
Bridge 0 - 0
Builder 0 0 0
Chain Of Responsibility 0 - 0
Decorator 0 - 0
Factory Method 0 0 0
Iterator 0 0 0
Mediator 0 0 0
Prototype 0 0 0
Proxy 0 0 0
Singleton 0 0 0
State 14 - 14
Strategy 14 - 14
Template Method 0 - 0
Visitor 0 0 0

Table 2. DC++ hits

In this section we will present our experiments regard-
ing pattern instances found by the compared design pattern
miner tools. Unfortunately, Maisa did not contain descrip-
tions of the patterns Bridge, Chain of Responsibility, Deco-
rator, State, Strategy and Template Method (the results for
these are marked with dashes in our tables). We have in-
vestigated the differences between the tools manually, so
we checked and compared the found instances and the de-
scriptions of design patterns in all of the cases. We will not
explain every difference, because there is not enough space
for it, but we will present the most common causes.

First, we summarize our results on DC++ in Table 2.
This was a small software system, so it did not contain too
many design pattern instances. Maisa found two Adapter
Classes, while CrocoPat and Columbus found none. This
is due to the fact that the definition of the Adapter Class
in Maisa differed from those in Columbus and CrocoPat.
In Maisa the Target participant class was not abstract and
the Request method of the Target class was not pure vir-
tual, while in Columbus and CrocoPat these features were
requested. We have examined the two Adapter Class hits
in Maisa, and we have found that the Targets were not ab-
stract in these cases and the Request operations were not
pure virtual. Columbus and CrocoPat found 14 State and 14
Strategy design pattern instances. The cause of the identical
number of hits is that the State and Strategy patterns share
the same static structure, so their description in the tools
were the same as well [2].

Table 3 shows the results of the tools in the case of Win-
Merge. Maisa found two more Adapter Objects in Win-
Merge than Columbus. In the first case the difference was
caused by the fact that the Request method of a participant
Adapter Object class was defined virtual in Columbus while

Design Pattern Columbus Maisa CrocoPat
Abstract Factory 0 0 0
Adapter Class 0 0 0
Adapter Object 3 5 6
Bridge 0 - 0
Builder 0 1 0
Chain Of Responsibility 0 - 0
Decorator 0 - 0
Factory Method 0 0 0
Iterator 0 0 0
Mediator 0 0 0
Prototype 0 0 0
Proxy 0 0 0
Singleton 0 0 0
State 3 - 10
Strategy 3 - 10
Template Method 2 - 42
Visitor 0 0 0

Table 3. WinMerge hits

Maisa did not have this precondition. In the second case the
found pattern in Maisa had a Target participant that was not
abstract, which was a requirement in Columbus. If we re-
laxed the description of this pattern in Columbus, it found
these two instances too. The best solution would be if an ex-
act definition existed for this pattern in both tools. CrocoPat
found six Adapter Object instances, while Columbus found
only three. The cause was that if Columbus found a pattern
instance with certain participant classes and another pattern
instance existed with the same participant classes but par-
ticipating with different methods, Columbus considered it
as being the same pattern. This is a very important differ-
ence between Columbus and CrocoPat, so we will refer to
this difference several times. Maisa found a Builder in Win-
Merge but the two other tools did not, because in Maisa the
Builder pattern representation did not contain the Director
participant while the two other tools did contain it. In the
case of State, Strategy and Template Method the differences
were due to that Columbus counted pattern instances partic-
ipating with different methods only once, like in the case of
Adapter Object.

Next, we will describe our experiments on design pat-
tern instances found in Jikes (see Table 4). Maisa found an
Adapter Class, while Columbus and CrocoPat did not. The
reason was the same as in the case of DC++, namely that in
Maisa the Target participant class was not abstract and the
Request method of the Target class was not pure virtual but
in Columbus and CrocoPat these features were required. In
the case of Adapter Object Maisa missed a lot of hits, while
Columbus and CrocoPat could discover a lot of design pat-
tern instances. It looked like CrocoPat found more instances
because Columbus counted repeating patterns with different
operations only once. Actually, these tools found the same
pattern instances. In Maisa the Builder pattern representa-
tion did not contain the Director participant, so Maisa found

6



Design Pattern Columbus Maisa CrocoPat
Abstract Factory 0 0 0
Adapter Class 0 1 0
Adapter Object 78 10 94
Bridge 0 - 0
Builder 0 1 0
Chain Of Responsibility 0 - 0
Decorator 0 - 0
Factory Method 0 0 0
Iterator 0 0 0
Mediator 0 4 0
Prototype 84 0 84
Proxy 53 74 66
Singleton 0 0 0
State 170 - 334
Strategy 170 - 334
Template Method 4 - 4
Visitor 0 23 0

Table 4. Jikes hits

Design Pattern Columbus Maisa CrocoPat
Abstract Factory 5 1 9
Adapter Class 0 59 0
Adapter Object 65 57 247
Bridge 880 - 1100
Builder 0 11 0
Chain Of Responsibility 0 - 0
Decorator 0 - 0
Factory Method 0 67 0
Iterator 0 0 0
Mediator 0 2 0
Prototype 83 25 901
Proxy 0 1 0
Singleton 8 0 20
State 722 - 7662
Strategy 722 - 7662
Template Method 279 - 522
Visitor 0 30 0

Table 5. Mozilla hits

an incomplete Builder instance in Jikes. CrocoPat did not
find any Mediator in Jikes, while Maisa found four. It is due
to that Maisa described Mediator in a very special way, so
that it contained a Mediator with two Colleagues, but Con-
crete Mediators were missed. The description of Mediator
in CrocoPat required a Mediator abstract class with a child
ConcreteMediator class, too. In the case of Proxy, every
tool discovered 53 instances, but CrocoPat counted also re-
peating patterns with different methods. Maisa found 21
instances more because it did not require an abstract Proxy
participant class in the Proxy design pattern. In the case of
State and Strategy it seemed that Columbus found less de-
sign pattern instances but it counted every repeated pattern
with different methods only once. Maisa found 23 Visitor
patterns, that the two other tools did not. This is due to the
loose description of this pattern in Maisa.

Table 5 shows our experiments in the case of Mozilla. A

lot of design pattern instances were found, like in the case
of State, where CrocoPat found 7662 and Columbus discov-
ered 722 instances. This huge difference was due to the fact
that the found design pattern instances were not grouped by
CrocoPat, that is, if a design pattern contained a class with
child classes where the child classes could be of arbitrary
number, every repeated child class with the common par-
ent appeared as a new hit. Columbus recognized this situa-
tion and handled it correctly. In the case of Adapter Class
the causes of differences were the same as in Jikes and in
DC++ examined earlier. Columbus did not count repeated
instances in the case of Adapter Object, so it actually found
the same instances as CrocoPat, but Maisa missed some
because of its different pattern description. CrocoPat and
Columbus found the same instances of the Bridge pattern
but Columbus counted the repeating patterns with different
operations only once. Maisa found false Builder instances
again, because the description of this pattern did not contain
the Director participant class. Maisa found Factory Meth-
ods instances while the two other tools did not. This is due
to that the two other tools defined Factory Method with an
abstract Product and an abstract Creator participant class,
while Maisa did not require these participants to be abstract.
CrocoPat did not find any Mediator instance in Mozilla,
while Maisa discovered two instances. This is due to that
Maisa described Mediator in a very special way, so it con-
tained a Mediator with two Colleagues, but Concrete Me-
diators were missing. In the case of Prototype, Singleton,
State, Strategy and Template Method the differences were
caused again by that CrocoPat counted every repeated pat-
tern instance while Columbus counted these repeated ones
with different operations only once.

Because of space limitation we cannot explain every dif-
ference, but we have shown the common reasons. Basically,
the found design pattern instances would be the same in
most of the cases if we could disregard the following com-
mon causes of differences:

• Different definitions of design patterns. We have found
that there were some specific reasons for that the tools
discovered different pattern instances. The main rea-
son was in some cases that a design pattern description
missed a participant like in the case of the Builder pat-
tern in Maisa. In this case the pattern definition did not
contain the director participant, thus the instances dis-
covered by Maisa differed from the results of the other
tools. For example, the results of Maisa in WinMerge
for the Builder pattern differed from those of CrocoPat
and Columbus for this reason.

• Precision of pattern descriptions. Another difference
was how precise and strict the pattern descriptions
were. For example, in the case of Jikes the differences
in the numbers of found Adapter Class instances were

7



caused by the fact that CrocoPat and Columbus defined
the Target as abstract while Maisa did not.

• Differences in algorithms. We have perceived dif-
ferences in the design pattern miner algorithms, too.
Columbus and Maisa counted the repeated instances
with different operations only once while CrocoPat
counted every occurrence.

5.2 Pattern Mining Speed

In this section we will present and compare the speed
performance of the three assessed design pattern miner
tools. We wanted to measure only the search time for pat-
terns, therefore we divided the running time into two parts,
an initialization part and a pattern mining part. Tables 6, 7, 8
and 9 contain the values of the pattern mining time only.
Table 10 contains the initialization time of the tools (time
format: hh:mm:ss).

The design pattern mining time was measured in the fol-
lowing way:

• Columbus. We took into account only the graph match-
ing time, so we did not consider the time while the
ASG was loaded. The graph loading time is presented
in Table 10.

• CrocoPat. In the case of CrocoPat, we have prepared
a small tool which executed CrocoPat and measured
its running time. We measured the time needed for
every pattern mining procedure for every subject soft-
ware system. Next, we also measured the time for the
subject systems with an empty RML program, because
this way we could measure the time necessary to re-
serve the memory and to prepare the BDD represen-
tation (initialization time). These results are shown in
Table 10. Finally, we subtracted the initialization time
from the full running time for every result, and this
way obtained the pattern matching times.

• Maisa. Maisa created statistics for every pattern min-
ing procedure, which contained information about the
time necessary for pattern mining, so we used these
generated statistics. Contrary to CrocoPat, there was
no need to extract the initialization time, because time
values in the generated statistics measured only the
pattern mining phase. However, we also show the ini-
tialization time for Maisa in Table 10.

First we show our results for DC++ (see Table 6). In
this case the required time was very small for every as-
sessed pattern miner tool, therefore they can be considered
as being equal. This is due to the small size of the DC++
system, hence the design pattern instances were discovered
very quickly in this system by all three tools.

Design Pattern Columbus Maisa CrocoPat
Abstract Factory 00:00:00 00:00:00 00:00:00
Adapter Class 00:00:00 00:00:00 00:00:00
Adapter Object 00:00:00 00:00:01 00:00:00
Bridge 00:00:00 - 00:00:00
Builder 00:00:00 00:00:01 00:00:00
Chain Of Responsibility 00:00:00 - 00:00:01
Decorator 00:00:00 - 00:00:00
Factory Method 00:00:00 00:00:00 00:00:01
Iterator 00:00:00 00:00:01 00:00:00
Mediator 00:00:00 00:00:01 00:00:00
Prototype 00:00:00 00:00:00 00:00:00
Proxy 00:00:00 00:00:01 00:00:00
Singleton 00:00:00 00:00:00 00:00:00
State 00:00:00 - 00:00:00
Strategy 00:00:00 - 00:00:00
Template Method 00:00:00 - 00:00:00
Visitor 00:00:00 00:00:00 00:00:00

Table 6. DC++ times

Design Pattern Columbus Maisa CrocoPat
Abstract Factory 00:00:00 00:00:02 00:00:07
Adapter Class 00:00:00 00:00:00 00:00:07
Adapter Object 00:00:00 00:00:17 00:00:08
Bridge 00:00:00 - 00:00:08
Builder 00:00:00 00:00:24 00:00:09
Chain Of Responsibility 00:00:00 - 00:00:08
Decorator 00:00:00 - 00:00:09
Factory Method 00:00:00 00:00:02 00:00:01
Iterator 00:00:00 00:00:21 00:00:01
Mediator 00:00:00 00:00:24 00:00:04
Prototype 00:00:00 00:00:02 00:00:08
Proxy 00:00:00 00:00:22 00:00:14
Singleton 00:00:00 00:00:00 00:00:07
State 00:00:03 - 00:00:08
Strategy 00:00:03 - 00:00:08
Template Method 00:00:01 - 00:00:06
Visitor 00:00:00 00:00:00 00:00:05

Table 7. WinMerge times

The time requirements for discovering patterns in Win-
Merge (see Table 7) and Jikes (see Table 8) were differ-
ent. Columbus was very fast in the case of larger patterns,
because it could filter out [2] a lot of class candidates at
the beginning of the discovering process. Opposite to this,
Columbus was slower in the case of smaller patterns, be-
cause in these cases a lot of class candidates remained for
the detailed discovering process. CrocoPat’s and Maisa’s
time requirements were very balanced.

Finally, Table 9 shows the results for Mozilla. In most
cases, CrocoPat delivered the best results, but in certain
cases Columbus and Maisa were faster. Columbus was slow
when it could filter out only a small amount of class candi-
dates at the beginning of the discovering process. The CSP
algorithm of Maisa was also slow in this case.

Our conclusion was that the best tool regarding speed in
general is CrocoPat, but in some cases Columbus was faster.

8



Design Pattern Columbus Maisa CrocoPat
Abstract Factory 00:00:00 00:00:06 00:00:09
Adapter Class 00:00:00 00:00:04 00:00:07
Adapter Object 00:00:09 00:00:11 00:00:07
Bridge 00:00:00 - 00:00:06
Builder 00:00:08 00:00:59 00:00:07
Chain Of Responsibility 00:00:00 - 00:00:07
Decorator 00:00:00 - 00:00:18
Factory Method 00:00:00 00:00:04 00:00:02
Iterator 00:00:00 00:00:55 00:00:07
Mediator 00:00:00 00:01:05 00:00:12
Prototype 00:04:18 00:00:04 00:00:07
Proxy 00:00:00 00:01:03 00:00:13
Singleton 00:00:00 00:00:00 00:00:11
State 00:04:48 - 00:00:12
Strategy 00:04:48 - 00:00:12
Template Method 00:03:55 - 00:00:06
Visitor 00:00:00 00:00:06 00:00:14

Table 8. Jikes times

Design Pattern Columbus Maisa CrocoPat
Abstract Factory 00:02:32 00:18:21 00:13:43
Adapter Class 00:00:06 00:18:34 00:14:34
Adapter Object 00:04:41 03:07:03 00:13:42
Bridge 04:50:29 - 00:17:20
Builder 01:39:09 04:09:22 00:14:02
Chain Of Responsibility 00:00:07 - 00:13:33
Decorator 00:00:18 - 00:27:40
Factory Method 00:03:03 00:15:56 00:00:02
Iterator 00:00:07 03:54:12 00:14:19
Mediator 00:48:03 04:19:07 00:18:10
Prototype 01:24:55 00:14:21 00:25:49
Proxy 00:00:07 04:41:47 00:27:10
Singleton 00:00:02 00:00:00 00:13:17
State 04:09:20 - 00:20:22
Strategy 04:09:20 - 00:20:22
Template Method 00:14:46 - 00:13:27
Visitor 00:00:07 00:06:56 00:20:45

Table 9. Mozilla times

5.3 Memory requirements

In this section we will introduce and compare the mem-
ory usage of the three compared design pattern miner tools.
We have measured the memory requirements of every de-
sign pattern mining procedure, but we show our results sum-
marized in one table because we have found them very sim-
ilar.

The memory measurement method in the examined sys-
tems was accomplished in the following way:

• Columbus. We have extended the tool, so that it reports
statistics about its memory usage.

• Maisa. Maisa did not report the memory usage in its
statistics, so we measured it by simply monitoring its
peak memory usage on the task manager.

Subject system Columbus Maisa CrocoPat
DC++ 00:00:03 00:00:00 00:00:03
WinMerge 00:00:08 00:00:03 00:00:11
Jikes 00:00:11 00:00:06 00:00:12
Mozilla 00:05:33 00:01:32 00:03:12

Table 10. Initialization times

• CrocoPat. CrocoPat’s memory usage is constant and
can be set as a command line parameter. Therefore, we
created a script that executed CrocoPat iteratively from
1 megabyte reserved memory up to 200 megabytes for
every pattern mining process. We took the smallest
possible value so that the pattern mining process still
completed successfully.

Our experiment proved that the memory usage strongly
depended on the size of the analyzed projects and it was in-
dependent from the searched design patterns. This was true
for every pattern miner tool as it can be seen in Table 11.

Subject system Columbus Maisa CrocoPat
DC++ 37 (19) 10-11 2-3
WinMerge 71 (32) 13-14 10-11
Jikes 51 (26) 13-17 10-14
Mozilla 866 (330) 60-71 125-175

Table 11. Memory requirements in megabytes

In the case of Columbus the reserved memory was very
large compared to the other tools. This is due to the fact
that Columbus is a general reverse engineering framework
and design pattern detection is only one of its many fea-
tures. For this reason it uses an ASG representation, which
contains all information about the source code (including
detailed facts about statements and expressions not needed
for design pattern detection) for all kinds of tasks. Right
now, for technical reasons, the design pattern miner plug-in
of Columbus does not work without the ASG (although it
does not have to use it), but we wish to fix this in the future.
Therefore, we measured the memory needed by Columbus
also without the ASG and showed these numbers in paren-
theses in Table 11.

Note, in the case of CrocoPat and Maisa the reserved
memory was smaller because their input contained only the
information about the source code necessary for pattern de-
tection.

After examining Table 11 we can conclude that in the as-
pect of memory requirement Maisa’s performance was the
best.

9



6 Conclusion and Future Work
In this paper we have presented a comparison of three

design pattern miner tools: Columbus, Maisa and CrocoPat.
We have compared them regarding patterns hits, speed and
memory consumption. We have guaranteed the common in-
put for the tools by analyzing the source code with the front
end of Columbus and by creating plug-ins for producing the
required files for the tools. This way, as a “side effect” of
this work, we have extended our Columbus Reverse Engi-
neering Framework with plug-ins for Maisa and CrocoPat.
We conclude that the fastest tool is CrocoPat, and Maisa re-
quires the least memory, while Columbus is an all-in-one
solution for design pattern detection from C++ source code
with comparable performance to the other two specialized
tools.

Originally, Gamma et. al. [12] defined the design pat-
terns to develop object-oriented applications in forward en-
gineering. Therefore, pattern definitions were informal to
make them easier to use in different languages and con-
texts. Consequently, the design pattern miner tools have
a big problem in common, which is how to define a given
design pattern. In this paper we have shown that the tools
found different design pattern instances in common inputs
mostly because of their different pattern definitions. Hence,
a formal description of design patterns is very desirable.

In the future we plan to create a design pattern catalog
for reverse engineers, where every design pattern will have
a strict and formal description. With this new collection
of design patterns the presented drawbacks in Section 5.1
(different definitions of design patterns, precision of pattern
descriptions and differences in methods) can be avoided.

References

[1] F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato. A Compar-
ison of Reverse Engineering Tools based on Design Pattern
Decomposition. In Proceedings of the 15th Australian Soft-
ware Engineering Conference (ASWEC’05), pages 677–691.
IEEE Computer Society, Feb. 2005.

[2] Z. Balanyi and R. Ferenc. Mining Design Patterns from C++
Source Code. In Proceedings of the 19th International Con-
ference on Software Maintenance (ICSM 2003), pages 305–
314. IEEE Computer Society, Sept. 2003.

[3] D. Beyer and C. Lewerentz. CrocoPat: Efficient pattern
analysis in object-oriented programs. In Proceedings of the
11th IEEE International Workshop on Program Comprehen-
sion (IWPC 2003), pages 294–295. IEEE Computer Society,
2003.

[4] D. Beyer, A. Noack, and C. Lewerentz. Efficient Rela-
tional Calculation for Software Analysis. In Transactions
on Software Engineering (TSE’05), pages 137–149. IEEE
Computer Society, Feb. 2005.

[5] R. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. In Transactions on Computers, pages 677–
691. IEEE Computer Society, Feb. 1986.

[6] G. Costagliola, A. D. Lucia, V. Deufemia, C. Gravino, and
M. Risi. Design Pattern Recovery by Visual Language Pars-
ing. In Proceedings of the 9th Conference on Software
Maintenance and Reengineering (CSMR’05), pages 102–
111. IEEE Computer Society, Mar. 2005.

[7] DC++ Project.
http://sourceforge.net/projects/dcplusplus/

[8] R. Ferenc, Á. Beszédes, L. Fülöp, and J. Lelle. Design Pat-
tern Mining Enhanced by Machine Learning. In Proceed-
ings of the 21th International Conference on Software Main-
tenance (ICSM 2005), pages 295–304. IEEE Computer So-
ciety, 2005.

[9] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy.
Columbus – Reverse Engineering Tool and Schema for C++.
In Proceedings of the 18th International Conference on
Software Maintenance (ICSM 2002), pages 172–181. IEEE
Computer Society, Oct. 2002.

[10] R. Ferenc, J. Gustafsson, L. Müller, and J. Paakki. Recog-
nizing Design Patterns in C++ programs with the integration
of Columbus and Maisa. Acta Cybernetica, 15:669–682,
2002.

[11] The FUJABA Homepage.
http://www.cs.uni-paderborn.de/cs/fujaba/

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns : Elements of Reusable Object-Oriented Software.
Addison-Wesley Pub Co, 1995.

[13] Y.-G. Guéhéneuc and N. Jussien. Using explanations for de-
sign patterns identification. In Proceedings of IJCAI Work-
shop on Modelling and Solving Problems with Constraints,
pages 57–64, Aug. 2001.

[14] Y.-G. Guéhéneuc, K. Mens, and R. Wuyts. A Comparative
Framework for Design Recovery Tools. In Proceedings of
the 10th Conference on Software Maintenance and Reengi-
neering(CSMR’06), pages 123–134. IEEE Computer Soci-
ety, Mar. 2006.

[15] IBM Jikes Project. http://jikes.sourceforge.net/
[16] O. Kaczor, Y.-G. Guéhéneuc, and S. Hamel. Efficient Iden-

tification of Design Patterns with Bit-vector Algorithm. In
Conference on Software Maintenance and Reengineering
(CSMR’06), pages 175–184. IEEE Computer Society, 2006.

[17] A. K. Mackworth. The logic of constraint satisfaction. Artif.
Intell., 58(1-3):3–20, 1992.

[18] The Mozilla Homepage. http://www.mozilla.org/
[19] H. A. Müller, K. Wong, and S. R. Tilley. Understanding

Software Systems Using Reverse Engineering Technology.
In Proceedings of ACFAS, 1994.

[20] J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and
A. Verkamo. Software Metrics by Architectural Pattern
Mining. In Proceedings of the International Conference on
Software: Theory and Practice (16th IFIP World Computer
Congress)., pages 325–332, 2000.

[21] The Ptidej Homepage.
http://ptidej.iro.umontreal.ca/

[22] P. Tonella and G. Antoniol. Object oriented design pat-
tern inference. In Proceedings of the International Confer-
ence on Software Maintenance (ICSM ’99), pages 230–238,
Washington, DC, USA, 1999. IEEE Computer Society.

[23] WinMerge Project.
http://sourceforge.net/projects/winmerge/

10


