
Evolving TXL

Adrian D. Thurston James R. Cordy

School of Computing
Queen’s University
Kingston, Canada

{thurston,cordy}@cs.queensu.ca

Abstract

TXL is a functional programming language specifically
designed for expressing source transformation tasks. Origi-
nally designed for the rapid prototyping of modest syntactic
enhancements, in recent years it has been extensively used
in large scale source code analysis and reengineering appli-
cations that are much more challenging. As a result, many
common programming techniques needed in these larger
scale applications are difficult or impossible to express in
TXL. Examples include multi-way decisions, generic rules
and functions, polymorphism and information hiding. In
this paper we introduce ETXL, an experimental extension
of TXL which includes convenient features designed to ad-
dress these issues. Designed to be a compatible variant that
remains faithful to the original TXL syntax and semantics,
ETXL has itself been prototyped as a source transformation
to original TXL.

1. Introduction

TXL [2] is a programming language explicitly designed
for expressing source transformations. At the heart of the
language is a rule-based semantics not unlike term rewriting
systems. Overlaid on top is first order functional program-
ming semantics to control the rules. The result is a unique
language aptly suited to traversing and rewriting parse trees.

While originally designed to express simple syntactic ex-
tensions such as the addition of a coalesced assignment to
Pascal (Figure 1) [3], TXL has been adopted for use in a va-
riety of source analysis and transformation tasks of a much
larger scale and complexity, including applications involv-
ing highly structured rule sets with hundreds of rules, such
as LS/2000 [5], multilinguistic website migration [13], as-
pect analysis and refactoring [7].

Implementation of these applications in TXL introduces
a size and complexity that was not envisaged when TXL

redefine statement
...

| [coalesced_addition]
end redefine

define coalesced_addition
[reference] += [expression]

end define

rule transformCoalescedAssignments
replace [statement]

V [reference] += E [expression]
by

V := V + (E)
end rule

Figure 1. An example of language extension
using TXL. This rule adds coalesced assign-
ment to Pascal.

was designed. In particular, these applications are not
just a set of simple independent rewriting rules, but rather
involve complex functional programming and decision-
making logic; they introduce a range of rule application
strategies that are reused repeatedly in different contexts;
they involve many detailed variants of the same transfor-
mation on different types or patterns; and their sheer size
introduces the need for information hiding and modular-
ity. While coding conventions and paradigms such as ag-
ile parsing [4] have evolved to help address some of these
problems, for the most part TXL is clumsy in meeting these
needs.

In this paper we introduce ETXL, an experimental ex-
tension to TXL designed to address these issues directly by
introducing explicit new language features. In part it helps
to alleviate the limitations of TXL itself, and in part it serves
as a testbed for understanding features from which we hope
to eventually derive the next generation of general-purpose
transformational programming languages. In keeping with
its heritage, ETXL is itself implemented as a TXL transfor-
mation from ETXL to standard TXL [14].

In order to maintain back-compatibility and to concen-
trate on the features themselves rather than on new lan-
guage design, we have constrained ourselves in a number
of ways. We limit the features of ETXL to have a pure TXL
semantics - that is, we cannot modify or extend the semantic
model of TXL itself. In this way we can guarantee that our
new features will be efficient and familiar to the existing
body of TXL users. We limit ourselves to a syntax con-
sistent with existing TXL. In this way we can concentrate
on semantics rather than syntactic sugar. We provide only
pure language extensions. That is, our new features are or-
thogonal to the existing features of TXL. In this way our
extensions are compatible with existing TXL programs and
allow for easy migration of existing programs to use new
features.

The paper is organized as follows. Each section begins
with a motivating example of existing TXL practice and
its limitations, followed by the introduction of the ETXL
feature designed to address the problem and a number of
examples of its use. Section 7 describes our approach in
implementing ETXL and as an example explains the imple-
mentation of if clauses. Section 8 compares our work to the
ways these same problems are addressed in other transfor-
mational systems, and Section 9 summarizes our observa-
tions, conclusions and future plans.

2. Selection in TXL

TXL programmers currently borrow from rule applica-
tion and execution semantics to mimic the behavior of a
selection construct. Consider the problem of implementing
a binary search, shown in Figure 2. Branching is accom-
plished by applying a different rule for each case of the bi-
nary search, with each case’s condition embedded into the
rule. This technique can be awkward and results in code
that is error prone and difficult to read. This is especially
true as the complexity of the conditions increases.

The most obvious difference between this form of se-
lection and selection in general-purpose programming lan-
guages is that each case is encoded in a separate rule. A
more subtle difference is that cases must be explicitly writ-
ten such that they are mutually exclusive. Even if a partic-
ular case succeeds, all successive cases are still tested and
may also succeed if not explicitly programmed to exclude
the previous cases. What this means for the example in Fig-
ure 2 is that even when both less-than and greater-than tests
have failed, we must still explicitly test for equality.

In some programming problems, explicitly program-
ming mutual exclusion is not possible because a case whose
test has succeeded may alter the data queried, thus invali-
dating subsequent tests put in place to ensure that the case
did not succeed. When different cases see different pro-
gram state they cannot correctly exclude each other. In TXL

function findLeft Key [number]
replace [node]

NodeKey [number] NodeVal [value]
Left [node] Right [node]

where
Key [< NodeKey]

by
NodeKey NodeVal Left [findAndApply Key] Right

end function

function findRight Key [number]
replace [node]

NodeKey [number] NodeVal [value]
Left [node] Right [node]

where
Key [> NodeKey]

by
NodeKey NodeVal Left Right [findAndApply Key]

end function

function findHere Key [number]
replace [node]

NodeKey [number] NodeVal [value]
Left [node] Right [node]

where
Key [= NodeKey]

by
NodeKey NodeVal [transform] Left Right

end function

function findAndApply Key [number]
replace [node]

Node [any]
by

Node
[findLeft Key]
[findRight Key]
[findHere Key]

end function

Figure 2. Selection in Standard TXL. Branch-
ing is accomplished by coding each case as
a separate rule. The cases must be explicitly
programmed to be mutually exclusive.

this kind of problem requires the use of global variables to
record when a test has succeeded.

Though using global variables can produce a working
solution, in the event that recursion is required the global
variable must in fact be a stack of flags in order to be cor-
rect, making the implementation far more tedious and er-
ror prone. Since one could easily argue that recursion is
inevitably required in every non-trivial TXL program, the
global variable solution to mutual exclusion leaves much to
be desired.

In order to allow conditional selection without requiring
the explicit programming of mutually exclusive branches
and without requiring the separation of cases into different
rules, we have added if clauses. Our selection construct be-
haves similarly to if statements in general-purpose program-
ming languages and yet it does not deviate from existing
TXL conventions. The challenge has been to incorporate
generalized selection into the functional superstructure that

2

function findAndApply Key [number]
replace [node]

NodeKey [number] NodeVal [value]
Left [node] Right [node]

if where
Key [< NodeKey]

then by
NodeKey NodeVal Left [findAndApply Key] Right

else if where
Key [> NodeKey]

then by
NodeKey NodeVal Left Right [findAndApply Key]

else by
NodeKey NodeVal [transform] Left Right

end if
end function

Figure 3. Binary search programmed using
an ETXL if clause.

exists on top of the rule-based system, without violating the
rule-based semantics. Figure 3 demonstrates the use of an
if clause to implement the binary search of Figure 2.

We permit any sequence of TXL clauses in both the test
and body blocks of an if branch. Should all clauses in
the if test succeed, the body block is entered and no more
branches are considered. Once a body block has been en-
tered, the success of the clause list containing the if clause is
determined by the clauses in the body block. If all of these
clauses succeed, control is passed to the code following the
if clause.

If any clause in an if test fails, the rest of the test block
and the corresponding body block is abandoned. The test
block of the next else-if clause is then tried. If no test block
succeeds, flow continues to the else clause, if there is one.

While the if-clause expression of the binary search in
Figure 3 is much more compact and intuitive than the orig-
inal, it still suffers from a lack of generality. Such a bi-
nary search should also be reusable, allowing for arbitrary
key types and transformation rules to be applied, not just
[number] and [transform]. In the next section we ad-
dress the problem of writing more generic and reusable code
in TXL.

3. Generics

A common problem faced by TXL programmers is that
given the need to reuse a transformation, there is often no
choice but to duplicate code. This can happen in a num-
ber of scenarios. For example, TXL begins to show signs
of strain when one must employ a custom search strategy a
number of times. Suppose there are many times in a pro-
gram when a tree must be traversed in a common way look-
ing for an instance of a pattern, but in each use of the traver-
sal the target should be rewritten using a different rule.

Since TXL is a functional programming language us-
ing copy-on-write, value-based semantics, it is not possi-
ble to obtain a pointer to the subtree of interest using a
generic search strategy and then modify it using the returned
pointer. In some cases it may be possible to extract a subtree
of interest, apply a rule to modify it and then reinsert it after
modification, but this is awkward and not always possible.
In most cases in TXL we have no choice but to embed the
rule that modifies the tree directly into the search strategy.

In other cases, a search strategy or transformation is writ-
ten multiple times with the only difference between the ver-
sions being the type of tree on which they operate. For ex-
ample, this can happen when writing list processing algo-
rithms such as sort routines or list reversals.

A need to duplicate code and differentiate it only by type
can also arise along with grammar type specializations. A
type specialization in grammar programming involves du-
plicating and slightly modifying a section of a grammar
with possibly a smaller, larger or just plain different set of
allowable strings. In such cases, a lack of language features
for specifying type independence prevents us from applying
rewrite rules that were designed for the original types on the
differently-named type specializations, where applicable.

To enable the writing of generic search strategies and
rewrite rules we have added rule parameters and type pa-
rameters. Both rule and type parameters are given in pa-
rameter and argument lists alongside standard tree-based
parameters. In a parameter list, a rule parameter is speci-
fied by using the keyword rule instead of a tree type. A
type parameter is specified using the keyword type.

Inside a rule parameter specification, the list of parame-
ters that the rule parameter itself will accept is given follow-
ing the rule keyword. Full specification of the signature
of the rule parameter is necessitated by the fact that TXL
rules are statically typed. Requiring the full signature with
the rule parameter also ensures that a rule with rule parame-
ters can be semantically checked and implemented indepen-
dently of the instances of its use. Unfortunately, the same
is not true of type parameters, and these must be checked
dynamically.

At rule invocation point, a rule can be passed as an ar-
gument either by naming a defined rule or by referencing a
local rule parameter. No change to the syntax is required to
support the passing of rules as arguments. Inside a rule, a
rule parameter is available for use in the rule body as if it
were a defined rule.

A type can be passed as an argument either by specifying
a literal type or by referencing a local type parameter. A lit-
eral type may either be a pure type such as [declarator]
or it may contain a modifier as in [repeat statement].
Inside a rule, a type parameter may also be used as if it were
a defined type.

Rule and type parameters allow the expression of a

3

rule sort T [type] LessThan [rule [T]]
replace [repeat T]

N1 [T] N2 [T] Rest [repeat T]
where

N2 [LessThan N1]
by

N2 N1 Rest
end rule

...
construct Sorted [repeat pair]

Pairs [sort [pair] pairLess]

Figure 4. A generic sorting routine that can
be applied to a list of any type. The sort rou-
tine requires a less-than operator for compar-
ing items.

generic sort as shown in Figure 4. This sort can operate
on any type for which a less-than rule can be written.

In the next section we present a solution to another form
of abstraction that TXL is lacking, pattern abstraction.

4. Pattern abstraction using out parameters

The principal method of analyzing a parse tree in TXL
is the pattern match. Pattern matches serve two purposes
in TXL, both specifying the shape and elements of inter-
esting parse trees and extracting matched subtrees for later
use. TXL has no language feature for naming or abstracting
patterns, making it difficult to separate code that needs to
extract subtrees for later use from the patterns that are used
to extract them.

The ability to abstract pattern matching would allow
TXL programmers to better organize code in a manner simi-
lar to the role of subroutines in imperative languages, allow-
ing a pattern to be specified once and used multiple times.

Like most functional languages, TXL allows only a sin-
gle return value from a rule. The result is returned from a
rule as the transformed scope of application, with the tree
to be searched passed in as a parameter. An elided binary
search retrieval function implemented in this way is shown
in Figure 5. Unfortunately, many patterns bind more than
one variable for later use. Should multiple bindings need
to be returned, the TXL programmer must encapsulate the
multiple return values using a new grammar definition for
the scope of the searching rule, or alternatively use global
variables to hold the multiple results.

Instead of returning values via a rule’s search scope, or
using global variables, TXL users should be able to encap-
sulate the extraction of matched subtrees using native lan-
guage features. Figure 6 gives an example of a scenario in
which encapsulation would be beneficial. In this example,
two rules use the same pattern for different purposes. TXL

function findValue Tree [tree] Key [number]
replace [opt value]

% Empty
...
by

Value
end function

...
construct OptValue [opt value]

_ [findValue Tree Key]
deconstruct OptValue

Value [value]

Figure 5. In standard TXL the only way to re-
turn a value from a rule is via the tree type
on which it operates. Only one value may be
returned.

rule rewriteAssignment1
replace [statement]

assign(Id [id], Expr [expr]);
where

Id [needToRewrite]
where

Expr [isConst]
by

Id [_ ’set] (Expr);
end rule

rule rewriteAssignment2
replace [statement]

assign(Id [id], Expr [expr]);
where

Id [needToRewrite]
where

Expr [isConst]
by

Id = Expr;
end rule

Figure 6. In standard TXL we have no choice
but to duplicate a pattern each time it is re-
quired.

programmers presently have no choice but to duplicate the
pattern in such cases.

In order to allow pattern abstractions, in ETXL we have
added out parameters. An out parameter binds a value from
a called rule to a variable name in a calling rule. Out param-
eters are separated from normal (in) parameters in parame-
ter and argument lists using a colon. Inside the called rule,
an out parameter must be bound either as a binding variable
in a pattern, using an explicit variable constructor, or as an
out parameter of another rule invocation. The behaviour of
out parameters is designed to mimic the behaviour of pat-
tern matches in TXL. If a pattern fails to find a match then
the variables of the pattern are not bound and control cannot
proceed past the pattern. Similarly, if a rule fails to bind an
out parameter then the caller is unable to proceed.

4

rule assignPat : Id [id] Expr [expr]
match [statement]

assign(Id [id], Expr [expr]);
where

Id [needToRewrite]
where

Expr [isConst]
end rule

rule rewriteAssignment1
replace [statement]

Statement [statement]
where

Statement [assignPat : Id [id] Expr [expr]]
by

Id [_ ’set] (Expr);
end rule

rule rewriteAssignment2
replace [statement]

Statement [statement]
where

Statement [assignPat : Id [id] Expr [expr]]
by

Id = Expr;
end rule

Figure 7. Use of out parameters to abstract a
pattern.

The successful transfer of an out parameter to the caller
is independent of the success or failure of the rule in which
it was bound. A rule that succeeds in binding an out pa-
rameter but fails in matching its primary pattern will not
necessarily fail the caller clause list. Maintaining these two
mechanisms as independent processes helps to keep the de-
sign simple and the semantics consistent with the rest of
TXL.

On the face of it it might seem that out parameters breach
TXL’s functional semantics. However, since the semantics
of a rule invocation with out parameters is the same as a
TXL rule invocation on a scope that gathers together the
original scope of the rule with the out parameters, we can
say that we have not violated TXL’s functional semantics.

Because TXL rules have implicit local backtracking, any
clause that follows the replace clause of a rule may poten-
tially be executed more than once during a single rule in-
vocation. This means that an out parameter may be bound
more than once before it is used. As is the case for local
variables, the last value bound is the binding used.

In TXL, the introduction of a new variable is always ac-
companied by its type in order to allow for local static type
checking in patterns and replacements and to reduce ambi-
guity for the reader. For these same reasons, the introduc-
tion of new variables in out argument lists follows this same
design principle, and out arguments in ETXL are explicitly
typed in the calling argument list even though their type can
be inferred from the signature of the called rule.

The use of out parameters to abstract a pattern match

function find Key [number] : Value [value]
match [node]

NodeKey [number] NodeValue [value]
Left [node] Right [node]

if where
Key [< NodeKey]

then where
Left [find Key : Value [value]]

else if where
Key [> NodeKey]

then where
Right [find Key : Value [value]]

else construct Value [value]
NodeValue

end if
end function

...
where

Tree [find Key : Value [value]]

Figure 8. Returning a result value using an
out parameter.

is demonstrated in Figure 7. Out parameters allow us to
eliminate pattern duplication.

Returning to the example of Figure 5, in which the scope
of a function is used to return a value, we can now use out
parameters to move the return value to the parameter list
and the tree to be searched can go back to being the object
of the search function where it should more naturally be.
This is shown in Figure 8.

Out parameters also find many other uses in ETXL, in-
cluding the propagation of synthetic attributes up the tree
when explicitly walking a parse tree. In the section that fol-
lows we show how we can combine out parameters with
rule parameters to attain another pattern-based program-
ming construct which is missing from TXL - parameterized
patterns.

5. Parameterized patterns

Out parameters provide a language-based solution to the
reuse of the same pattern in various different contexts. The
inverse problem, the need to use different patterns in an oth-
erwise identical surrounding rule, is also common in TXL
programs. An example is shown in Figure 9. If we combine
out parameters with rule parameters we have an elegant so-
lution to this problem. Since we can use out parameters to
encapsulate a pattern in a rule, we can parameterize such
rules to gain pattern parameters.

If we use pattern parameters in cases where we require
many instances of a rule, each time with different patterns
that bind the same variables, we are freed from having to du-
plicate the surrounding code. We can write a single generic
rule, passing the method of pattern matching in as a pa-
rameter. In Figure 10, a rule parameter binds the left hand

5

rule replaceAssign1
replace [statement]

Id [id] = Expr [expr];
by

Id [_ ’set] (Expr);
end rule

rule replaceAssign2
replace [statement]

assign(Id [id], Expr [expr]);
by

Id [_ ’set] (Expr);
end rule

...
by

Program
[replaceAssign1]
[replaceAssign2]

Figure 9. Use of multiple patterns in other-
wise identical context requires duplication of
the surrounding code.

function getAssign1 : Id [id] Expr [expr]
match [statement]

Id [id] = Expr [expr];
end function

function getAssign2 : Id [id] Expr [expr]
match [statement]

assign(Id [id], Expr [expr]);
end function

rule genericReplace AssignPat [rule : [id] [expr]]
replace [statement]

Stmt [statement]
where

Stmt [AssignPat : Id [id] Expr [expr]]
by

Id [_ ’set] (Expr);
end rule

...
by

Program
[genericReplace getAssign1]
[genericReplace getAssign2]

Figure 10. An example of the parameteriza-
tion of patterns by using out parameters in
combination with rule parameters.

side (LHS) and right hand side (RHS) of a value assignment
using out parameters and thereby acts as a parameterized
pattern. This allows us to express a generic replacement
routine that can easily be used with various different pat-
terns that locate value assignments, provided that the pat-
terns bind the necessary LHS and RHS elements.

In the next section we introduce our final enhancement
to the TXL programming language - the need to provide
modularity and information hiding.

6. Modularity

TXL was originally designed for small rapid prototyp-
ing tasks. Now it finds use in large production transforma-
tions with many thousands of lines of code, on which mul-
tiple developers work. As the size of TXL programs grows,
a mechanism for information hiding becomes increasingly
necessary. The ability to maintain a section of a program
independent of the remainder of the program is very impor-
tant when developing large systems. Collaborating develop-
ers must be concerned about such issues as avoiding name
collisions and specializing rule names to reflect the areas of
the TXL program in which they are meaningful.

In existing TXL programs, avoiding name collisions is
accomplished by employing naming conventions whereby
all entities are prefixed with a qualifying name. Private en-
tities can be further distinguished by prepending an under-
score to the name. This convention works, but it is some-
what tedious as every name definition and associated ref-
erence must be prefixed. Moreover, there is no language
support for these conventions, and errors or ”cheats” that
violate the intended modularity are too easily possible.

Naming conventions can succeed at avoiding name col-
lisions but do not permit the true hiding of names. That is,
there can be no enforced distinction between entities that
are private and entities that are public. Name hiding is very
important in large-scale systems because its use can dramat-
ically simplify the comprehension of a program. It is a key
requirement when maintaining a library that implements a
carefully designed interface.

Another problem with simple naming conventions is that
there is no way to elide the use of a frequently used quali-
fying name as a matter of convenience.

Given these limitations we have added to TXL a facil-
ity for defining abstraction layers that allow developers to
either hide or expose grammar definitions, rules and global
variables and to group code into logical program modules.
Our module system aids in collaboration on large projects,
eases the writing of generic libraries and improves the qual-
ity of TXL software from a software engineering perspec-
tive.

We chose to implement the module system at the lan-
guage level rather than at the file level because TXL al-
ready has a convenient and heavily used source file inclu-
sion system. In ETXL, transformation rules and functions,
grammar defines and global variables can be modularized
by wrapping them in a module statement. By default, an
entity within a module is private and as such is not accessi-
ble outside of the module. An entity may be made public by
listing it in the public statement. A public entity may then
be referenced outside of its module by qualifying it with its
module name and a dot. Figure 11 shows an HTML markup
module.

6

module HTML
public

boldize
end public

define item
[begin_tag] [any] [opt end_tag]

end define

define begin_tag
< [id] [repeat option] >

end define

define end_tag
< / [id] >

end define

function boldize
replace [any]

A [any]
construct BoldTag [begin_tag]

by

A [tagwith BoldTag]
end function

function tagwith Tag [begin_tag]
deconstruct Tag

< TagId [id] TagOptions [repeat option] >
replace [any]

Anything [any]
construct TaggedThing [item]

<TagId TagOptions> Anything </TagId>
deconstruct TaggedThing

TaggedAnything [any]
by

TaggedAnything
end function

end module

rule tagIds
replace $ [id]

Id [id]
by

Id [HTML.boldize]
end rule

Figure 11. HTML markup module.

The need to qualify a public entity can be alleviated by
importing its module with the using statement. The using
statement is permissible in the top level scope as well as in
a module. Once a module has been imported, all its public
entities are accessible without qualification as if they were
directly defined in the importing scope. Consequently, no
collisions between the public names of the imported module
and the existing names in the scope can exist in order for the
import to succeed. Previously imported names are included
in this collision check. That is, it is not possible to import
the same name into a module more than once.

ETXL modules, like all of our new features, have been
implemented as a TXL transformation. In the following
section we describe our overall approach, using the imple-
mentation of if clauses as an example.

Input

Program

ETXL
TXL

ETXL Trans

OutputTXL

ETXL

Figure 12. Implementation architecture.

7. Implementation

In a testament to the usefulness of TXL as a language de-
sign tool we have chosen to rapidly prototype ETXL using
a TXL transformation. It is, by design, a natural choice for
this problem. Since we are extending the TXL language,
we also use it as the target of the transformation, transform-
ing ETXL to standard TXL in a manner that preserves all
existing language features as well as implementing the new
features we have designed.

Figure 12 illustrates our overall approach. Our prototype
aims to be complete and directly usable by the TXL com-
munity, with the hope that once our new language features
have been tested and tuned in a production environment
they can be re-implemented directly in the TXL engine. In
the remainder of this section we describe the implementa-
tion of ETXL if clauses as an example of the transformation.

7.1. If clause implementation

If clauses are implemented by splitting each if test into
two function calls and invoking them both in the way that a
programmer might implement a multi-way decision by hand
in TXL. One function explores the test-success branch and
the other goes down the test-failure branch. Since propagat-
ing subsequently bound variables back to the caller is not
possible in standard TXL, we do not return control to the
caller at the point of the split. Instead, each branch is re-
sponsible for executing its case and the rest of the clauses
that follow the if clause. This requires us to propagate local
variables forward using parameters.

In order to implement mutual exclusion between test
branches, our implementation uses a global stack of flags
for indicating when a control path has been taken. The rule
implementing the test-success branch first pushes the value
false (0) to the stack, it then proceeds to evaluate the test.
Upon success of the test, it overwrites the top of the stack
with the value true (1) and proceeds into the body of the
branch.

7

function findAndApply Key [number]
replace [node]

_This [node]
deconstruct _This

NodeKey [number] NodeVal [value]
Left [node] Right [node]

by
_This [_branch_1 Key NodeKey NodeVal Left Right]

[_branch_2 Key NodeKey NodeVal Left Right]
end function

function _branch_1 Key [number] NodeKey [number]
NodeVal [value] Left [node] Right [node]

construct _ [any]
_ [_if_stack_push_false]

replace [node]
_This [node]

where
Key [< NodeKey]

construct _ [any]
_ [_if_stack_set_top_true]

by
NodeKey NodeVal Left [findAndApply Key] Right

end function

function _branch_2 Key [number] NodeKey [number]
NodeVal [value] Left [node] Right [node]

construct _IfStackTop [number]
_ [_if_stack_pop]

deconstruct _IfStackTop
0

replace [node]
_This [node]

by
_This [_branch_3 Key NodeKey NodeVal Left Right]

[_branch_4 Key NodeKey NodeVal Left Right]
end function

function _branch_3 Key [number] NodeKey [number]
NodeVal [value] Left [node] Right [node]

construct _ [any]
_ [_if_stack_push_false]

replace [node]
_This [node]

where
Key [> NodeKey]

construct _ [any]
_ [_if_stack_set_top_true]

by
NodeKey NodeVal Left Right [findAndApply Key]

end function

function _branch_4 Key [number] NodeKey [number]
NodeVal [value] Left [node] Right [node]

construct _IfStackTop [number]
_ [_if_stack_pop]

deconstruct _IfStackTop
0

replace [node]
_This [node]

by
NodeKey NodeVal [transform] Left Right

end function

Figure 13. Implementation of Figure 3 as
transformed to standard TXL by the ETXL
prototype. Branch one implements the first if
test and its body block. Branch two ensures
that the if test failed, then proceeds with the
remaining cases. Branch three implements
the else-if test and its body block. Branch
four ensures that the else-if test failed then
executes the else part.

The rule implementing the test-failure branch, which by
TXL semantics is invoked regardless of the outcome of the
test, first examines the top of the stack. If the value is false it
may then proceed to either invoke another branch point for
an else-if test or it may fall into an else block. Since the rule
implementing the test-failure branch is always executed, it
is given the responsibility of popping the test value from
the stack. Figure 13 shows the TXL code implementing the
ETXL binary search shown in Figure 3.

The rule-based semantics at the core of TXL presents
an additional challenge in the implementation of if clauses.
The default behaviour of a TXL rule is to repeatedly search
the tree to which it is applied after each replacement un-
til no further instances can be found. Specifically, when
rule is applied it traverses the parse tree in a preorder man-
ner, looking for instances of the pattern. When a match is
found, the pattern refinements (other clauses of the rule) are
tested. If they succeed, the replacement is made and the
rule is reapplied at the root of the resulting tree. Once no
pattern match with successful refinements can be found, the
rule terminates.

Because our prototype implementation uses subrules to
implement if branches, pattern refinements may be moved
into a generated subrule when an if clause splits a pattern
from one or more of its refinements. Since the constructors
containing the generated subrule invocations will always be
successful, the rule will no longer terminate properly. To
solve this problem, we must propagate the notion of rule
failure from the generated subrules back to the top-level
rule. Figure 14 shows an example of a pattern and refine-
ment which gets split across multiple rules by the imple-
mentation of if clauses. In this example, deconstruct state-
ments are used to determine what the replacement should
be. The need for explicit termination of search reappli-
cation can also arise when an if clause separates a pat-
tern from its refinements, because the transformation pushes
clauses following an if clause into the rules implementing
the branches.

In order to preserve rule termination behaviour, our
transformation of if clauses adds code to explicitly trans-
fer failure from the generated subrules back to the top level
rule. Once again, a global stack of boolean flags is used to
address this control flow problem. Immediately before the
first branch point separating a pattern and a replacement, the
value false is pushed to this stack. Each of the subrules im-
plementing a branch of the if clause replaces this top entry
with the value true if all of its embedded clauses succeed.
The top-level rule containing the original if clause then pops
the top entry and uses a deconstructor to test that it is true
(that is, that some branch succeeded) before continuing. If
the popped entry is not true (that is, none of the branches
succeeded) then the deconstructor fails and the rule termi-
nates normally.

8

rule eliminateIf
replace [repeat stmt]

’if (Expr [expr])
Stmt [stmt]

Rest [repeat stmt]
construct Label [id]

_ [uniqueLabel]
if

deconstruct Expr
Var [id] = _ [expr]

by
Expr;
test_goto (! Var) Label;
Stmt
Label: noop;
Rest

else
deconstruct Expr

Var [id] == SubExpr [expr]
by

test_goto (Var != SubExpr) Label;
Stmt
Label: noop;
Rest

end if
end rule

Figure 14. An ETXL example which requires
the explicit termination of the original rule.
Although the main pattern will remain in the
top-level rule, pattern refinements and re-
placements appearing inside and following
the if clause will be moved into subrules for
the if branches as part of our implementation,
causing problems with termination.

The corresponding implementation of Figure 14 is
shown in Figure 15.

8. Related work

The features we have added in ETXL are by no means
unique. General functional programming languages such
as Lisp [9] and Haskell [8] have always offered explicit if-
then-else constructs. Our if-then-else is distinguished from
these and others however in its application in the pattern-
matching context. Based on the TXL success-fail semantics
borrowed originally from Snobol [6], ETXL’s if-then-else
allows for any subchains of the pattern-match-deconstruct-
construct-guard-replace-by sequence of a guarded rewrite
rule to be conditionalized, allowing for a range of kinds of
applications quite unlike traditional if-then-else.

Other source transformation systems have also offered
solutions to the challenges addressed by our extensions to
TXL. For example, ASF+SDF [15] has an inherently mod-
ular structure, in which subgrammars and their associated
transformation rules are packaged and maintained together
as modules, which are then combined to form whole sys-
tems. ETXL modules are in many ways similar.

rule eliminateIf
replace [repeat stmt]

_This [repeat stmt]
deconstruct _This

’if (Expr [expr]) Stmt [stmt]
Rest [repeat stmt]

construct Label [id]
_ [uniqueLabel]

construct _ [any]
_ [_repl_stack_push_false]

construct _Result [repeat stmt]
_This [_branch_1 Expr Stmt Rest Label]

[_branch_2 Expr Stmt Rest Label]
construct _ReplStackTop [number]

_ [_repl_stack_pop]
deconstruct _ReplStackTop

1
by

_Result
end rule

function _branch_1 Expr [expr] Stmt [stmt]
Rest [repeat stmt] Label [id]

construct _ [any]
_ [_if_stack_push_false]

replace [repeat stmt]
_This [repeat stmt]

deconstruct Expr
Var [id] = _ [expr]

construct _ [any]
_ [_if_stack_set_top_true]

construct _ [any]
_ [_repl_stack_set_top_true]

by
Expr; test_goto (! Var) Label;
Stmt Label: noop; Rest

end function

function _branch_2 Expr [expr] Stmt [stmt]
Rest [repeat stmt] Label [id]

construct _IfStackTop [number]
_ [_if_stack_pop]

deconstruct _IfStackTop
0

replace [repeat stmt]
_This [repeat stmt]

deconstruct Expr
Var [id] == SubExpr [expr]

construct _ [any]
_ [_repl_stack_set_top_true]

by
test_goto (Var != SubExpr) Label;
Stmt Label: noop; Rest

end function

Figure 15. Corresponding implementation of
Figure 14 which shows the explicit termina-
tion of the top level rule. Before invoking the
subrules implementing the if branches, the
top-level rule pushes the value false (0) to the
global stack. In each of the generated sub-
rules, this value is changed to true (1) if all
of the pattern refinements and replacements
in the subrule succeed. Upon return to the
top-level rule, the value is popped and tested
using a deconstructor. If the popped value is
true then rule continues, otherwise it termi-
nates normally.

9

Stratego [16] also provides a similar modular structure,
but at a higher level of abstraction. In Stratego, more gen-
eral aspects and levels of understanding can be modular-
ized. Stratego is focussed on reuse and is particularly strong
in its generic facilities, most notably generic traversal strate-
gies, which allow separation of rules from their application
and application orders independent of specific syntax struc-
tures, and dynamic rules, which allow for instance-specific
contextualization of rewriting rules. ETXL abstracts strate-
gies using higher order rules (i.e., rule and type parameters)
and uses out parameters to augment TXL’s usual parameter-
based instance contextualization.

Both ASF+SDF and Stratego handle multi-way condi-
tions using guarded conditional rewriting much like TXL’s
rules, and have no explicit if-then-else. Stratego also offers
a deterministic choice operator which eliminates the need
to explicitly program mutual exclusion. This binary opera-
tor applies a second rule on the condition that the first has
failed. In many cases, this operator can be used to address
uses of ETXL’s if-then-else.

Systems such as ANTLR [12], APTS [11, 10] and DMS
[1], which use semi-imperative transformation specifica-
tions, can take advantage of the language constructs of their
host imperative languages to handle if-then-else and mod-
ularity, but can lose some of the declarative nature of the
rewriting process as a result.

9. Conclusion

In this work we have addressed a number of real prob-
lems encountered by TXL users. If clauses ease the imple-
mentation of multi-way decisions. Rule and type parame-
ters make it possible to specify rules that are independent
of the types they operate on and the subrules they apply.
Out parameters allow users to abstract patters into indepen-
dent and reusable units. The combination of rule param-
eters and out parameters allows one to parameterize such
patterns. Our modularity system allows large, colloborative
works to be better engineered. All of our new features en-
able the expression of programs that were previously either
tedious or prohibitively difficult to express in standard TXL.

Once we have more experience with these features using
our prototype implementation, they may be re-implemented
as part of the TXL engine itself. In the long run we plan
to incorporate what we have learned from enhancing TXL
into a new transformation system targeted at a much broader
audience. In the meantime, our ETXL prototype is available
for evaluation from the project home page [14].

References

[1] I. D. Baxter. Parallel support for source code analysis
and modification. In 2nd IEEE International Workshop on

Source Code Analysis and Manipulation (SCAM’02), pages
3–14, 2002.

[2] J. R. Cordy. The TXL source transformation language.
Science of Computer Programming, 61(3):190–210, August
2006.

[3] J. R. Cordy, C. D. Halpern-Hamu, and E. Promislow. TXL:
A rapid prototyping system for programming language di-
alects. Computer Languages, 16(1):97–107, January 1991.

[4] T. R. Dean, J. R. Cordy, A. J. Malton, and K. A. Schnei-
der. Agile parsing in TXL. Journal of Automated Software
Engineering, 10(4):311–336, October 2003.

[5] T. R. Dean, J. R. Cordy, K. A. Schneider, and A. J. Malton.
Experience using design recovery techniques to transform
legacy systems. 17th IEEE International Conference on
Software Maintenance (ICSM’01), pages 622–631, Novem-
ber 2001.

[6] D. J. Farber, R. E. Griswold, and I. P. Polonsky. Snobol,
a string manipulation language. Journal of the ACM,
11(1):21–30, 1964.

[7] S. Grant and J. R. Cordy. An interactive interface for refac-
toring using source transformation. In 1st International
Workshop on Refactoring: Achievements, Challenges, Ef-
fects (REFACE’03), pages 30–33, Victoria, November 2003.

[8] P. Hudak, S. P. Jones, and P. Wadler. Report on the pro-
gramming language Haskell version 1.1. Technical report,
Departments of Computer Science, University of Glasgow
and Yale University, August 1991.

[9] J. McCarthy et al. LISP 1.5 Programmer’s Manual. MIT
Press, 1962.

[10] R. Paige. Apts external specification manual, 1993.
http://www.cs.nyu.edu/∼jessie/.

[11] R. Paige. Viewing a program transformation system at work.
In Programming Language Implementation and Logic Pro-
gramming: 6th International Symposium (PLILP’94), vol-
ume 844 of Lecture Notes in Computer Science, May 1994.

[12] T. J. Parr. An overview of sorcerer: A simple tree-parser
generator, 1994.

[13] N. Synytskyy, J. R. Cordy, and T. R. Dean. Robust multilin-
gual parsing using island grammars. In 2003 Conference of
the Centre for Advanced Studies on Collaborative Research
(CASCON’03), pages 149–161, Toronto, October 2003.

[14] A. Thurston. ETXL homepage, 2006.
http://www.cs.queensu.ca/home/thurston/etxl/.

[15] M. G. J. van den Brand, J. Heering, P. Klint, and P. A.
Olivier. Compiling language definitions: The ASF+SDF
compiler. ACM Transactions on Programming Languages
and Systems, 24(4):334–368, 2002.

[16] E. Visser. Stratego: A language for program transforma-
tion based on rewriting strategies. In Rewriting Techniques
and Applications (RTA’01), volume 2051 of Lecture Notes
in Computer Science, pages 357–361. Spinger-Verlag, May
2001.

10

