
SCAM06 Submission Collard, Kagdi, Maletic

 Page 1 of 10

Factoring Differences for Iterative Change Management

Michael L. Collard, Huzefa Kagdi, and Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent Ohio 44242

{collard, hkagdi, jmaletic}@cs.kent.edu

Abstract

An approach for factoring source-code differences is
presented. A single large difference between two
versions of a program is decomposed into factors (i.e.,
smaller changes). The application of all the factors is
equivalent to the application of the single large
difference. The factors are obtained by user-defined
criteria. They include changes that are limited to a
specific syntactic construct or ones that occur throughout
a file. The factors can be applied individually or in
combination to generate intermediate forms of the large
change. This directly supports iterative software change
management by decomposing large changes into smaller
factors.

The approach uses srcDiff, an XML representation of
multiple versions of a source-code file and their
differences. XML transformations are used to factor a
change according to an XPath expression. The approach
is applied to changes made to a large open-source
system. The results indicate the approach is flexible and
efficient, and can be integrated with common
differencing tools.

1. Introduction

Many large-scale open source development projects
require that changes to the system be committed in small
increments [17]. This limits the impact of the change and
simplifies testing and integration. Additionally, small
changes can be well understood by the many developers
on the project, thus giving the entire team more
confidence that any adverse side effects will be identified
early on.

However, in practice, developers find committing
these small incremental changes problematic. That is,
development of a new feature typically will require many
changes to a system, some of which will be revoked or
done differently as development progresses. As
implementation moves forward, flaws in the initial
design are uncovered and previously implemented code
is reworked or refactored. For example, it is not
uncommon to add a new attribute to a class to support a

new feature, but then later change your mind and rename
or move this attribute to another class.

In practice, developers will implement a large part (or
all) of a new feature and then go back and try (manually)
to break apart the additions so they can be committed in a
more incremental fashion. This avoids the “commit,
change your mind, and recommit” problem.
Development is rarely a nice clean path to the final
solution but rather a search for the solution. However,
we do want our commits to represent as clear a path to
the solution as possible. Due to the nature of open source
development this clear-path becomes even more
important. Without ways of logically breaking up
changes, the change moderator must either accept or
reject the entire change. There is no easy way to
iteratively provide feedback on a change, i.e., part of the
change is accepted and part is given back. In the worst
case, the change is too pervasive and too difficult to
break apart and may never be integrated into the system
[17].

Current differencing approaches (diff and patch) are
not sufficient and only easily allow a large change to be
broken apart at the file level. While a change may also
be broken apart at a line level, line-level changes do not
match with the semantics or syntax of the changes.

Ideally we would have a means to take a large change
and factor it into a set of prime changes. These prime
changes are syntactically meaningful and as small as
possible. They can later be composed to form larger
factors that represent related (e.g., logically or
semantically) incremental changes. The developer would
then select the appropriate sets of factors to define an
understandable and clear path of commits to implement
the new feature.

The approach taken here extends our previous work
on srcDiff (multi-version difference formats) and meta-
differencing (querying source-code differences) to extract
factors of a change. XPath expressions, based on
syntactical and documentary structure of the source, are
applied to the srcDiff format and used to extract prime
factors. These factors can be used to form a path for the
iterative application of changes that more closely
matches the requirements of change integration, but may

 Page 2 of 10

differ from the path of
changes used to
create a large change.

The paper is
organized as follows.
The next section
formalizes the
problem with the help
of an example. In
section 3 srcDiff and
meta-differencing
approach, and the
toolset used are
outlined. Evaluation
of the approach is
presented in section 4
using the example
from section 2.
Discussion on open
issues is presented in
section 5. This is
followed by related
work in section 6 and
finally conclusions
and future work in
section 7.

2. Defining the Problem

Let us now look at a specific, nontrivial, example that
is used as a running example in the paper. Figure 1
contains an actual commit message for a large change
from KDE (K Desktop Environment). KDE is a
successful open-source system with more than 4000
KLOC and 800 contributors. A commit message is the
text that a developer enters when a changeset is
committed to the version control system, in this case
Subversion. From the text we can derive that this change
contains an API change along with changes to a client
application (i.e., the editor Kate). This commit message
is a list of issues corresponding to specific functionality
in the API and how this functionality was incorporated
into Kate.

We manually annotated (prefixed with bold labels) the
commit message so that each of the individual changes
can be referenced in the paper. Each of the individual
changes could have been committed separately. As the
author of the commit message clearly indicates, there are
potentially more individual changes (see [A2] in Figure 1
and the “closing remark” of the commit message). These
individual changes appear to be separate atomic changes
irrespective of whether a single large commit or multiple
small commits were made.

We cannot precisely infer the original order in which
changes were performed. However, the order in which

these changes are accepted (i.e., updating a working
copy) depends on the task and the size of each change.
One may want to apply all of the API changes first (i.e.,
labeled A1 – A7), then the client changes (i.e., labeled
K1 – K6), or partition the changes based on which parts
of the source code are involved. Therefore the commit
order (and granularity) may not be the same as the
acceptance order.

Using this example we now state more formal
definitions. A system S consists of a set of files,
{f1,f2,…,fn}. The difference ∆i+1 between two versions of
a system in a repository, Si and Si+1, is defined as the
changes to the version Si needed to produce the version
Si+1, i.e., ∆i+1(Si)=Si+1. In our running example, Si
corresponds to the system before the application of the
change, and Si+1 corresponds to the system after the
application of the change. The application of the
difference between the two versions of the system (the
change described in the commit message of Figure 1)
corresponds to ∆i+1. The difference ∆i+1 produces another
set of files that contains modified files from, added files,
to, and/or removed files from the set {fi1,fi2,…,fin}.

The commits for a system form a finite commit
sequence ∆n(∆n-1…(∆i+1(Si))). The system Si+j corresponds
to the version produced after the composition of the first j
differences, i.e., ∆j(∆j-1…(∆i+1(Si))). A commit sequence
of length n corresponds to n + 1 different versions of the
system.

Two commit sequences, ∆j(∆j-1…(∆i+1(Si))) and ∆k(∆k-

1…(∆i+1(Si))) are considered equivalent if they produce the

 API changes:
[A1] * Attribute doesn't need to track which ranges are using it... that's
 just overkill
[A2] * Start working on exposing the dynamic highlighting effects... which
 aren't written yet (sorry for getting your hopes up)
[A3] * Mouse and cursor enter/exit notification for ranges. Needs polishing
 on how to actually request that they be delivered (SmartInterface
 needs a bit of refactoring)
[A4] * made SmartRange::deepestRangeContaining() provide a method for
 returning which SmartRanges were iterated to get to the answer
[A5] * changed attachAction to associateAction for consistency (and there's
 no ownership, it's just a relationship)
[A6] * intersect and encompass functions for Range
[A7] * a few extra handy parent-related functions for Range (it's amazing how
 much you find out what is missing from your interface when you start
 using it yourself)

 Kate part changes:
[K1] * moved the RenderRanges stuff out into its own file
[K2] * hook up the mouse movement logic again
[K3] * clean up KateSmartRange a bit
[K4] * track deleted ranges better - less dangling pointers (probably some
 * still remaining)
[K5] * started porting the word wrap indicators - seems to not be working yet
[K6] * attempt to fix mouse from changing positions

 Needed to commit this as it was getting... a bit big :)

Figure 1. A commit message from KDE revision 473657, performed on 2005-10-24, and

impacting text editor interfaces and Kate in kdelibs. In addition to the original text,
labels appear in bold (e.g., [A3]) corresponding to individual factors.

 Page 3 of 10

same system, i.e., the same set of files. The two
sequences may contain different elements, or the same
elements in a different order. The existence of equivalent
reorderings depend on the location of changes (e.g.,
disjoint sets of files for each commit) and the mechanism
of the patch mechanism (e.g., line-based path
mechanisms require proper ordering due to line number
changes).

The notation so far applies to large changes to a
system, i.e., the changes that map to a commit. However,
each large change may also consist of individual parts,
(i.e., factors). In our example, these parts could be the
individual parts of the commit, e.g., A1. A factor, δi+1
between two versions of a system, Si and Si+1, is defined
as the changes to the version Si needed to produce the
version Si+1, i.e., δi+1 (Si) =Si+1. A factor sequence can be
defined similarly to a commit sequence, δn(δn-

1…(δi+1(Si))…). The system Si+j corresponds to the version
produced after the composition of the first j factors, i.e.,
δj(δj-1…(δi+1(Si))…). Each commit difference corresponds
to a factor sequence, i.e., ∆i+1(Si)=δn(δn-1…(δi+1(Si))…)

A prime factor is a factor whose further division is not
necessary for a considered task and/or view of a change.
The issue of whether a factor is sufficiently prime
depends on the granularity and type of change. At the
textual level, a single character factor is the most prime.
However, for purposes of producing prime factors, we
feel the indivisibility should depend on syntactic features
of the source code being modified. Prime factors may
also depend on the task of application of the differences.

The next section presents our approach to extracting
and manipulating the factors of a change, i.e., extracting
a factor sequence δn(δn-1…(δi+1(Si)) from a commit change
∆i+1(Si).

3. The Approach

Our approach is to transform the textual differences
into syntactic differences. The factors are then formed
by querying and manipulation of the syntactic
differences. To solve this problem we use our srcML and
srcDiff representations. Figure 2 depicts the overall
process. The process starts with the initial text
difference. This difference is lifted to the srcDiff
representation (i.e., syntactic differences). The factoring
of a difference is then reduced to an XML transformation
on the srcDiff format. In the following subsections, we
expand on the process including the srcML and srcDiff
formats.

3.1. srcML Source-Code Representation

The srcML format [3, 4] is used for the representation
of source code in srcDiff. srcML is an XML
representation of source code where the source code text

is marked with elements indicating the location of
syntactic elements. The format supports the
representation of all parts of a source code file, including
preprocessor directives, white space, and comments. The
srcML format has a 1-1 mapping with the text in the
original source code file, i.e., a source code file can be
put in the srcML representation and later extracted
without any loss of text.

Figure 2. Using srcDiff XML transformations can be
used to factor a difference. First, the difference is

converted to the srcDiff format. Second, the srcDiff
undergoes an XML transformation. This modified
srcDiff can be used to extract a new version of the

source code. This new version has only the changes
that remain in the new srcDiff. In addition, the

intermediate version of the source code can be used
to generate factored textual differences.

The srcML toolkit includes translators to and from the
srcML format. The srcML file is typically 3.5 times the
text size and the translation speed to srcML is over 10
KLOC/sec. The srcML toolkit is available both under a
GPL and a commercial license (www.sdml.info). For
more information about the srcML format, we refer the
readers to [4].

The srcML representation and translator are extended
to support compound srcML documents. The compound
srcML format facilitates the representation of a set of
files, e.g., all the source-code files of a KDE commit, in a
single srcML document. Each file is represented in an
individual unit element with directory and filename
stored in attributes. The individual unit elements are
nested in a single root unit element. Also, the capability
of the srcML toolkit to operate on compressed files
allows an entire project to be stored in a single
compressed file that is typically 1.5 times the size of the
equivalent compressed text files.

 Page 4 of 10

3.2. srcDiff Difference Format

srcDiff [20] is an intensional format for representing
differences in XML, i.e., it contains both versions of the
source code and their differences. The srcDiff format is a
direct extension of srcML. An example of srcDiff
representation is given in Figure 3. The srcML of two
versions of a file (i.e., old and new) are stored. The
difference elements diff:common, diff:old, and diff:new
represent sections that are common to both versions,
deleted from the old version, and added to the new
version respectively. The sections are well-formed with
the srcML elements by the addition of nested
diff:common elements. Although, the example
demonstrates srcDiff for only two versions of a file, it
allows representation of any number of versions. Similar
to srcML, srcDiff also supports a compound format to
represent differences between sets of files.

3.3. Generation of Difference Format

The approach to srcDiff generation uses the diff utility
to find the textual differences of two versions of a file.
The combined output of diff that marks differences using
the preprocessor directives #ifdef, #else, and #endif is
used. This output is translated into srcML, and then a
series of textual substitutions replaces the preprocessor
directives with empty difference elements. Further
analysis is performed to obtain a finer granularity of
differences than is available from the diff utility. This
processing is linear with respect to the number of srcML
tokens. The empty-difference elements are finally
converted to srcDiff elements that are well-formed with
respect to the srcML elements.

The generation of srcDiff is based on line-based
differences because of their robustness and speed. In
order to be practical the speed of generating srcDiff is
very important. In our previous work [20] the srcDiff
format was generated at a speed in the range of 100
LOC/second. In this work the approach takes advantage
of new features in the srcML translator. The speed of the
generation of the srcDiff format improved to 6
KLOC/second, an over 60 times speedup. In addition to
the speedup, the improved srcDiff generation provides a
finer granularity of changes.

3.4. Meta-Differencing

Once source code is in the srcDiff representation,
changes can be analyzed and manipulated using common
XML tools. We term this meta-differencing as it allows
the extraction of information from differences, including
their context. Meta-differencing is an extension of
queries on the srcML representation. Elements in the
source code (syntactic and documentary) can be located

by an XPath expression to the srcML element, e.g., to
locate a function with the name of sort, the XPath
expression is /unit//function[name=’sort’]. Determining
the syntactic context of a change (or the change context
of a syntactic element) is performed by using the
difference elements, e.g., to locate all the added code in
the function with the name of sort the XPath expression
is /unit//function[name=’sort’]//diff:new. The result is
all the code that is contained in these additions, including
text and other elements.

Note that because of need to keep the srcML elements
nested in a difference well-formed, nested diff:common
elements are used. Thus, a srcML element in the
difference element diff:new may also be contained in a
difference element diff:common. In order to determine
whether an element is added, deleted, or in common, the
parent of the element along the difference axis is used.

3.5. Transformation of Differences

In our approach the differences are represented in the
srcDiff format, and transformation of differences is a
transformation on the srcDiff format. In this section we
will begin by explaining how we can make these
transformations.

First we note that from the srcDiff format two
different versions of a file may be extracted. For the
difference δm, where fo is the original file and fm the
modified version, version fo is formed from the content of
the difference elements diff:common and diff:old, and
version fm is formed from the content of the difference
elements diff:common and diff:new. In order to
understand how nested difference elements are handled,
consider a stack that stores the open difference elements.
Whenever the start of a difference element is reached it is
pushed on the stack, and whenever the end of a
difference element is reached the difference element is
popped from the stack. The decision as to when a srcML
or text node is placed on the output is determined by the
top element of the stack, i.e., diff:common and diff:old for
fo and diff:common and diff:new for fm.

Transformation of a difference δm to δm’ changes the
version fm that is produced to a version fm’. The
transformation changes the difference elements, and may
change the srcML elements nested inside. There are
three different operations that that can be applied during
the transformation. We can reject a change that deletes
code or reject a change that adds code. We can also
transform a replacement change (old replaced by new), as
a combination of two.

Eliminating a code deletion is based on changing
diff:old elements. A diff:old element occurs in only the
original version, while a diff:common appears in both
versions. We must change it so that it appears in both
versions and can do so by changing the diff:old to a

 Page 5 of 10

diff:common. All the text and nested srcML elements
must also be preserved. Any nested diff:common or
diff:new elements remain intact.

Elimination of a code addition is based on changing
diff:new elements. A diff:new element occurs in only the
new version. In this case the diff:new element and its
content must be removed. Any nested diff:common or
diff:old however must be preserved.

3.6. Factoring Differences

There are multiple ways of factoring a change. As a
result criteria specific to the task and/or desired view of a
change are needed for factoring. For example, the
acceptance criteria may require two factors based on
changes to a particular entity. We may want to factor out
changes to a particular function from changes to the rest
of the system. Recursive application allows a change to a
system to be factored into individual changes
corresponding to changes to individual functions.
Another possible criteria is factoring based on the type of
the language element. We may want to allow comments
changes to existing comments/elements to occur first.

Criteria are expressed using the XML addressing
language XPath applied to a srcDiff document. The
criteria XPath indicate which parts of the XML document
is to be part of the change. The criteria could specify
which differences are to be included, or excluded.
Specifying inclusion is probably more natural since that
is used in an XPath expression evaluation tools, and
template matching in XSLT. Note that the
expressiveness of the XPath addressing on the srcDiff
format allows for any combination of the two.

3.7. Factoring Tool

The previous discussion
showed the wide variety of
XPath expressions that can
be formed and used on the
srcDiff representation. In
this section we describe the
tool that we developed and
used in the evaluation.

The tool, difffact factors
differences. The input to
the tool is a compound
srcDiff document that is a
collection of all the files
involved in the change,
and the output is the
transformed srcDiff that
can produce factors of a
change.

The tool takes two
parameters. The first

parameter specifies the type of change that is to be
filtered out, either addition, deletion, or both. The second
parameter is the location in the srcDiff document where
the transformation is to occur. The location is given as
an XPath expression. For example, to filter out all added
statements in a function definition the command is
difffact add “/src:unit/src:unit//src:function/src:block”.

The tool is written using TextReader, a streaming
XML API that is part of the libxml2 (xmlsoft.org). As
each element unit in the compound srcDiff document is
reached that part of the XML tree is expanded and the
XPath parameter is evaluated. At the end of the element
unit this part of the expanded XML tree is removed. Our
experience with this approach in a query tool on
compound srcML documents has shown it to be quite
efficient, e.g., minutes to query on a srcML
representation of the Linux kernel. However, this is not
the only way to perform difference factoring on srcDiff,
i.e., XSLT, and other XML API’s can be used.

After generating the modified srcDiff document the
files can be extracted using another tool, diffver. The
tool diffver takes a srcDiff file and extracts either the
original or modified form as a compound srcML
document. The srcML toolset can be used to extract the
text files from the srcML document. If needed, textual
differences can be generated using the utility diff on the
extracted text files.

4. Evaluation

The primary goal of the evaluation is to demonstrate
our approach in factoring a large change performed in a
large-scale software system developed in a highly

<diff:common>
<diff:old><cpp:include># include <../trial1></cpp:include>
</diff:old><diff:new><cpp:include># include <trial1></cpp:include>
</diff:new>

<comment type=”block”>/*
 a function

<diff:old>2003</diff:old>
<diff:new>2004</diff:new>

*/</comment>
<function>int f(int a, int b, int c) <block>{
<diff:old><if>if (a == b) <block>{
<diff:common>
 a = b;
 b = c;
<diff:new> total = total + a;
 product = product * a;
</diff:new>
 c = a;
</diff:common>}</block></if>
</diff:old>}</block></function>
</diff:common>

Figure 3: A portion of a srcDiff document showing the old, new, and common

difference sections. The old text is strikethrough and the new text is bold.

 Page 6 of 10

collaborative environment. KDE is used as a subject
system. A prerequisite is to acquire an instance of a large
change that serves in evaluating the expressiveness (i.e.,
represent factors at the various syntactic levels) and
effectiveness (i.e., realistic performance) of the approach.
In the rest of this section, we discuss how one such large
change was obtained and factored.

File Change (# of lines)

arbitraryhighlighttest.cpp A2(43)
arbitraryhighlighttest.h A2(2)
attribute.cpp A1(4), A2(13), A5(14)
attribute.h A1(13), A2(13), A5(16)
attribute_p.h A1(4)
katedocument.cpp A2(6), K4(18)
katedocument.h A2(8), A5(13)
katerenderer.cpp K1(223)
katesmartcursor.cpp A3(9)
katesmartcursor.h K2(8)
katesmartmanager.cpp K1(6), K4(2)
katesmartmanager.h K1(4), K4(3)
katesmartrange.cpp K2(13), K3(12), K6(19)
katesmartrange.h K2(37)
kateview.cpp A2(15), K4(4)
kateview.h A2(19)
kateviewhelpers.cpp ND(42)
kateviewinternal.h A2(19)

kateviewinternal.cpp A2(51), A4(2), K2(17),
K4(15), ND(1)

range.cpp A6(13)
range.h A6(40)
rangefeedback.cpp A3(16)
rangefeedback.h A3(95)
smartinterface.h A2(6)

smartrange.cpp A1(8), A4(35), A5(12),
A7(11), K3(8), K4(36)

smartrange.h A3(10), A4(13), A5(23),
A7(17)

Table 1. Files involved in the example commit
change. For each file the individual change and the
number of lines in that change are given. The lines

that are not clearly associated with any of the
individual changes are labeled ND.

4.1. Changeset Acquisition

The source-code repositories of KDE are managed by
Subversion. Subversion preserves all the changed files
submitted in a single commit operation as an atomic
changeset. Additionally, each changeset is annotated
with metadata such as the committer’s identify, date, a
text message provided by a committer, and names of the

changed files. Subversion stores the metadata of
changesets as log records. These log records
(specifically the text messages) are utilized in acquiring
changes that are potential candidates in evaluating our
approach.

One approach to extract the log records from a
Subversion repository is using the client command svn
log. However, this approach requires a working copy of
the repository. Clearly, this approach is not feasible for
use-cases in which a desired subset is obtained from a
search space of a large system with thousands of
changesets. Therefore, we developed the tool
changeextractor that uses pysvn (i.e., Subversion API for
Python) to extract changesets (without a working copy)
from the repository. The tool changeextractor takes a set
of search terms (e.g., refactoring) and the repository
URL and outputs a set of changesets containing any of
the search terms in their text messages. Thus, the
extraction of changeset of interest basically reduces to
the specification of search terms.

We restricted our interest to the refactoring and API
changes. These types of changes are typically composed
of small incremental steps. In such cases, the changeset
may correspond either to a small step (desired good
practice) or the entire end result (potentially
problematic). Therefore, the changesets corresponding to
the end results are of primary interest. The application of
changeextractor to the KDE repository with search terms
refactoring and API matched 32 changesets. The text
messages of matched changesets were manually
examined and a changeset was selected. The selected
changeset is a large complex change consisting of 28
files involving API (text highlighting features),
refactoring (rename methods), and other minor changes.
This changeset mainly involves changes to the text editor
Kate. Table 1 shows the files and the number of lines
changed in them on account of individual changes.
Changes to (two) files related to build configuration
(Makefile.am) and a TODO list are ignored.

The text message of this changeset contains a very
short (one-two line) description of each individual
change. In order to further verify that this changeset is
truly complex, one of the authors manually examined the
changed files and associated each changed line with the
corresponding individual change. Some of the individual
changes crosscut multiple files and syntactic structures.
Associating individual changes to the line-change factors
took a considerable amount of manual effort
(approximately three hours). A large number of the API
and refactoring changes in this changeset substantially
consisted of comment changes more than the other types
of syntactic structures. If the syntactic composition and
context of a change is available, the reviewing and
acceptance process could be better organized. In the case

 Page 7 of 10

of a large API change, the changes in methods can be
examined first and the comment changes last.

4.2. Conversion to the srcDiff format

Once the example changeset was available it was
converted into the srcDiff format using the toolset
described in Sections 3.2 and 3.7. All 26 files were
individually converted to the srcDiff format then merged
into a compound srcDiff document. The file sizes were
reasonable with the resulting srcDiff document 2.1 MB,
while the equivalent text size is approximately one fourth
the size at 567 KB. The size of XML for representing
AST or parse-tree information is a concern [1]. As is
recommended for dealing with large XML files [10], the
entire toolchain was enabled to process gzipped files.
The size of the gzipped srcDiff document was 153 KB,
and the size of the equivalent gzipped text was 102 KB
for a ratio close to 1.5. The speed of the conversion was
under 3 seconds.

4.3. Individual Factors

We focus on the changes in the file attribute.cpp to
demonstrate factoring into individual changes. Table 1
shows that this file is involved in three individual
changes: A1, A2, and A5. For each of these changes we
individually factor out a separate version that only
contains these changes so that they can be applied
individually, i.e., create factors δA1, δA2, and δA5.

Each change occurs in the file attribute.cpp, so the
XPath expression begins with a selection of this
particular file (which we leave out of the following
examples for clarity):

/unit/unit[@filename=’attribute.cpp’]

Factor δA2 is the addition of functions effects and

seteffects. They are the only added functions to this file.
So the new sections that have an added function are
located and marked. The XPath expression for extracting
this factor is:

//diff:new[function]

Factors δA5 are changes in if-statements. The if-

statements that have new additions are located and
marked. We want to remove both types of modifications
(i.e., additions and deletions). The XPath expression to
select this factor is:

//if[.//diff:old or .//diff:new]

The last factor, δA1, is the commented-out functions

addRange and removeRange. Since this is the only
remaining change, it can be found by extracting (and
applying) the other factors, δA2 and δA5 first.

All of these factors were generated using the difffact
tools on the compound srcDiff document of the entire
example (all 26 files). The generation of a modified
srcDiff took less than a second.

4.4. Standard Factors

The factors previously presented are very task
specific. However, there are some factors that are
common to many tasks and which could be applied
without knowledge of a specific task at hand. They are
based on the types of syntactic entities in the context of
differences.

The first distinction is between documentary and non-
documentary changes, specifically comment changes.
The ability to factor out comment changes (which are
probably accepted without much examination) from non-
comment changes (which may require a detailed review)
can simplify the change acceptance process. To
demonstrate an entire commit change was divided into
two factors, δc and δ~c which are for comment changes
and non-comment changes respectively.

Updated comments, i.e., existing comments that have
modification to their text, can often be accepted without
much review. So as a first example we form a factor δc
consisting of these comments. More specifically,
comments that contain diff:old or diff:new elements. The
XPath expression to select the comments in this factor is:

//comment[.//diff:old or .//diff:new]

22 comments were found by applying the above

XPath expression.
Another variation of comment extraction is comments

that were deleted. In general, we are interested in
comments directly inside of the difference elements
diff:old and diff:new, and not comments inside of other
entities that are deleted or added. The XPath expression
to select factors of comments that were directly added or
deleted is:

//diff:new[.//comment] | //diff:old[.//comment]

17 comments that were directly added and 15

comments that were directly deleted were found by
applying the above XPath expression. Note that the
XPath path operator or “|” can only be used at the top
level in XPath 1.0. Each part of the XPath can be applied
separately.

And as a final example, it may be interesting to factor
modifications to existing return-statements using an
approach similar to modifications of existing comments.
There were only three of these return-statements in the
entire system. They happen to be in a single file,
attribute.cpp, which is the example given in the previous
section.

 Page 8 of 10

5. Discussion

The undertaken approach and its evaluation bring
forward various open issues. This section discusses these
issues and outline possible directions in addressing them.

5.1. Manual Effort and Dependency

The undertaken approach requires the manual
generation of the XPath criteria for factoring an
individual change. Also, the classification of the files
and lines involved in a change into types of individual
changes is performed manually.

The XPath to extract the factors based on the list in
the commit message was performed manually. As can be
seen, the generation of these XPath expressions was not
simple. A natural question is whether these criteria could
be extracted (semi) automatically. One problem with
automatic extraction is the task dependent view of the
prime factor. The specification of a factor would have to
be made manually. This could be used to automatically
generate the factoring XPath. For example, if the user is
interested in a specific set of source code entities, e.g., a
set of files, classes, and /or functions involved in a
change, then the XPath criteria could form two
complementary factors: one pertaining to the entities of
interest, and the other addressing the remainder of the
change. It is possible to use the information from the
software repositories to automatically determine the
potential set of entities that may affect a developer’s
contribution.

The changed lines between two versions of a file were
manually classified by examining only the textual
differences of the two versions of a file and the commit
message. Neither of the two complete versions of a file
was used to determine the context of the change. This
exposes a threat to the misclassification of a change into
inappropriate individual change. Moreover, the
classification is also highly dependent on the “quality” of
the commit message. Document similarity comparison
methods could be employed for classification. The
commit messages, and identifiers and comments in
source code can be utilized in such an approach. In the
absence of a “quality” commit message, the locality of
changes to a syntactic structure may prove to be a viable
option in clustering a change into a hierarchy of
individual changes. For example, the changes in a
particular method, that in turn is (possibly with changes
in other methods) in a particular class.

5.2. Scalability

The scalability of the approach directly corresponds to
the srcDiff representation (size and time of generation),
the XPath criteria (size and complexity), and the

generation of the factors (time). The size of the srcDiff
format is typically less than 4 times that of a text
representation as applied to large systems such as Linux
and KDE. Moreover, the speed of srcDff generation is of
the order of seconds. This evaluation endorses the
scalability of the srcDiff representation and its
generation. The srcML format and its translation from
source code shows a similar degree of scalability (~3.5
times the space of the text, and ~12 minutes to translate
the Linux kernel). As for the size and complexity of the
XPath criteria, as the number of files increases, there is a
high likelihood that the desired factors may also
generalize. Therefore, such factors lead to drastic
reduction in the complexity of the XPath expressions. As
for the generation of the factors, since this is an
application of an XPath expression on a srcDiff file our
experience with querying srcML using XPath
expressions (minutes for the Linux kernel) shows that
this will also scale well.

In summary, although our approach is evaluated here
on a medium-sized example, our previous experiences
with srcML and srcDiff on a number of large systems for
a variety of querying and transformation tasks support
the scalability of the approach.

5.3. Granularity

One of the advantages of the srcDiff generation is the
use of line differences as a first stage. As we noted in
this work additional, low-cost, stages were used to
provide finer granularity. These stages used linear
comparisons of the line differences avoiding the potential
cost of applying LCS (Longest Common Subsequence) to
a group of lines involved in a change. The addition of
these stages had very little effect on the overall time of
processing.

The largest effect on the efficiency of differencing is
the granularity of the difference. Line-based differencing
is fast because it only considers differences of lines.
Complete syntactic differencing, such as AST-based
approaches, can take time that is of the quadratic order of
the number of nodes. Partial syntactic differencing takes
less time, but takes as a single, large change, whenever
an element is inserted that wraps around existing
elements, e.g., inserting an if-statement around
previously existing statements.

Additional stages could be added to further improve
the granularity. These stages could be based on an as-
needed basis and depend on individual statements and
syntax. The availability of the srcML markup in the
context of the differences allows for a rich infrastructure
to create entity-specific granularity improvements.

 Page 9 of 10

5.4. Factor Operators

XPath is an extremely location expressive language.
Not only can it refer to specific locations via a path, but it
can also express complex relationships between
elements. The use of these complex relationships may
lead to the automatic merging of separate factors.

One example is a change to portions of source code
related to each other which do not have an explicit way
of stating (in the programming language) their
relationship. For example, it is common to put a
comment before a function describing its purpose. If we
have two separate factors, one a change to the function
and one a change to a comment, it would be useful to
combine these factors. This has to be done using external
knowledge of these relationships.

A factor operator would take a set of factors and try to
combine as many as it can. The output is a new set of
factors. These factor operators look for specific
relationships between the factors. For example, a
comment-function merge factor would look to see if any
of the comment factors could be merged with any of the
function factors.

5.5. Integration with Version-Control Systems

The two versions of a file and their differences are the
only external inputs to the overall toolset for factoring
changes. As shown in 4.1, the tool changeextractor
obtains these inputs from the software repository by
using the API of a version control system (i.e.,
Subversion). The tool changeextractor produces the
difference in the unified-difference format. However, the
generation of srcDiff requires the compound format with
preprocessor directives (see section 3.2). The tool
changextractor can be easily extended to produce the
difference format needed by srcDiff. With this
extension, the tool changeextractor and the rest of the
toolset can be seamlessly integrated with the version-
control systems such as Subversion.

6. Related Work

Differencing is performed for many tasks including
comprehension, patching, merging, and automatic change
detection. The particular task affects what kind of
change is considered a difference and the representation
of the difference.

The main categories of differencing include textual,
syntactic, and semantic [12]. Textual differencing
detects changes in textual lines as in the utility diff [13]
which uses the LCS (Longest Common Subsequence)
algorithm [14]. Syntactic differencing is concerned with
changes in an AST, as in LTDIFF [12] and Dex [26], or
changes in a parse tree as in our previous work on meta-

differencing [20] and is typically applied to merging [21].
Semantic differencing is concerned with changes in
behavior. Since detecting changes in behavior is
undecidable, heuristics are used as in [11] [16] and [2].

While textual differencing may be applied to XML
documents, there is a great deal of interest in differencing
which takes advantage of the format. These differencing
tools include [5, 15, 19, 22, 25, 28, 29] with formats
including [6, 18, 23, 24, 30]. These tools either have
quadratic or higher complexity, or when applied to the
srcML representation ignore ordering and white space.
One exception is [28] which applies the LCS algorithm to
a flattened XML tree.

The formats produce edit scripts that do not reflect the
context of a change, or only allow the marking of
changes to elements, not to text (which is a problem for
changes in the text of comments). Recent work has been
performed on providing a better context for changes [27]

 There has been recent interest in detection of certain
types of differences especially refactorings. Gall et al. [7,
8] use a lightweight AST differencing approach. Görg et.
al. [9] use a lightweight parsing approach to determine
syntactic elements which are then compared from version
to version for changes.

There is a tool that provides minimal support for
separating differences. WinMerge
(winmerge.sourceforge.net) is an open source tool for
differencing and merging text files. It provides a line-
based view that can be filtered using regular expressions
based on the content of an individual line. In merge
mode it can be used to selectively pick which change to
apply. However, the merging is completely line-based
and manual with no ability to use the syntactic context of
a change or to match large numbers of changes in a
single expression.

7. Conclusions

We presented an approach that factors single commit-
level changes into a series of smaller changes by a
syntactic criteria. The approach provides iterative
acceptance and feedback mechanisms to directly support
management of large changes. .

The syntactic criteria are shown to be both expressive
and effective. Differences at a syntactic level were found
efficiently. Both the generation of the srcDiff format and
the factoring is very efficient and therefore scalable to
large systems.

Future work is to create standard factoring criteria so
that large changes can be automatically factored without
manual writing of the criteria. This also involves the
issue of concept location for individual parts of a commit
change. In addition, we are working on the packaging of
the factoring tools and making it available under the GPL
license.

 Page 10 of 10

8. References
[1] Anderson, P., "The Performance Penalty of XML for
Program Intermediate Representations", in Proceedings of Fifth
IEEE Internation Workshop on Source Code Analysis and
Manipulation, Budapest, Hungary, Sep 30 - Oct 1, 2005 2005,
pp. 193-202.

[2] Apiwattanapong, T., Orso, A., and Harold, M. J., "A
Differencing Algorithm for Object-Oriented Programs", in
Proceedings of 19th IEEE International Conference on
Automated Software Engineering (ASE '04), Linz, Austria,
September 20-25 2004.

[3] Collard, M. L., Kagdi, H. H., and Maletic, J. I., "An XML-
Based Lightweight C++ Fact Extractor", in Proceedings of 11th
IEEE International Workshop on Program Comprehension
(IWPC'03), Portland, OR, May 10-11 2003, pp. 134-143.

[4] Collard, M. L., Maletic, J. I., and Marcus, A., "Supporting
Document and Data Views of Source Code", in Proceedings of
ACM Symposium on Document Engineering (DocEng’02),
McLean VA, November 8-9 2002, pp. 34-41.

[5] DeltaXML, "DeltaXML.com Change Control for XML in
XML", Date Accessed: May 16, http://www.deltaxml.com,
2004.

[6] DeltaXML, "How DeltaXML Markup Represents Changes
to XML Files", Date Accessed: May 16,
www.deltaxml.com/core/deltaxml-changes-markup.html, 2004.

[7] Fluri, B. and Gall, H., "Classifying Change Types for
Qualifying Change Couplings", in Proceedings of 14th IEEE
International Conference on Program Comprehension, Athens,
Greece, Jun 14-16, 2006 2006, pp. 10 pages.

[8] Fluri, B., Gall, H., and Pinzger, M., "Fine-Grained Analysis
of Change Couplings", in Proceedings of Fifth IEEE Internation
Workshop on Source Code Analysis and Manipulation,
Budapest, Hungary, Sep 30 - Oct 1, 2005 2005, pp. 66 - 74.

[9] Görg, C. and Weißgerber, P., "Detecting and Visualizing
Refactorings from Version Archives", in Proceedings of 13th
IEEE International Workshop on Program Comprehension, St.
Louis, Missouri, USA, 2005, pp. 205-214.

[10] Harold, E. R., Effective XML 50 Specific Ways to
Improve Your XML, Addison-Wesley, 2004.

[11] Horwitz, S. and Reps, T. W., "The Use of Program
Dependence Graphs in Software Engineering", in Proceedings
of International Conference on Software Engineering (ICSE),
Melbourne, Australia, May 11 - 15 1992, pp. 392 - 411.

[12] Hunt, J. J. and Tichy, W. F., "Extensible Language-Aware
Merging", in Proceedings of IEEE International Conference on
Software Maintenance (ICSM'02), Montreal, Canada, October
3-6 2002, pp. 511-520.

[13] Hunt, J. W. and McIllroy, M. D., "An Algorithm for
Differential File Comparision", AT&T Bell Lab. Inc. 1976.

[14] Hunt, J. W. and Szymanski, T. G., "A Fast Algorithm for
Computing Longest Common Subsequences", CACM, vol. 20,
no. 5, May 1977, pp. 350 - 353.

[15] IBM, "XML TreeDiff", Date Accessed: May 16,
http://alphaworks.ibm.com/tech/xmltreediff, 1998.

[16] Jackson, D. and Ladd, D. A., "Semantic Diff: A Tool for
Summarizing the Effects of Modifications", in Proceedings of
IEEE International Conference on Software Maintenance
(ICSM'94), Victoria, British Columbia, Canada, September 19-
23 1994, pp. 243-252.

[17] Kraoh-Hartman, G., "HOWTO do Linux kernel
development", Date Accessed: Apr 5,
http://www.kroah.com/log/linux/howto.html, 2005.

[18] Laux, A. and Martin, L., "XUpdate Working Draft",
http://exist-db.org/xmldb/xupdate/xupdate-wd.html, 2000.

[19] Logilab, "xmldiff", Date Accessed: May 16,
http://www.logilab.org/projects/xmldiff, 2003.

[20] Maletic, J. I. and Collard, M. L., "Supporting Source Code
Difference Analysis", in Proceedings of IEEE International
Conference on Software Maintenance (ICSM'04), Chicago,
Illinois, September 11-17 2004, pp. 210-219.

[21] Mens, T., "A State-of-the-Art Survey on Software
Merging", IEEE Transactions on Software Engineering, vol. 28,
no. 5, May 2002, pp. 449 - 462.

[22] Microsoft, "Microsoft XML Diff and Patch 1.0", Date
Accessed: January 19,
http://apps.gotdotnet.com/xmltools/xmldiff, 2002.

[23] Microsoft, "Microsoft XML Diff Language v.1.0 Beta",
Date Accessed: January 19,
http://apps.gotdotnet.com/xmltools/xmldiff, 2002.

[24] Mouat, A., XML Diff and Patch Utilities, Heriot-Watt
University, Edinburgh, Scotland, Senior Project, 2002.

[25] Mouat, A., "diffxml", Date Accessed: May 16,
http://diffxml.sourceforge.net, 2004.

[26] Raghavan, S., Rohana, R., Podgurski, A., and Augustine,
V., "Dex: A Semantic-Graph Differencing Tool for Studying
Changes in Large Code Bases", in Proceedings of 20th IEEE
International Conference on Software Maintenance (ICSM'04),
Chicago, Illinois, September 11 - 14 2004, pp. 188-197.

[27] Schubert, E., Schaffert, S., and Bry, F., "Structure-
Preserving Difference Search for XML Documents", in
Proceedings of Extreme Markup Languages, Montreal, Quebec,
Aug 7-11, 2006 2005, pp. 10.

[28] Walsh, N., "diffmk", Date Accessed: May 11,
http://sourceforge.net/projects/diffmk/,

[29] Wang, Y., DeWitt, D. J., and Cai, J.-Y., "X-Diff: An
Effective Change Detection Algorithm for XML Documents",
in Proceedings of 19th International Conference on Data
Engineering (ICDE'03), Bangalore, India, 2003, pp. 519-530.

[30] XML:DB, "XML:DB Initiative for XML Databases", Date
Accessed: April 11, http://www.xmldb.org, 2002.

