
Linking Analysis and Transformation Tools
with Source-based Mappings

Magiel Bruntink
CWI, P.O Box 94079

1098 SJ Amsterdam, The Netherlands
Magiel.Bruntink@cwi.nl

Abstract

This paper discusses an approach to linking separate anal-
ysis and transformation tools, such that analysis results can
be used to guide transformations. Our approach consists of
two phases. First, the analysis tool maps its results to rele-
vant locations in the source code. Second, a mapping in the
reverse direction is performed: the analysis results expressed
as source positions and data are mapped to the abstractions
used in the transformation tool. We discuss a prototype im-
plementation of this approach in detail, and present the re-
sults of two applications.

1. Introduction

There exists a vast collection of source code analysis and
transformation tools. Most of these tools specialize in either
analysis or transformation, and rarely a tool is suitable for
both tasks. Ironically, most non-trivial transformation tasks
require deep analysis. Migrating legacy software to recent
technology, such as AOP, is but one example [5].

Combining tools is the obvious solution to this function-
ality schism. However, tool combination introduces the is-
sue of tool interoperability, and despite the ample attention
it has received from the research community, it still remains
a largely open problem [8]. Previous work in this area has
focused on solving low-level compatibility issues, resulting
in many proposals for generic data formats, and communi-
cation protocols [12, 23, 3, 9, 13]. These technologies have
proved to be useful in several successful tool collaborations
such as the ASF+SDF Meta Environment [4]. Another key
feature of tools like the ASF+SDF Meta Environment is that
they operate on an abstract representation (i.e., ASTs) that
is shared by all of their components. A common term for
such an abstract representation is schema, which we will use
throughout this paper.

A remaining challenge consists of coping with differences
between schemas (of the source code) employed by the var-
ious tools. For instance, an analysis tool such as Gram-
matech’s CodeSurfer [2] revolves around program depen-

dence graphs (PDGs). In contrast, transformation tools such
as ASF+SDF [4] operate primairily on abstract syntax trees
(ASTs). To leverage analysis results expressed in the PDG
domain (i.e., CodeSurfer), it is first required to map the anal-
ysis results to the AST domain (i.e., ASF+SDF). Clearly,
creating such a mapping (or bridge [8]) is a non-trivial task,
requiring deep understanding of the schemas used at both
ends. Even if both tools are targeted at the same language,
the use of different grammars, language dialects, and source
correspondences complicate this task enormously, especially
since it is often hard to change those features of a tool.

In this paper we discuss an approach to create source-
based mappings between tools using different schemas. A
source-based mapping consists of pairs of a source code area
and facts relevant at that area. The perspective taken for
this discussion consists of two tools working together on the
same source code; one tool performs the analysis required
for the transformations performed by the other tool. We will
define when a source-based mapping is strict and safe, given
the relevant abstractions in the analysis and transformation
tools, and a body of source code. A strictly safe source-
based mapping guarantees that analysis results are mapped
to the desired abstraction in the transformation tool. Further-
more, we show how a source-based mapping compares to
mappings created using higher-level schemas.

The paper is organized as follows. Section 2 presents
source-based mappings in detail. The idea of source-based
mappings has been implemented as a framework called
SCATR, which is described in Section 3. SCATR has been
applied to a number of cases, which we report upon in Sec-
tion 4. In Section 5 we compare source-based mappings with
schema-based mappings, and propose a way to automatically
check the safeness and strictness properties. Section 6 dis-
cusses related work.

2. Source-based Mappings

Figure 1 shows the general idea of source-based mappings.
The left hand side is the domain of an analysis tool, while the
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Figure 1. Source-based mappings.

transformation domain resides on the right hand side. Both
operate on the same body of source code. As is suggested by
the figure, the tools work with different schemas.

The dashed circles and arrows show how a source-based
mapping operates. First, an element of the schema used by
the analysis tool is selected. We will refer to such an element
as an instance of the schema used by the tool. An instance
can be of a certain type, for example a PDG or AST node.

Subsequently, the selected instance is mapped to an ap-
propriate area of the source code, along with the facts of
interest associated with the instance. Next, the process is
reversed in the transformation domain. The source code area
obtained in the previous step is used to map the facts of in-
terest to an appropriate instance of the schema used by the
transformation tool.

If analysis and transformation operate on the same
schema, and their mapping to and from the source code is
identical, it is clear that a source-based mapping will allow
facts about arbitrary instances to be exchanged. In practice,
this situation is a rare exception, unless analysis and transfor-
mation are performed by the same tool. We are interested in
the case where analysis and transformation are done by dif-
ferent tools, and possibly using different schemas, and there-
fore with a different source code correspondence.

A source-based mapping can be split into two functions,
down and up. Down represents the arrow on the left hand
side of Figure 1, while up represents the right hand side ar-
row. Given that we have fixed types S and T of instances in
the analysis and transformation tools respectively, down and
up have the following signatures:

down(S) �−→ Area,

up(Area) �−→ T,

where Area refers to a source code area, e.g., a start line and

1for (i = 0; i < length; i++)
2{
3if (array[i] > max)
4{
5max = array[i];
6}
7}

Stat [1−7]

BlockFor−Cond

Stat [3−6]

If−Cond Block

Stat [5]

"for"

"if"

Figure 2. Source code example.

column, paired with an end line and column. A source-based
mapping then consists of the composition up(down(s)),
where s is an instance of type S, and the result is an instance
of type T .

Note that with the current definition, down(s) yields a sin-
gle area corresponding to s. However, elements of some rep-
resentations may not be mappable to a single area of source
code. For example, a usage dependency (e.g., an edge in a
call graph) between modules may map to any of the call sites
or variable accesses giving rise to the dependency. In these
cases it may be desirable to allow down(s) to yield a list of
areas, and apply up to each area separately. We plan to in-
vestigate this matter in the future.

Consider the example source code in Figure 2, and its
abridged AST representation. The Stat nodes in the AST
are annotated with the line numbers that they correspond to.
Suppose analysis results defined for PDG nodes are to be
mapped to Stat nodes in the AST (i.e., S is fixed to PDG
nodes, and T is fixed to Stat nodes). Let s be the PDG node
representing the condition of the for loop, and let down(s)
yield the area a which spans line 1. Now up(a) should yield
the Stat node corresponding to the for loop, since a is in-
cluded (only) in the area ([1–7]) of that node.

There may be some situations in which a source-based
mapping is more problematic. First, the area yielded by
down(s) might correspond to more than one instance of type
T . A common cause of this problem is recursion in gram-
mars. For instance, expressions are typically defined recur-
sively, and as a result, more than one expression may be de-
fined at a source code area. In Figure 2, the statement max
= array[i]; at line 5 is nested within both the for and if
statements. Consider that s is a PDG node representing the
statement at line 5, and down(s) is the area spanning line 5.
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Now there are 3 Stat nodes t to which up(down(s)) could
map, because line 5 is included within the area of any of the
for, if, and assignment statements.

A partial solution to this problem would be to have more
fine-grained source code correspondence within both anal-
ysis and transformation tools. For example, if the source
correspondence of the AST node for the if statement in Fig-
ure 2 would consist of the lines 3, 4, and 6, instead of the
entire range 3–6, then the if statement does not need to be
considered as a target of the up of line 5.

Note that the down function also needs to accommodate
the finer-grained source correspondence. Since the up of line
5 no longer yields the AST node of the if statement, down(s)
has to output any of lines 3, 4 or 6 if s is a PDG node rep-
resenting the if statement. Clearly, whether a finer-grained
source correspondence can be used on one end is dependent
on the other end. Down and up have to be implemented in
a compatible way, and therefore the implementor has to be
aware of the source correspondences of both S and T .

Tools with an inaccurate source correspondence are there-
fore particularly problematic. However, some means are
needed to cope with these inaccuracies in practice, since
source correspondence within existing tools cannot always
be easily improved. If the source correspondence at either
end is not accurate enough to obtain a unique target for
up(down(s)), a strategy has to be defined which implements
a choice. For example, up could select the instance that is
most specific to the area generated by down(s). In Figure 2,
up would then map line 5 to the assignment statement with-
out a problem. Our SCATR framework (see Section 3) im-
plements this strategy.

Another problem that may occur due to an inaccurate
source correspondence is that the source code area down(s)
may not be associable with any instance of type T , because
no such instance is defined at down(s). This problem may
also be caused by a bad choice of instance types, e.g., trying
to map PDG nodes representing assignments to AST nodes
representing if statements. The implementor of a source-
based mapping has to make sure the instance types are cho-
sen such that this problem cannot occur.

If the second problem (i.e., no instances of type T at
down(s)) is not present, or in other words, if up(down(s))
is defined for all s from the domain, we call a source-based
mapping safe. Furthermore, a source-based mapping that
yields exactly one t for each s is called a strictly safe map-
ping. Both properties can be checked to hold given the in-
stance types S and T , implementations of down and up, and
a body of source code. We discuss this further in Section 5.

3. SCATR

SCATR (short for Scaffolding And TRansformation, and
pronounced as ‘scatter’) is a framework supporting the use of

Source code

Scaffolding
Specifications

Extended
grammar

3. Scaffolding

1. Parsing

2. Analysis

AST

Figure 3. SCATR overview.

source-based mappings in the context of linking analysis and
transformation tools. Scaffolding is a technique proposed by
Sellink and Verhoef in [21], which constitutes the foundation
of SCATR.

SCATR is not completely generic, in the sense that the
target transformation tool is fixed; it is aimed at transforma-
tions expressed in ASF+SDF [4] only. Nevertheless, SCATR
is not tied to a particular analysis tool. Furthermore, SCATR
is independent of the language used in the source code, pro-
vided an SDF grammar for that language is available.

In terms of Figure 1, SCATR operates within the “Trans-
formation” domain. Its purpose consists of inserting analysis
results expressed as scaffolding specifications into the AST
used by the transformation tool (i.e., ASF+SDF). Figure 3
gives an overview of SCATR. Three steps are performed to
decorate an AST with analysis results.

1. Parsing with a grammar extended with support for scaf-
folds, resulting in an AST corresponding to the source
code. Scaffolds are akin to parse tree annotations [20],
and allow analysis results to be attached to nodes in the
AST. The precise definition of scaffolds is discussed be-
low.

2. Analysis results are generated by an appropriate analy-
sis tool. The results of the tool are expressed as scaffold-
ing specifications, which steer the process of inserting
scaffolds in the AST. Scaffolding specifications are also
discussed below.

3. Scaffolding is the final step in which the analysis re-
sults are inserted into the AST based on the scaffolding
specifications.
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In the remainder of this section we will first discuss the
implementation of SCATR, followed by a discussion of de-
sign decisions underlying SCATR’s architecture.

3.1. Implementation

Figure 4 presents the core modules of the ASF+SDF imple-
mentation of SCATR. The format used is SDF, which is sim-
ilar to EBNF, except that the right and left hand sides of the
grammar rules are swapped. Any parameters of a module are
listed between square brackets next to the module’s name. A
parameter of an SDF module allows the user to specify a
grammar non-terminal for which the module should be in-
stantiated. The result of supplying an argument to a parame-
ter is essentially a textual replacement of the occurrences of
the parameter by its argument.

Extended-Language. The module ExtendedLanguage
allows a grammar to be extended to facilitate scaffolding.
It defines grammar productions that allow (one or more) Ex-
tensions before or after the Element of interest. The user can
specify two parameters when using this module. Element is
the grammar sort the user intends to extend. For instance,
Statement would be specified if the user wishes to extend
statements. Extension would normally be specified as Scaf-
fold, but additional uses (e.g., comments, annotations) justify
an additional layer of abstraction, as proposed by Sellink and
Verhoef [21].

Scaffolder. The main module of SCATR defines the scaf-
folder function. The scaffolder function traverses its Pro-
gram argument and inserts scaffolds to nodes of type Ele-
ment according to a list of ScaffoldingSpecs supplied as the
second argument.

The user of this module has to make sure the Program
and Element parameters are set correctly. Program is to be
instantiated as the top-level sort of the source code grammar,
while the Element parameter should be set to the sort the user
wishes to add scaffolds to.

Scaffolding-Spec. A ScaffoldingSpec specifies the inser-
tion of a scaffold at a certain node in the AST. To select the
target node the user specifies a Position, that is, line and col-
umn number, in the source file from which the AST was de-
rived. The scaffolder will attach the scaffold to the lowest
node in the AST that includes the position in its source range.
Whether the scaffold is added to the left or to the right of the
selected node is determined by the Type, i.e., respectively
before or after.

Scaffold. The syntactical definition of a scaffold resides
in this module. This definition is loosely based on Sellink
and Verhoef’s definition in [21]. Scaffolds can contain nested
lists of named data, which can be of various sorts. By de-
fault, Strings are allowed as Scaffold-Data, but the user can
add custom sorts by instantiating the Ext-Scaffold-Data pa-
rameter.

3.2. Architecture

The source-based mapping for which SCATR was designed
consists of source code positions, that is, pairs of line and
column numbers. The analysis tool is expected to map an
instance of its schema (e.g., a PDG node in CodeSurfer) to
a single source code position (down function in Section 2).
SCATR will attempt to map this source code position to an
appropriate node in an AST maintained by ASF+SDF (up
function in Section 2). The analysis tool is burdened with
making sure that the source-based mapping obtained is safe,
i.e., it must ensure that an AST node of the selected sort is
defined at the source code positions it exports.

Scaffolding. Determining which nodes are extended with
a scaffold depends on two sources of information. First, the
user of the SCATR framework specifies the type1 of AST
nodes that can receive a scaffold. For instance, the user may
choose to add scaffolds to Statement nodes, if Statement is a
sort defined by the language grammar. In Subsection 3.1 we
discuss how the user achieves the sort selection.

Second, the scaffolding specification lists source code po-
sitions paired with scaffolds containing data. The scaffolder
function adds a scaffold to a node if and only if the node is of
the selected sort, and the source code position specified with
the scaffold is included in the source code area spanned by
the node.

Note that this process requires that the target AST is fully
decorated with source position information, that is, each
node in the AST can be mapped to its corresponding area
within the source code.

One intricacy of the scaffolding process remains to be ex-
plained. A source code position can point to more than one
node of the user selected sort. In C, for example, nested state-
ments, or expressions, can cause this effect. SCATR ensures
that a strict (see Section 2) mapping is obtained through two
design decisions. The AST is traversed in a bottom-up fash-
ion, and a scaffold is inserted at most once. In effect, a scaf-
fold is added to the most specific (or lowest) AST node of
the user selected sort, that includes the specified source code
position in its area. This behavior implemented by SCATR
may not always be desirable (though it has been for our pur-
poses).

The number of AST nodes that are pointed to by the
source-based mapping could possibly be reduced by improv-
ing upon the accuracy of source code positions. Source code
areas could alternatively be used to create a source based
mapping. A source code area more accurately describes the
source representation of an instance by specifying the line
and column numbers of the start and end of the instance.
We discussed this solution in Section 2, and have shown that
the use of a finer grained source correspondence on one end

1The type of an AST node corresponds to a grammar sort or non-
terminal.
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module Extended-Language [ Element Extension ]

Extension+ Element → Element
Element Extension+ → Element

module Scaffolder [ Program Element ]

scaffolder ( Program, Scaffolding-Spec* ) → Program

module Scaffolding-Spec

"begin" Scaffold Type Position "end" → Scaffolding-Spec
"before" | "after" → Type
"(" Natural Natural ")" → Position

module Scaffold [ Ext-Scaffold-Data ]

"SCAFFOLD" "[" Scaffold-Data* "]" → Scaffold
Data-Name "[" Scaffold-Data* "]" → Scaffold-Data
[A-Z_]+ → Data-Name
String → Scaffold-Data
Ext-Scaffold-Data → Scaffold-Data

Figure 4. SDF excerpts of the core modules of SCATR.

(here in the analysis tool) requires changes in the other end
(here the transformation tool). For flexibility SCATR uses
the relatively inaccurate source code positions, and deals
with multiple matching nodes by picking the most specific
node.

Grammar Extension. In order for scaffolds to be added
to AST nodes, the grammar used to parse the source code
needs to be extended such that nodes of interest (i.e., of
type T in terms of Section 2) can be preceded or followed
by nodes representing scaffolds. 2 SCATR provides for a
flexible way of extending grammars. The module Extended-
Language adds two grammar productions to extend the sort
of interest such that it can be preceded and followed by scaf-
folds. The details of this module are presented in Subsec-
tion 3.1.

Lexical Scaffolding. Scaffolding as defined by Sellink
and Verhoef [21] operates slightly differently. Their ap-
proach extends the target grammar much more extensively,
by allowing scaffolds in front of each terminal (occurrence
of a lexical sort). This has the advantage that scaffolds can
also be added directly to the source code itself, followed by
an invocation to the parser to obtain a scaffolded AST. In our
simple approach to grammar extension this results in many

2In systems which do not require AST transformations to be syntax pre-
serving such grammar modification may be unnecessary.

ambiguities during parsing.
An advantage of our approach is that the scaffolding pro-

cess inserts scaffolds at exactly the nodes of interest in the
AST. This is beneficial for the purpose of specifying trans-
formations based on the scaffolds, as no extra work has to
be done to locate the scaffolds (if any) associated with the
node. Sellink and Verhoef’s approach causes the scaffolds
to be added as leaves in the AST, possibly a long way from
the nodes of interest. Without additional support for locating
scaffolds in the AST, this is an unpractical situation for the
specification of transformations. Kort et al. provide methods
that are capable of locating scaffolds, and dealing with them
in transformations [14].

Finally, one could argue that simple grammar extension
could suffice if one would lexically insert bracketed scaf-
folds. A bracketed scaffold surrounds the source region it
applies to with brackets, so that no ambiguity arises during
parsing. A similar approach is taken by source code fac-
tors [16]. As it turns out, lexically inserting bracketed scaf-
folds is not practical. The analysis tool exporting its results
would then need to generate the positions of the brackets in
a way that is lexically compatible with the grammar used
by the transformation tool. In our approach, the analysis tool
can suffice by generating a position that it knows to lie within
the source area of an AST node of the desired sort (safeness).
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4. Applications

The SCATR framework is currently being used in several
real transformation tasks. These tasks consider components
of a 10 million line C system, developed and maintained by
ASML, a Dutch manufacturer of lithography solutions. The
tasks are related to our earlier work on (crosscutting) con-
cern isolation [5], and consist of elimination of concern code,
and insertion of domain annotations (among others). These
transformations are required in a larger migration effort to-
ward aspect-oriented technology.

Source-to-source transformations are desired in these
cases, since developers have to be able to work with the
transformed code. Specifically this requires the abilities to
parse code in the presence of C preprocessor directives (in-
cluding macros), and to preserve comments and white-space.
Due to the availability of an SDF grammar for ANSI C ex-
tended with preprocessing directives and rewriting with lay-
out capability [24], the ASF+SDF Meta environment [4] is
used to implement the transformation tasks. The C grammar
was modeled strictly after the ANSI C specification, and ex-
tended with support for the specific preprocessor use within
ASML.

Several analyses required to identify concern code have
previously been implemented [5] as plugins to GrammaT-
ech’s CodeSurfer [2]. Since these analyses are not trivial,
and significant effort would be needed to re-implement them
in ASF+SDF, the choice was made to reuse the CodeSurfer
plugins. SCATR was developed to solve the problem of
leveraging CodeSurfer’s analysis results in transformations
expressed in ASF+SDF.

SCATR has been used for the transformation of two com-
ponents, CC1 and CC2, consisting of 32,402 and 17,716
non-blank lines of code, respectively. Efforts are currently
ongoing to apply SCATR to 10 components, totalling ap-
proximately 2 million lines of code.

4.1. Concern Code Elimination

The first transformation task we consider consists of the
elimination of code belonging to a number of concerns:

• Tracing. Dynamic execution tracing of each function
such that the values of input and output parameters can
be inspected.

• Timing. Collection of timings for each function execu-
tion.

• Function Naming. Each function has a local variable
which holds a string representing the function’s name.
These strings are used within tracing and logging calls.

• Parameter Checking. Pointer parameters of functions
should not be NULL before they are referenced, each

868THXAtrace(CC,
869THXA_TRACE_INT,
870func_name,
871"> (read_fd=%d, timeout=%d)",
872read_fd,
873timeout);

Figure 5. Example tracing call.

begin
SCAFFOLD["TRACING"]
before
(868 0)

end

Figure 6. Scaffolding specification for a single trac-
ing call.

function therefore has to implement checks. The pa-
rameter checking concern is discussed in detail in [5].

The instantiation of SCATR for the elimination of these con-
cerns is very similar in all cases, therefore we suffice with
a discussion of the elimination of the tracing concern in this
paper. The tracing concern consists of calls to a tracing func-
tion, where the arguments are the values of either input or
output parameters. An example is shown in Figure 5.

A CodeSurfer plugin was previously developed to iden-
tify all the tracing calls for all functions. The result consists
of a set of PDG nodes representing the calls to the tracing
function. Furthermore, a utility script was developed to ex-
port these PDG nodes along with the fact that they belong to
the tracing concern, into SCATR’s scaffolding specification
format (see Section 3). An example scaffolding specification
is shown in Figure 6. It states that a scaffold of the form
SCAFFOLD["TRACING"] should be added before the in-
stance at source code line 868, column 0. This source code
position corresponds to the first character of the tracing call.

Effectively this export script implements the down func-
tion that was described in Section 2. The other part of the
source-based mapping, the up function, is implemented by
SCATR. Function calls are parsed as Statements in our SDF
C grammar, thus instantiating SCATR for this task starts by
extending the C grammar such that scaffolds can be added
to Statement nodes. As was explained in Section 3, this is
done through the parameters of the module ExtendedLan-
guage (see Figure 4).

The next step consists of the invocation of the scaffolder
function, with the (parsed) source code and all generated
scaffolding specifications as arguments. The result is an AST
in which all the Statement nodes pointed to by the scaffold-
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SCAFFOLD["TRACING"]<<THXAtrace(CC,
THXA_TRACE_INT,
func_name,
"> (read_fd=%d, timeout=%d)",
read_fd,
timeout);>>

Figure 7. Tracing call decorated with a scaffold.

ing specifications are decorated with a scaffold. Figure 7
shows how this would look if a decorated node was pretty
printed.

Finally, the AST is traversed one more time by a function
that removes all nodes decorated with a specific scaffold. In
this case the traversal would look for tracing scaffolds, but
for the other concerns the scaffolds contain the respective
names of the concerns.

The source-based mapping we defined in this case works
because it is strict and safe, as defined in Section 2. First,
safeness holds because in the ANSI C grammar the first char-
acter of the name of the called function is guaranteed to point
to an AST node of type Statement. Second, the mapping is
also strict, due to SCATR’s strategy of selecting the most
specific node of type Statement. The Statement node rep-
resenting the tracing call will always be lower in the AST
than Statement nodes representing any surrounding state-
ments. For now these properties follow from the structure of
the grammar, and SCATR’s selection strategy. In the future
we would like to implement a tool to check whether these
properties hold given a body of source code, and a defined
source-based mapping.

4.2. Insertion of Domain Annotations

After all tracing code has been eliminated (see previous Sub-
section), a compile-time weaver is responsible for regenerat-
ing the tracing functionality. As it turns out, the tracing con-
cern requires some non-trivial analysis to figure out which
function parameters are used as input and which are used as
output parameters. Since it would be costly to integrate this
analysis into the build process, it was decided to perform a
one-time analysis of the source code, and insert the results
(i.e., input / output characteristics) into the code as domain
annotations. In our case, the domain annotations are specif-
ically targeted at a compile-time weaver for C, WeaveC [1].
Here we will discuss the use of SCATR in the annotation
process.

Again, the analysis is performed by a CodeSurfer plugin,
and results in a list of input and output parameters for each
function (PDG). Figure 8 gives an example of how a domain
annotation should be inserted in the source code at line 551.
The annotation has been inserted after the function signa-
ture, and before the defining block of the function. It shows

549int CCCN_Wait(int read_fd,
550int timeout)
551__trace__(in (read_fd timeout) out ())
552{
553. . .
554}

Figure 8. Tracing annotation.

begin
SCAFFOLD [IN [read_fd timeout] OUT []]
after
(550 25)

end

Figure 9. Scaffolding specification for temporary
scaffolds.

that this function (CCCN_Wait) has two input parameters,
read_fd and timeout, and no output parameters.

The insertion process works by first inserting temporary
scaffolds containing the analysis results, and then translat-
ing the scaffolds into the desired domain annotation format.
SCATR again requires the selection of the grammar sort to
which scaffolds need to be added. Since the annotation has
to be inserted after the function signature, the appropriate
sort is Declarator, which spans the area from the start of the
function name (CCCN Wait in Figure 8), up to and includ-
ing the closing parenthesis of the signature. A CodeSurfer
script is used to implement down by generating a scaffolding
specification with the input/output information wrapped in a
scaffold, and the source code position corresponding to the
closing parenthesis of the function signature. An example is
shown in Figure 9.

Similar to the result in Figure 7, running the scaffolder
function on the source code with the annotation scaffolding
specifications results in function signatures with scaffolds
appended to them. The final step then consists of a traver-
sal which trivially translates the present scaffolds into the
tracing annotations shown in Figure 8.

Safeness and strictness of the mapping used in this case
follows by the same argument we used before. According to
the ANSI C grammar, the closing parenthesis of a function
signature matches exactly one node of sort Declarator.

5. Discussion

Source-based mappings vs. schema-based mappings

The defining feature of source-based mappings is that they
locate the instances of interest through pointers in the source
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code itself. Other approaches exist to solve the location prob-
lem, that do not utilize source correspondences at all (or as
much). These schema-based approaches locate instances of
interest in the target (transformation) tool through queries
expressed using the target schema. HSML is, in essence,
such an approach [7], since it allows maintenance hot spots
to be identified through complex queries expressed using the
grammar of the target language. Other examples are the var-
ious query languages for XML documents, e.g. XPath or
XQuery.

Let’s consider how a schema-based mapping could be
used in the context of linking an analysis and a transforma-
tion tool. The setting is the same as defined in Section 2,
i.e., we want to map analysis results for instances of type S
to instances of type T in a transformation tool. The anal-
ysis and transformation tools have different schemas of the
source code. What alternatives to the down and up functions
would need to be implemented?

To start with down, recall that its purpose is to map an
instance s to an appropriate area of source code, such that
up can map that area to an instance of type T . The analogue
of down in a schema-based mapping then consists of a func-
tion that maps s to an appropriate expression in the schema
used by the transformation tool. Subsequently, the analogue
of up is tasked with interpreting this expression and apply-
ing the results to the matching instances. For instance, an
expression pointing out the assignment statement (at line 5)
in Figure 1 could consist of Stat – Block – Stat [0] – Block
– Stat [0], where Stat [i] would refer to the i-th statement
within a block.

The question that arises is what knowledge is required for
the implementation of a schema-based mapping, and how
does this compare to a source-based mapping? Creating an
expression that points out an instance of interest requires
knowledge of the target schema. For example, the expres-
sion above can only be created if it is known that the Stat
node of interest is the 0-th child of its parent Block node con-
taining it, which is a child of a Stat node itself, and so forth,
all the way up to the top Stat node. As a result, creating such
an expression requires knowledge of the target schema from
the top down to at least the type of the instances of inter-
est. Possibly this knowledge requirement can be mitigated
by designing a query language that allows abstraction, but
we conjecture that at least all the containment relations must
still be known in order to accurately point out the instances
of interest.

A source-based mapping requires different knowledge of
the target schema. Down(s) has to yield a source code area
that corresponds to an instance of type T at the transforma-
tion end (safeness). Therefore, implementing down cannot
be done without knowledge of the source correspondence
of instance type T . Recall the example explained in Sec-
tion 2, where a finer-grained source correspondence within

the transformation tool required down to be changed accord-
ingly. However, as long as the safeness property can be guar-
anteed, down does not have to re-generate the exact source
correspondence of the transformation tool.

Additional awareness is needed for guaranteeing the
strictness property, i.e., making sure that at most one instance
of type T is the target of up(down(s)). This problem can oc-
cur if down(s) is included in the source correspondence of
more than one instance of type T . Therefore, implementing
a source-based mapping requires knowledge of overlapping
source correspondences of instances of type T . If the prob-
lem cannot be evaded by changing down(s) to generate a
more specific source code area, a strategy will have to be
implemented in up to make a choice, as was discussed in
Section 2.

In summary, a schema-based mapping requires detailed
knowledge of the target schema. It may be required to know
the definition of other types of instances than the type of
interest, because containment relations need to be traversed
from the top down leading to the instance of interest. In con-
trast, the knowledge a source-based mapping needs of the
target schema is limited to the type of interest only. How-
ever, it is required to be aware of its source corresponce, and
possible overlapping source correspondences of instances of
the type of interest.

Automatically checking safeness and strictness

The use of source-based mappings in real transformation
tasks may benefit from some form of automated verification.
In particular, checking the safeness and strictness properties
could be a good starting point. Fortunately, these properties
can be checked automatically for a fixed body of source code
by the following process. First, the domain of the source-
based mapping is established. All instances s of type S be-
long to the domain. For each s then up(down(s)) is per-
formed, yielding a list of instances of type T . If this list is
empty, no instance of type T was found defined at down(s),
the source-based mapping is not safe, and an error must be
reported. If the list contains exactly one instance t, the map-
ping is safe and strict for s. Finally, a list of length 2 and more
indicates that multiple instances are defined at down(s), and
the mapping is not strict, resulting in an error. After all s
have been checked, the complete mapping is only safe and
strict if no errors have been reported.

For some schemas, the safeness and strictness properties
could even be determined for all possible bodies of source
code. For now this remains the area of future research.
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6. Related Work

Tool interoperability

The topic of tool interoperability has been widely discussed
in the community [8, 9]. A large number of proposals exist
in the literature that contribute a solution to interoperabil-
ity issues. Among others, technologies like the ToolBus [3],
OASIS [13], and IDL [22] provide architectures for integra-
tion of tools. Communication is an essential part of tool in-
teroperability, and as such a number of data interchange for-
mats have been defined. Examples are GXL [12], a graph-
based format, ATerms [23], and RSF [18]. Technologies
like these provide tool interoperability solutions at a differ-
ent level than source-based mappings. In terms of [8], these
technologies provide protocols, (data) marshalling, or repre-
sentations. Source-based mappings are aimed at solving the
identification (of source elements) problem.

Markup and annotations

Source code markup is a technique that has been used in
many different contexts. Here we focus only on those ap-
proaches that are closely related to source-based mappings.
Scaffolding by Sellink and Verhoef [21] is proposed to be
used to store intermediate results of transformations, and
share results between tools via markup in the source code.
However, they do not explicitly focus on the issue of tools
using different schemas. Source code factors by Malton et
al. [16] is an approach that is very similar to scaffolding, as
it also marks up the source code with intermediate analysis
and transformation results.

HSML by Cordy et al. [7] is a markup approach that
allows maintenance hot spots to be defined as queries ex-
pressed in the target schema. In that sense it is a schema-
based mapping as defined in Section 5, except that the re-
sults of the mapping are also made visible in the source code
through markup. The difference with source-based map-
pings consists of the extensive use of the target schema by
HSML. A source-based mapping is less dependent on the
target schema, but more dependent on the source correspon-
dence.

XML is a popular means to marking up source code. In
[6], Cordy proposes a method to markup source code with
task-specific XML. By employing agile parsing (possibly
combined with island grammars [17]), the source code gram-
mar can be adjusted to focus the source markup to those
pieces of source code that are interesting to the task at hand.
In our SCATR framework, pretty printing the scaffolded
AST has the same result, since scaffolds are only added to
those nodes that are interesting within a transformation task.
[19] instead proposes to markup all the source code with
XML corresponding to its AST, resulting in a verbose rep-
resentation.

Tool interoperability schemas

A number of schemas have been proposed specifically for the
purpose of tool interoperability. The Dagstuhl Middle Meta-
model (DMM) [15] is aimed at object-oriented and procedu-
ral languages, and can further be extended by the user of the
schema. Columbus [10] is a specific schema for C++ pro-
grams. Both Columbus and DMM are expressed as UML
diagrams. Holt et al. [11] instead use an E/R diagram to de-
fine a schema for Datrix, a software exchange format for C,
C++ and Java programs.

7. Conclusion

In this paper we discussed source-based mappings, a tech-
nique to link analysis and transformation tools. The setting
used for this discussion consisted of analysis and transfor-
mation tools that do not share a schema of the source code,
and therefore reuse of analysis results by the transformation
tool is not trivial. We defined two properties, safeness and
strictness, that constitute a base of confidence in the map-
ping between two tools. These properties can be checked
automatically for a given body of source code, allowing for
a practical way of verification of a source-based mapping.

The idea of source-based mappings was implemented in
the SCATR prototype tool, which allows analysis results to
be mapped into ASTs produced by ASF+SDF. Two appli-
cations showed how this technology could be used in prac-
tice to implement transformation tasks such as concern code
elimination or insertion of domain annotations.

An interesting link may exist between this work and is-
land grammars [17], or agile parsing [6]. These technologies
allow the easy adaptation of grammars to specific tasks. For
instance, the grammar could be limited to defining only the
statements that need to be removed, or the program elements
that analysis results must be attached to.
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correcting drafts of this paper. This work has been carried
out as part of the Ideals project under the auspices of the
Embedded Systems Institute. This project is partially sup-
ported by the Dutch Ministry of Economic Affairs under the
Senter program.

References
[1] WeaveC. http://sourceforge.net/projects/

weavec/.

[2] Paul Anderson, Thomas W. Reps, Tim Teitelbaum, and Mark
Zarins. Tool support for fine-grained software inspection.
IEEE Software, 20(4):42–50, 2003.

[3] Jan A. Bergstra and Paul Klint. The discrete time TOOLBUS
— a software coordination architecture. Science of Computer
Programming, 31(2-3):205–229, 1998.

9



[4] M. van den Brand, Arie van Deursen, Jan Heering, Hayco
de Jong, Merijn de Jonge, Tobias Kuipers, Paul Klint, Leon
Moonen, Pieter A. Olivier, Jeroen Scheerder, Jurgen J. Vinju,
Eelco Visser, and Joost Visser. The ASF+SDF Meta-
Environment: a component-based language development en-
vironment. Electronic Notes in Theoretical Computer Sci-
ence, 44(2), 2001.

[5] M. Bruntink, A. van Deursen, and T. Tourwé. Isolating id-
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