
Graph-Less Dynamic Dependence-Based Dynamic Slicing Algorithms

Árpád Beszédes, Tamás Gergely and Tibor Gyimóthy
University of Szeged, Department of Software Engineering

Árpád tér 2., H-6720 Szeged, Hungary, +36 62 544145
{beszedes,gertom,gyimi}@inf.u-szeged.hu

Abstract

Using Dynamic Dependence Graphs is a well under-
stood method for computing dynamic program slices. How-
ever, in its basic form, the DDG is inappropriate for practi-
cal implementation, so several alternative approaches have
been proposed by researchers. In this paper, we elaborate
on different methods in which the execution trace is pro-
cessed and, using local definition-use information, the de-
pendence chains are followed “on the fly” to construct the
slices without actually building any graphs. Naturally, var-
ious additional data structures still need to be maintained,
but these vary on the slicing scenario. Firstly, one may want
to perform the slicing in a demand-driven fashion, or to
compute many slices globally. Next, one may be interested
either in backward or forward slices. And finally, the slices
can be produced by traversing the trace either in a forward
or in a backward direction. This totals eight possibilities,
of which some give useful algorithms, while there are irrel-
evant combinations as well. In this work we investigate all
of them, give the basic algorithms where appropriate and
discuss on implementation experiences and perspectives.

Keywords

Program slicing, dynamic slicing algorithms, execution
trace, program dependences.

1 Introduction

Over time, a number of program slicing methods [17, 19]
have been elaborated. A significant part of the practical
methods compute the slices based on various dependences
(control- and data-) among the program elements (variables,
instructions, addresses, predicates, etc.). The literature is
elaborate about the details of static slicing methods. For ex-
ample, the work by Horwitz et al. [8] served as the starting
point for a number of subsequent implementations and en-
hancements, whose basis is the program dependence graph

– PDG. This is a quite natural representation of the program
under investigation since it captures the program elements
of interest (instructions) and the dependences among them
that will eventually determine the slices.

However, relatively few publications appeared that deal
with the practical sides of dynamic slicing and provide de-
tailed algorithms. Dynamic analysis of programs is an in-
herently hard problem because of several reasons, the most
significant one being that a very large number of events
may be generated by a program run. This induces huge
amount of data to be processed, which is even more ap-
parent with program slicing, since – in a general case – very
fine-grained computations are needed for an accurate result.
The fact that it is hard to find practically used dynamic slic-
ing algorithms can mean that the published methods are not
suitable for handling real size programs and executions.

The basic dynamic slicing methods use different con-
cepts, proposed by researchers like Korel and Laski [12,
13], Agrawal et al. [1, 2] and Kamkar et al. [11]. One of the
most common approaches to dynamic slicing is based on
computing the dynamic dependences among the program
elements, which is analogous to PDG-based static slicing
algorithms. This way we follow the dynamically occurring
data- and control dependences among the actions (instruc-
tion occurrences). Note, that using this approach the slices
will not necessarily be executable subsets of the program,
but in many applications of slicing this is not a require-
ment anyway. The traditional dynamic dependence-based
method by Agrawal and Horgan [2] uses a graph represen-
tation called the Dynamic Dependence Graph – DDG that
includes a distinct vertex for each occurrence of a statement
(an action), and the edges correspond to the dynamically oc-
curring dependences. Based on this graph, the computation
of a dynamic slice means finding all reachable vertices start-
ing from the slicing criterion. According to the terminology
of Zhang et al. [23] a full preprocessing is done before the
actual slicing.

Unfortunately, most of the basic dynamic slicing algo-
rithms have difficulties with handling large inputs. For ex-
ample, the size of the DDG graph is actually unbounded



as it is determined by the number of steps of the execu-
tion history produced by the program run. Consequently,
researchers have begun searching for more effective meth-
ods, like Zhang and Gupta did in their work on compacting
the DDG graph [21], or Mund and Mall with their static de-
pendence graph-based approaches [15]. In previous work
we have also elaborated new efficient dynamic slicing meth-
ods that are based on dynamic dependences, but which do
not necessitate huge representations like the DDG graph.
One of our most significant results is a backward slicing
algorithm [5, 7] that computes all possible dynamic slices
globally, with only one pass through the execution history.
This method significantly differs from any other previously
published algorithm, and proved to be suitable for real size
programs and executions as well. We elaborated the details
of the algorithm in different contexts: for C programs [5]
and for Java [16] for example, and its usefulness has been
demonstrated in several applications [4, 7].

Based on the original idea of the global slicing algo-
rithm it turned out to be possible to construct similar graph-
less algorithms based on dynamic dependences, for exam-
ple demand-driven methods for both forward and backward
slices. In fact, we wanted to investigate all practical ways
for computing the dynamic slices based on dynamic depen-
dences but without requiring costly global preprocessing
prior to slicing. Hence, in this paper we propose alterna-
tive methods that are based on the same dynamic depen-
dences but instead of dynamic dependence graphs various
data structures are maintained. These are different depend-
ing on the slicing scenario and therefore are specialized and
more effective. The different slicing scenarios that we in-
vestigated are global vs. demand driven slicing and com-
puting backward vs. forward slices. A good property of
all of the presented algorithms is that they are able to com-
pute the same dynamic slices as the original DDG-based
method. It turned out that the slices can be produced by
traversing the execution history either in a forward or in a
backward way, and that some processing direction fits more
to a slicing scenario than the other. This totals eight possi-
bilities, of which some give useful algorithms, while there
are irrelevant combinations as well. In this work we inves-
tigate and discuss all of them and give the basic algorithms
where appropriate, along with some discussion about the
application fields of each. Although some researchers men-
tion similar algorithms, we are not aware of any other such
comprehensive overview of the basic dependence based dy-
namic slicing algorithms. The contribution of this paper is
thus in providing a comprehensive list of related algorithms
that can be used in different slicing scenarios.

In the next section we give all the details about the algo-
rithms. Section 3 deals with related work, and we close our
paper with conclusions in Section 4.

2 Algorithms

All of the algorithms presented operate on two data sets:
the execution history and a concise static representation of
the program. Since the aim of this paper is to introduce the
basic algorithms, for clarity we will limit our discussion to
simple programs. Consequently, in the following the pre-
sented data structures and algorithms will not include mod-
ifications that are needed for a real programming language.
The execution history (or trace) is a simple list of instruc-
tion occurrences (actions) that have been executed for a spe-
cific program input. The algorithms will process the trace
in either forward or backward way to follow the dynamic
dependences. All that we further need for achieving this
is a simple definition-use relationship for all instructions of
the program, based on which the actually realized dynamic
dependence chains can be computed during processing the
trace. Furthermore, by considering the predicates in the
program (the branching instructions) as regular variables,
both the data- and control-dependences can be handled uni-
formly. In other words, the dynamic slices will be computed
“on the fly” during processing the trace taking into account
the local definition-use information as the static representa-
tion of the program.

Prior to describing the actual slicing algorithms we will
overview some notations, which will be used throughout the
rest of the paper.

The execution history will be denoted by EH , and it will
contain actions denoted by ij , where i is the serial number
of an instruction in the program, while j is the serial num-
ber of an execution step in the execution history. The total
number of the steps executed in a given execution of the
program is denoted by J . We will also use the following:

i(ij) = i , j(ij) = j , EH = 〈i11, i2
2, . . . , iJ

J〉 .

Furthermore, EHI(j) = i(ij) denotes the statement num-
ber i at the jth step.

We will use the notation CB = (x, ij , V ) for the back-
ward, and CF = (x, ij) for the forward slicing criterion,
where x is a program input corresponding to a specific ex-
ecution of the program, ij is the action for which the dy-
namic slice needs to be computed and V is a subset of the
used variables at the ith instruction.1

The static representation of the program needed by the
slicing algorithms is called the D/U program representa-
tion. It captures local definition-use relationships between

1We assume the following: (1) all instructions define exactly one vari-
able and use zero or more variables, (2) for backward slicing, if we allowed
the defined variable to be part of V then all used ones would also be part of
V implicitly, furthermore if all of the used variables are in V then the de-
fined one will be there too, and (3) the forward dynamic slice is computed
starting from the defined variable at i, therefore we do not need V in this
case.



the variable occurrences within each instruction. For sim-
plicity we will assume that each instruction defines one vari-
able and uses zero or more variables. An instruction of a
program has the following D/U representation:

i. di : Ui ,

where i is an instruction serial number. We will use I to
denote the total number of instructions in the program. The
defined variable at the ith instruction is d(i) = di, while
U(i) = Ui is used to denote the use set that is utilized for
computing the value of di.

A useful property of our approach is that using the same
D/U representation we are able to capture not only the data
dependences but the control dependences as well, which
will significantly simplify the slicing algorithms. Namely,
each di defined and uk ∈ Ui used variable (i = 1, . . . , I)
can have a special meaning that we call a predicate vari-
able. Predicate variables are virtual ones that are not part of
the program, but are generated for each predicate instruction
in the program (these are the conditional branching instruc-
tions like if and for). Predicate instructions determine the
control dependences among the instructions, so we can treat
the corresponding predicate variables as regular variables
that can serve both as the defined variable and as used ones.
More precisely, if instruction i is a predicate instruction then
a generated predicate variable pi will be the defined variable
at i, d(i) = pi. Furthermore, for any instruction i′ its use set
U(i′) will be extended with a corresponding predicate vari-
able for each predicate instruction on which i′ is directly
control dependent.

For the formalization of the dynamic slicing algorithms
some more notations will be used. The last definition of a
variable v will be denoted by LD(v, j), which is a function
returning the action at which v was defined last before the
jth step in the execution history:

LD(v, j) = i′j
′
,

where

j′ < j ∧ d(i′) = v ∧ � ∃j′′ (j′ < j′′ < j, d(EHI(j′′)) = v)

Furthermore, we will also use some shorthand notations
for the last defining step LD(v) = j(LD(v, j)), statement
LS(v) = i(LD(v, j)) and action LA(v) = LD(v, j) for an
actual step j that is being processed during the execution of
the slicing algorithm. Obviously, after processing a step ij ,
LD(d(i)) = j, LS(d(i)) = i and LA(d(i)) = ij will hold
for each subsequent action until d(i) is defined next time.

2.1 Overview

Given the same static and dynamic representations, the
D/U form and the execution history we can categorize the
dynamic slicing algorithms according to the following three
kinds of properties.

• Slice direction. This classification corresponds to the
two fundamental slice kinds. Namely, if we associate a
slicing criterion with a set of program locations whose
earlier execution affected the value computed at the
criterion, we speak of a backward slice. On the con-
trary, a forward slice is a set of program locations
whose later execution depends on the values computed
at the slicing criterion.

• Global or Demand-driven. The traditional approach
is to compute one slice at a time, based on a given cri-
terion. In this case one generally starts at the program
point of the criterion and collects the instructions to
be incorporated into the slice by traversing the depen-
dences backward or forward, depending on the slice
direction. This is what we call demand-driven slicing.2

However, there is an opportunity to compute multiple
slices for different criteria during a single pass over the
trace, if there is need for such a set of slices. This is
what we call global slicing, for which algorithms may
be constructed for both slice direction types.

• Processing direction. Finally, given a trace we may
process it in both directions, depending on the kind of
slice needed and on which method is more practical.
Note that forward processing of the trace seems to be
the natural one (and the only feasible in some appli-
cations), however traversing the trace backwards can
also be applied in some situations.

From the above classification types it naturally follows
to investigate all of the possible 8 combinations. As we will
see, some of them lead to practical algorithms, while other
are virtually unfeasible. In Table 1 we list all possibilities,
giving each method an identification number from zero to
seven. We will use these numbers instead of detailed de-
scriptions in the text that follows.

The last column of the table is used for a preliminary
classification of the algorithm according to its usefulness,
which also determines the remaining subsections of this
section. Namely, we will first discuss the two practical
demand-driven algorithms in Section 2.2, then we overview
the two practical global algorithms in Section 2.3, and fi-
nally Section 2.4 deals with the remaining two global algo-
rithms. The latter may be implemented, but their usability is
questionable since it requires storing all slices in the mem-
ory until the whole trace has been processed, so we refer
to them as parallel algorithms. This gives the total of six
algorithms. The remaining two types of demand-driven al-
gorithms are impractical to implement, since to compute a
demand driven slice in a reverse direction would virtually
mean performing global dependence tracking.

2The term ‘demand driven’ is used with a different meaning in static
slicing, where it is referred to constructing the static graph representations
of the program on demand based on the slicing request [3].



No. Global/Demand-driven Slice direction Processing direction Usefulness

0 Demand-driven Backward Backward Practical
1 Demand-driven Backward Forward Unfeasible
2 Demand-driven Forward Backward Unfeasible
3 Demand-driven Forward Forward Practical
4 Global Backward Backward Parallel
5 Global Backward Forward Practical
6 Global Forward Backward Practical
7 Global Forward Forward Parallel

Table 1. Overview of dynamic slicing algorithms

Due to space constraints, unfortunately we are unable to
provide examples of all the algorithms’ workings. However,
we will illustrate the first algorithm on an example program,
which can be seen in Figure 1, along with its D/U repre-
sentation. This example has interesting execution histories
for inputs 〈a = 0〉, 〈a = 1〉 and 〈a = 2 . . .〉. For illustration
we will use x = 〈a = 1〉, which produces the following:
EH = 〈11, 22, 33, 44, 55, 66, 77, 48, 89〉.

i d : U
1 read(a) a : ∅
2 y=0 y : ∅
3 x=1 x : ∅
4 while(a>0) p : {a}
5 y=x y : {x, p}
6 x=2 x : {p}
7 a=a-1 a : {a, p}
8 z=y z : {y}

Figure 1. The example program

2.2 Demand-Driven Algorithms

Computing a dynamic slice in a demand-driven fash-
ion means that given an execution of the program and a
dynamic slicing criterion, a single dynamic slice is pro-
duced. This corresponds to determining one dynamic slice
from a complete DDG. Here, a preprocessing step is per-
formed in which the (complete) dynamic dependence graph
is produced, after which each slicing request means travers-
ing this graph starting from the slicing criterion to find the
reachable parts.

In our case however, a similar method may be con-
structed in a straightforward way but without producing de-
pendence graphs explicitly. We traverse the execution trace
starting with the action of the dynamic slicing criterion, and
follow the dynamic dependences with the help of the D/U
representation going backward towards the first executed in-
struction or forward towards the end of the trace, depending
on the slice direction. This allows us to construct the two
demand-driven dynamic slicing algorithms as follows.

2.2.1 Backward Slice – Algorithm 0

The demand driven algorithm for backward slices processes
the execution history starting with the action of the criterion
and traces back the dependences towards the very first ac-
tion. An obvious drawback of this method is that the exe-
cution history needs to be processed in reverse, which im-
plies that it needs to be stored first completely. Our global
method for backward slices works with forward processing
of the trace, so it may be much more feasible in some appli-
cations (see Section 2.3).

The algorithm scans the dynamic dependences and keeps
those actions not yet processed in a worklist. When it re-
moves an action from the worklist it investigates all vari-
ables from the use set of the removed action and extends the
worklist with the last defining action of those variables be-
fore the actual execution step. When all dependences have
been processed and the worklist becomes empty the algo-
rithm terminates by providing the slice with the instructions
visited during the run. This operation is formalized in the
algorithm in Figure 2. A similar algorithm was sketched by
Korel as well [12].

Note that the last defining action in algorithm line 8 is
not directly accessible as with the forward processing of the
execution history. Therefore for the efficient functioning of
the algorithm the trace needs to be stored in a special form
that groups the actions according to the variables defined
in them. This is represented by the so-called EHT (execu-
tion history) table, whose rows are constituted of the actions
with the corresponding defined variables. This is needed be-
cause in every iteration of the algorithm an arbitrary defini-
tion action corresponding to the variables could be needed,
which means that there is a need for searching among the
execution steps backwards. So the value of LD(u, l) will
be attained by first selecting the row corresponding to u in
the EHT table and then finding the appropriate execution
step l′ < l in that row (this can be implemented efficiently
since the rows are ordered by execution step number).

Also note, that removing the biggest action from the
worklist at line 5 is not required; any action could be re-
moved next, but it can help for the efficient implementation
of the EHT table. Namely, all remaining actions in a row



program Algorithm-0(P,CB)
input: P : a program

CB = (x, ij , V ) : dynamic slicing criterion
(assume V = U(i))

output: S : dynamic slice of P for CB

begin
1 Read and store EH up to ij

2 S := ∅
3 worklist← ij

4 while worklist �= ∅
5 kl := remove element with biggest l from worklist
6 if l �= j then S := S ∪ {k}
7 for ∀u ∈ U(k)
8 worklist← LD(u, l)

endfor
endwhile

9 Output S as the backward dynamic slice
for criterion (x, ij , U(i))

end

Figure 2. Demand driven algorithm for back-
ward slices

that are beyond the returned one may be discarded, since
the removed actions will be monotonically decreasing.

The number of iterations of the algorithm varies, it is
minimum the number of instructions in the slice computed,
but in the worst case it can be as much as the length of the
execution. However, in the average case it will be correlated
with the size of the slice. As for the space requirements, not
counting the storage of the EHT table (it can be kept on
the disk), it is not significant since only the worklist needs
to be maintained in the memory.

We will illustrate the working of the algorithm on our
example. The state of the worklist and its operations can be
followed for each iteration in the table in Figure 3.

iteration S worklist removed added

0 ∅ {89} — 89

1 ∅ {55} 89 55

2 {5} {33, 44} 55 44, 33

3 {4, 5} {11, 33} 44 11

4 {3, 4, 5} {11} 33 —
5 {1, 3, 4, 5} ∅ 11 —

Figure 3. Example run of the demand driven
backward slicing algorithm

2.2.2 Forward Slice – Algorithm 3

Computing forward dynamic slices starting from the slicing
criterion means traversing the execution trace in a natural
way, that is in a forward fashion. The algorithm is given in
Figure 4.

program Algorithm-3(P,CF )
input: P : a program

CF = (x, ij) : dynamic slicing criterion
output: S : dynamic slice of P for CF

begin
1 Read EH
2 mark(d(i))
3 S := ∅
4 k := j
5 while ∃ marked variables and k < J
6 k := k + 1
7 l := EHI(k)
8 if ∃(u ∈ U(l) and marked(u)

)

9 mark(d(l))
10 S := S ∪ {l}

else
11 unmark(d(l))

endif
endwhile

12 Output S as the forward dynamic slice
for criterion (x, ij)

end

Figure 4. Demand driven algorithm for for-
ward slices

The basic idea of the algorithm is to collect all for-
ward dependences of the defined variable at the criterion
by marking variables that carry forward the dynamic de-
pendences. If a variable is marked at a given point of the al-
gorithm execution, it means that it is a “live” variable which
was defined using the contribution of another live variable.
So first the defined variable is set to be live (line 2), after
which a while loop starts from the execution step of the cri-
terion j. It terminates if there are no further live variables to
process or if we reach the end of the trace. If in the next ex-
ecuted instruction a live variable is used (algorithm line 8),
the corresponding defined variable is also set as live (line 9).
At the same time the corresponding instruction serial num-
ber is made part of the resulting slice set S in line 10. Note
that statement 11 is required to kill any variables that were
potentially live but that are redefined without using any live
variables at that point.

A possible improvement to the algorithm is if we incre-
ment k in line 6 not step-by-step but by jumping towards the
first next position where some of the marked variables is de-



fined or used. In this case in line 11 the defined variable is
definitely live, but the implementation of this approach may
not be beneficial.

2.3 Practical Global Algorithms

Depending on the structure of the dependences, a de-
mand driven dynamic slicing algorithm may need to pro-
cess a significant part of the execution history individually
for each slicing request. A demand driven algorithm will
follow only the dependences belonging to the slicing crite-
rion, however in the meantime many intermediate actions of
the execution history need to be passed by. Furthermore, in
a number of applications more than one slice may be needed
at a time for a given execution of the program. This leads
to an idea to compute more dynamic slices during only one
traversal through the execution history. Naturally, this will
mean more simultaneous computations, but above a cer-
tain number of distinct slices a more global algorithm will
be more beneficial than executing the demand driven one
multiple times. It is possible to compute many dynamic
slices by executing the demand driven methods in paral-
lel: traversing the execution history in a forward way for
forward slices and in a backward way for backward slices.
However, this approach is not very practical since the data
structures (and the slices) for all dynamic criteria need to
be maintained throughout the whole execution history. The
algorithms incorporating this kind operation are described
in Section 2.4.

Fortunately, it is possible to construct such global algo-
rithms that are more practical in which not the whole dy-
namic slices need to be maintained during the execution
of the algorithms but only the actual dependence sets be-
longing to the variables of the program. These dependence
sets contain statement numbers providing the actual depen-
dences of the given variables at the given point of execution.
We derive these dependence sets based on the D/U infor-
mation and maintain them for each execution step. Thus we
are able to compute the dynamic slices for all possible dy-
namic criteria based on the actual values of these sets only.

An interesting duality in this approach is that the men-
tioned dependence sets for computing backward slices can
be acquired if we process the trace in a forward way, and
for the forward slices we need to traverse the trace in re-
verse direction. (Obviously, the backward historical depen-
dence data for a given execution point is accessible only by
a “natural lapse of time,” while the complete forward depen-
dences from a point of execution (“future” data) are visible
by examining the execution history in a reversed way.)

In this section we will describe the two basic dynamic
slicing algorithms, which are able to produce all dynamic
slices for a given execution of a program: the global back-
ward slicing method and the global forward slicing method.

2.3.1 Backward Slice – Algorithm 5

The algorithm in Figure 5 is our method for producing back-
ward slices globally. Since this approach requires a forward
processing of the execution history it is one of the most
practically usable ones among all presented in this article.
It allows instant processing of the trace as it is produced by
the program executor. It has been presented several times
in some of our past publications with different applications
[4, 5, 7], and implemented in different contexts: for C pro-
grams [5] and for Java [16], for example.

program Algorithm-5(P,x)
input: P : a program

x : a program input

output: backward slices for all (x, ij , Vi) criteria
(j = 1 . . . J, Vi = U(i))

begin
1 Read EH
2 for j = 1 to J
3 i := EHI(j)
4 DynDep(d(i)) :=⋃

uk∈U(i)

(
DynDep(uk) ∪ {LS(uk)})

5 LS(d(i)) := i
6 Output DynDep(d(i)) as the backward

dynamic slice for criterion (x, ij , U(i))
endfor

end

Figure 5. Global algorithm for backward
slices

The algorithm starts processing the trace with the firstly
executed instruction, and at each step it computes the de-
pendence set corresponding to the defined variable at the
actual instruction, which holds the depending instruction
numbers (DynDep(d(i))). For this it uses the most recently
computed dependence sets of the used variables at the in-
struction (DynDep(uk)) and their last defining instruction
(LS(uk)). This way all dynamic slices corresponding to the
defined variables at all instruction occurrences are attained
and provided at the output (only the actually effective sets
are stored in the memory). It is clear, that the average com-
putational complexity is determined by the length of the ex-
ecution history and the average size of the dependence sets,
the latter being in correspondence with the average slice
size. The space requirements are determined by the number
of the dependence sets (the number of all defined variables)
and their sizes (practically the average slice size).

2.3.2 Forward Slice – Algorithm 6

The algorithm in Figure 6 is our method for producing for-
ward slices globally. This approach requires a backward



processing of the execution history. Backward processing
of the trace is sometimes not as straightforward as process-
ing it from its beginning towards its end, but otherwise this
algorithm is as usable for forward slice computation as the
previous one is for computing backward slices.

program Algorithm-6(P,x)
input: P : a program

x : a program input

output: forward slices for all (x, ij) criteria
(j = 1 . . . J)

begin
1 Read and store EH
2 for j = J downto 1
3 i := EHI(j)
4 Output LiveAt(d(i)) as the forward dynamic slice

for criterion (x, ij)
5 for uk ∈ U(i)
6 LiveAt(uk) :=

LiveAt(uk) ∪ LiveAt(d(i)) ∪ {i}
endfor

7 if d(i) /∈ U(i)
8 LiveAt(d(i)) := ∅

endif
endfor

end

Figure 6. Global algorithm for forward slices

The algorithm starts processing the trace with the last ex-
ecuted instruction. For each variable v it maintains a “live”
set (LiveAt), which holds statement numbers of processed
trace elements with defined variables dependent on the lat-
est previous (not yet processed) definition of v. Thus at the
beginning of each step, the LiveAt set of the variable de-
fined at the actual instruction (d(i)) contains the forward
slice of this variable. The LiveAt set of the variables used
in the actual instruction (U(i)) must be extended with the
statement number of the actual action (i), and those state-
ments which are dependent on the defined variable d(i) be-
cause all actions dependent on d(i) are dependent on all ele-
ments of U(i). If d(i) is not dependent on itself the LiveAt
set of it must be emptied (line 8) because based on the pro-
cessed actions, no trace elements are dependent on the pre-
vious definition of this variable.

The characteristics of this algorithm are as of the pre-
vious one. All dynamic forward slices corresponding to
the defined variables at all instruction occurrences are at-
tained and provided at the output. The average computa-
tional complexity is determined by the length of the exe-
cution history and the average size of the “live” sets, and
the space requirements are determined by the number of the
“live” sets and their sizes.

2.4 Parallel Global Algorithms

The trace processing directions of the global algorithms
presented in the previous section are the opposite of the di-
rections of the slices they compute. They have the advan-
tage of computing the final slice of a criterion as soon as
its action has been processed in the execution history. On
the other hand, the two demand-driven algorithms use the
direction of the slice for processing the trace.

In this section we present two more global algorithms
that use the slice direction for processing the trace and com-
pute the slices for all criteria. We called these parallel
global algorithms because they compute all slices in parallel
– virtually having many parallel demand-driven algorithms
–, and potentially no slices are finished before all trace ele-
ments are processed. However, they still have the advantage
over computing all the slices with the demand-driven algo-
rithms: the dependences arising from a specific action are
computed only once.

2.4.1 Forward Slice – Algorithm 7

Figure 7 shows our parallel algorithm for computing for-
ward slices. Although it consumes more memory than the
global forward slice algorithm and produces final slices af-
ter processing all actions in the trace, this algorithm is a
usable alternative of the other global one because of the for-
ward processing of the trace.

The first part of the algorithm is similar in its structure
to the global algorithm for backward slices (number 5), the
main difference being that in this case we need to track ac-
tions in the DynDep sets instead of only instruction num-
bers. In the next step of each iteration the forward slice of
all actions that the defined variable depends on must be ex-
tended with the line number of the actually processed action
(EHI(j)). Finally, the slices of all criteria are written.

The computational complexity of the algorithm is deter-
mined by the trace length and the average size of the de-
pendence sets. The space requirements are determined by
the number of trace elements and the average slice sizes,
and the number of dependence sets and their average size.
Tracking actions in the dependence sets can mean a signif-
icant overhead, which can be overcome by working with
only one occurrence of each statement (and using the origi-
nal DynDep sets), this way accumulating the dependences
for all related actions. Naturally, this will have the tradeoff
of loosing the precision of the slices.

Potentially, no slices can be treated as done before the
last trace element is processed. Although we could deter-
mine if a slice cannot be extended anymore (all contribut-
ing variables become dead), it would require to maintain a
dual dependence set structure or increase the computational
complexity.



program Algorithm-7(P,x)
input: P : a program

x : a program input

output: forward slices for all (x, ij) criteria
(j = 1 . . . J)

begin
1 Read EH
2 for j = 1 to J
3 i := EHI(j)
4 DynDep(d(i)) :=⋃

uk∈U(i)

(
DynDep(uk) ∪ {LA(uk)})

5 LA(d(i)) := ij

6 for ak ∈ DynDep(d(i))
7 S(ak) := S(ak) ∪ {i}

endfor
endfor

8 for ∀ ij ∈ EH
9 Output S(ij) as the forward dynamic slice

for criterion (x, ij)
endfor

end

Figure 7. Forward algorithm for forward
slices

2.4.2 Backward Slice – Algorithm 4

Our algorithm for parallel backward slice computation can
be seen in Figure 8. Due to the backward processing of the
trace and greater space requirements, it is not a real alter-
native to the global backward slicing algorithm, but we will
present it for the sake of completeness.

Since the logic of dependence tracking is the same, the
core part of the algorithm is similar to the practical global
forward slicing method (algorithm 6). Here as well, the
main difference is that we track actions in the LiveAt de-
pendence sets instead of instructions. The slices are main-
tained at the beginning of each step: namely, the slices of
actions dependent on the actually defined variable d(i) are
extended with the actual program line i. LiveAt(d(i)) in
line 4 contains these actions. With this algorithm as well,
the slices of all criteria are written after the processing of
the execution history has been completed.

The computational complexity of the algorithm is deter-
mined by the trace length and the average size of the de-
pendence and “live” sets, while the space requirements are
determined by the number of trace elements and the aver-
age slice sizes, and the number of “live” sets (the number
of all defined variables) and their average size. The same
overhead with storing actions in the dependence sets applies
here as with the other parallel algorithm mentioned above.

As with the previous algorithm, potentially no slices can

program Algorithm-4(P,x)
input: P : a program

x : a program input

output: backward slices for all (x, ij , Vi) criteria
(j = 1 . . . J, Vi = U(i))

begin
1 Read and store EH
2 for j = J downto 1
3 i := EHI(j)
4 for ak ∈ LiveAt(d(i))
5 S(ak) := S(ak) ∪ {i}

endfor
6 for uk ∈ U(i)
7 LiveAt(uk) :=

LiveAt(uk) ∪ LiveAt(d(i)) ∪ {ij}
endfor

8 if d(i) /∈ U(i)
9 LiveAt(d(i)) := ∅

endif
endfor

10 for ∀ ij ∈ EH
11 Output S(ij) as the backward dynamic slice

for criterion (x, ij , U(i))
endfor

end

Figure 8. Backward algorithm for backward
slices

be written before the last (first) trace element is processed.
With more computation or space usage it could be deter-
mined if a slice will not change in the later iterations.

3 Related work

Our methods significantly differ from existing dynamic
slicing algorithms. The novelty lies in handling control-
and data dependences uniformly, and in providing a com-
prehensive list of related algorithms that can be used in
different slicing scenarios. As already mentioned earlier,
our methods for dynamic slicing are based on the same
dynamic dependences as some other dynamic slicing algo-
rithms employ. Such is the Dynamic Dependence Graph-
based method by Agrawal and Horgan [2], which requires
a significant amount of preprocessing (building the graph)
prior to any (demand-driven) slicing request. However, the
complete DDG graph is impractical in most real life situa-
tions because of its significant costs, even with its optimized
version [17]. Based on this method several enhanced algo-
rithms were published later [11, 21]. For example, Zhang
and Gupta propose a reduced version of the DDG with
which an improvement of about one order of magnitude can



be achieved in terms of the graph size. Zhang et al. provide
some other possibilities as well for reducing the costs of this
method [23]. Mund and Mall tried to improve the efficiency
of dynamic slicing using static dependence graphs as inter-
mediate representation and maintaining various additional
data structures during processing the execution history [15].

The first dynamic slicing algorithm was given by Ko-
rel and Laski that produced executable slices [12]. As it is
known, executable slices are generally significantly larger
than those that deal with the dependences only (according
to Venkatesh’s measurements the ratio is about 2–3 times
[18]), however in our work we do not require this prop-
erty. The same authors published another dynamic slicing
method that is based on dataflow equations [13], while Ko-
rel and Yalamanchili give a forward computation method
[14]. The basis for these methods are the so-called remov-
able blocks, which are selected for inclusion into the slice
by the algorithm based on the execution of the program.
Apart from this approach Korel sketched a demand driven
method based on dynamic dependences similar to ours [12].

Concrete evidence of dynamic slicing implementations
that are usable in real life scenarios is very hard to find.
Some of the work in this field are Agrawal’s [1], Kamkar’s
[9] and Venkatesh’s results [18]. Zhang and Gupta also
reported implementation of different efficient algorithms,
which contain some very interesting enhancements to the
existing basic methods [22, 23], some of which can be well
adapted to our algorithms. For example, their usage of re-
duced ordered binary decision diagrams is an interesting en-
hancement of our forward computation method [22].

Excellent surveys of different slicing methods, includ-
ing dynamic slicing have been published by several authors:
Tip [17], De Lucia [6], Kamkar [10] and Xu et al. [20].

4 Conclusions
In this paper we presented six algorithms for comput-

ing backward and forward dynamic slices. All of them are
based on computing the dynamic dependences by traversing
the execution history, and using a simple static representa-
tion of the program containing local definition-use informa-
tion, which uniformly incorporates both data and control
dependences. Although some researchers mention similar
algorithms, we are not aware of any other, such a compre-
hensive overview of the basic dependence-based dynamic
slicing algorithms.

As for our experiences, we have already implemented
three of the presented algorithms. Algorithms 5 and 0 were
implemented for the C language [5], for which we had to
solve some special problems. To handle pointers, arrays
and other memory references correctly, we used memory lo-
cations instead of variables, keeping information of the as-
signment of variables and memory locations. After convert-
ing all memory accesses to pointer operations, this change

to memory locations simplified all data flow problems. The
problem of unstructured control flow was solved by ap-
plying the traditional postdominance-based control depen-
dence method. The trace generation for C was done by
source code instrumentation. For the Java language we have
a ready implementation of algorithms 5 and 7 [16]. This im-
plementation works on Java byte code, but the result can be
converted to the source. Slicing Java programs arises some
special problems as well like multi-threading and reflection.
To handle these correctly our slicer simulates some neces-
sary tasks of the virtual machine while processing the trace,
such as context switches, the stack, etc. To produce the trace
an instrumented Java Virtual Machine was used.

Naturally, the main question is in which contexts is most
useful each of the presented algorithms. Here we sketch
our views on the applicability of the algorithms, however a
more elaborate investigation of their usefulness remains for
future work.

If more than one slice is sought for an execution of the
program the choice between a global and a demand driven
approach may be generally based on comparing the costs
of computing all possible slices with the global method and
executing the demand driven algorithm several times. The
threshold above which performing global slicing is more
beneficial is hard to determine, since it depends on many
aspects, like the layout of the execution history, the slice cri-
teria of interest and the arising dynamic dependences. With
our implementation of the global and demand driven back-
ward slicing methods (algorithms 5 and 0) for C, we per-
formed some measurements on medium size test programs.
We recorded the iteration numbers and other complexity
factors of the algorithms and the execution times as well.
The major complexity factor of the global method is the
length of the execution history (J) and the set operations at
each step, while of the demand driven one is the iteration
number. The latter is at most J , however it is determined
by the number of arising dynamic dependences, which is,
according to our measurements, about a magnitude smaller
than J . This allows us to give a rough estimation that if at
least one or two dozens of slices need to be computed, a
global method may be more beneficial.

Global slicing methods are very useful for applications
in which more (all) slices are required. An example is
the computation of union slices [4], which is a very use-
ful technique for software maintenance-related problems.
Global backward slicing can be used for, among others, pro-
gram comprehension, debugging and decomposition slic-
ing, while global forward slicing is useful in regression test-
ing and impact analysis. For debugging and program com-
prehension, probably a highly optimized demand driven ap-
proach or a method with limited preprocessing would be
optimal.

We presented four global slicing algorithms, of which



two are practically implementable (algorithms 5 and 6),
since only a limited amount of intermediate data needs to
be maintained during the execution of the algorithms. The
backward slicing method is indeed very practical since it
processes the execution history in a forward way; we have
already utilized our implementation in a number of applica-
tions. However, the main drawback with the forward slicing
algorithm (number 6) is that it needs to process the execu-
tion history in a backward fashion, which may be impracti-
cal in many real life situations. In this case we propose in-
stead the parallel forward slicing algorithm (number 7) that
may be implemented with a small extension to the origi-
nal global backward method (number 5) – we have already
done so. The overhead of keeping many dynamic depen-
dence sets in the memory can be overcome by loosening
the precision and working with only one occurrence of each
statement and accumulating the dependences for all related
actions.

Our main directions for future work will be a more de-
tailed elaboration on the complexities of the presented algo-
rithms (giving O-notations) and their prototype implemen-
tation for the empirical investigation of the costs in various
slicing situations. The possibilities for improvement will be
addressed as well in order to find the real application fields
for each of the algorithms.

Acknowledgements

This work was supported by The Péter Pázmány Pro-
gram of the Hungarian National Office of Research and
Technology (no. RET-07/2005).

References

[1] H. Agrawal. Towards Automatic Debugging of Computer
Programs. PhD thesis, Purdue University, 1992.

[2] H. Agrawal and J. R. Horgan. Dynamic program slicing. In
Proceedings of the ACM SIGPLAN’90 Conference on Pro-
gramming Language Design and Implementation, number 6
in SIGPLAN Notices, pages 246–256, White Plains, New
York, June 1990.

[3] D. C. Atkinson and W. G. Griswold. The design of whole-
program analysis tools. In Proceedings of the 18th Interna-
tional Conference on Software Engineering, pages 16–27,
Berlin, Germany, Mar. 1996.

[4] Á. Beszédes, Cs. Faragó, Zs. M. Szabó, J. Csirik, and
T. Gyimóthy. Union slices for program maintenance. In
Proceedings of the IEEE International Conference on Soft-
ware Maintenance (ICSM 2002), pages 12–21. Oct. 2002.

[5] Á. Beszédes, T. Gergely, Zs. M. Szabó, J. Csirik, and
T. Gyimóthy. Dynamic slicing method for maintenance of
large C programs. In Proceedings of the Fifth European
Conference on Software Maintenance and Reengineering
(CSMR 2001), pages 105–113. Mar. 2001.

[6] A. De Lucia. Program slicing: Methods and applications.
In Proceedings of the First IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM 2001),
pages 142–149, Nov. 2001.

[7] T. Gyimóthy, Á. Beszédes, and I. Forgács. An efficient
relevant slicing method for debugging. In Proceedings of
ESEC/FSE’99, number 1687 in Lecture Notes in Computer
Science, pages 303–321. Springer-Verlag, Sept. 1999.

[8] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Program-
ming Languages and Systems, 12(1):26–61, 1990.

[9] M. Kamkar. Interprocedural Dynamic Slicing with Appli-
cations to Debugging and Testing. PhD thesis, Linköping
University, 1993.

[10] M. Kamkar. An overview and comparative classification of
program slicing techniques. Journal of Systems and Soft-
ware, 31(3):197–214, Dec. 1995.

[11] M. Kamkar, N. Shahmehri, and P. Fritzson. Interprocedu-
ral dynamic slicing. In Proceedings of PLILP’92, volume
631 of Lecture Notes in Computer Science, pages 370–384.
Springer-Verlag, 1992.

[12] B. Korel and J. W. Laski. Dynamic program slicing. Infor-
mation Processing Letters, 29(3):155–163, Oct. 1988.

[13] B. Korel and J. W. Laski. Dynamic slicing in computer pro-
grams. The Journal of Systems and Software, 13(3):187–
195, 1990.

[14] B. Korel and S. Yalamanchili. Forward computation of dy-
namic program slices. In Proceedings of the 1994 Interna-
tional Symposium on Software Testing and Analysis (ISSTA),
Seattle, Washington, Aug. 1994.

[15] G. B. Mund and R. Mall. An efficient interprocedural dy-
namic slicing method. The Journal of Systems and Software,
79(6):791–806, 2006.

[16] A. Szegedi and T. Gyimóthy. Dynamic slicing of Java byte-
code programs. In Proceedings of the Fifth IEEE Interna-
tional Workshop on Source Code Analysis and Manipulation
(SCAM’05), pages 35–44. Sept. 2005.

[17] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, Sept. 1995.

[18] G. A. Venkatesh. Experimental results from dynamic slicing
of C programs. ACM Transactions on Programming Lan-
guages and Systems, 17(2):197–216, Mar. 1995.

[19] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, SE-10(4):352–357, 1984.

[20] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief sur-
vey of program slicing. ACM SIGSOFT Softw. Eng. Notes,
30(2):1–36, 2005.

[21] X. Zhang and R. Gupta. Cost effective dynamic program
slicing. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
94–106, Washington, D. C., June 2004.

[22] X. Zhang, R. Gupta, and Y. Zhang. Efficient forward compu-
tation of dynamic slices using reduced ordered binary deci-
sion diagrams. In ICSE ’04: Proceedings of the 26th Inter-
national Conference on Software Engineering, pages 502–
511, Edinburgh, United Kingdom, May 2004.

[23] X. Zhang, R. Gupta, and Y. Zhang. Cost and precision trade-
offs of dynamic data slicing algorithms. ACM Transactions
on Programming Languages and Systems, 27(4):631–661,
July 2005.


