
Formal Specification and Verification of Java Refactorings

Alejandra Garrido and José Meseguer
University of Illinois at Urbana-Champaign

201 N. Goodwin Ave., Urbana, IL 61801, USA
{garrido,meseguer}@cs.uiuc.edu

Abstract

There is an extensive literature about refactorings of
object-oriented programs, and many refactoring tools for
the Java programming language. However, except for a few
studies, in practice it is difficult to find precise formal speci-
fications of the preconditions and mechanisms of automated
refactorings. Moreover, there is usually no formal proof that
a refactoring is correct, i.e., that it preserves the behavior
of the program.

We present an equational semantics based approach to
Java refactoring. Specifically, we use an executable Java
formal semantics in the Maude language to: (i) formally
specify three useful Java refactorings; and (ii) give detailed
proofs of correctness for two of those refactorings, show-
ing that they are behavior-preserving transformations. Be-
sides the obvious benefits of providing rigorous specifica-
tions for refactoring tool builders and rigorous correctness
guarantees, our approach has the additional advantage of
its executability: our formal refactoring specifications can
be used directly to refactor Java programs and yield a prov-
ably correct Java refactoring tool.

1. Introduction

Refactorings were defined by Opdyke and Johnson [27]
in 1990 as transformations of the source code that make it
easier to understand and reuse, while preserving its behav-
ior. The term ‘refactoring’ differs from program restructur-
ing in that transformations are applied “not so much to in-
fuse structure into a poorly structured program, but rather
to refine the design of an already structured program, and
make it easier to reuse” [26]. In his thesis [26], Opdyke
provides a catalog of low-level refactorings for C++ code
and precisely describes the preconditions and mechanisms
for each one. Roberts does a similar job for Smalltalk code
[28]. There have been many publications about refactoring
object-oriented programs [15, 30, 16, 25, 23], and numer-
ous Java refactoring tools have been built [1, 2, 3, 4], but

there is usually no documentation specifying precisely the
preconditions and mechanisms of refactorings, nor there is
any proof of correctness.

In order to guarantee the correctness of refactoring tools,
two tasks are absolutely essential: (1) refactoring them-
selves should be formally specified; and (2) each refactoring
should be proved correct, i.e., behavior-preserving, with re-
spect to the language’s formal semantics. We address tasks
(1) and (2) for some Java refactorings in this paper. We
have also tackled other Java refactorings in [18] and some
refactorings for the C preprocessor in [19]. As further ex-
plained in the Related Work section, other researchers have
also made contributions in this direction for different lan-
guages, including [6, 11, 7, 22, 21, 20]. However, most of
that work, with the exception of [6, 11], has concentrated
primarily on task (1).

Our approach to tasks (1) and (2) is based, in the case
of Java, on an equational executable semantics of sequen-
tial Java specified in Maude [9, 10] as part of the JavaFAN
project [12]. In fact, the Java semantics in [12] includes
also the concurrent features; however, in this work we re-
strict ourselves to the sequential fragment, which is spec-
ified as an equational theory. Our formal specification of
several frequently-used Java refactorings (task (1)) extends
this equational Java semantics and has the important advan-
tage of being executable. This means that the formal defi-
nitions of refactorings are at the same time their implemen-
tation, yielding a Java refactoring tool for free from such
definitions. It also means that there is no gap between spec-
ification and implementation, so that any refactoring speci-
fication proved correct will indeed operate correctly as spec-
ified.

We give also a detailed mathematical proof of correct-
ness (task (2)) for two of those refactorings. That is, we
show that they preserve program behavior with respect to
the formal Java semantics. Without a formal semantics of
the underlying language such mathematical proofs of cor-
rectness would be impossible. Our proofs do indeed make
essential use of the equational axioms defining the Java se-
mantics and also of the formal refactoring specifications.

Besides the obvious benefits of providing rigorous spec-
ifications for refactoring tool builders and rigorous correct-
ness guarantees, plus the already-mentioned benefit of ob-
taining a provably correct Java refactoring tool for free from
the formal specifications, a further important advantage of
our approach is its extensibility: the algebraic approach we
propose makes it straightforward for a user to introduce new
user-defined refactorings. Such user-defined refactorings
can be specified as algebraic expressions in terms of a ba-
sic library of already verified refactorings, and can then be
guaranteed to be correct by construction, without any need
for additional verification.

Finally, our approach is not restricted to Java or OOP: it
can be used in conjunction with any language for which an
equational or rewriting logic semantics has been provided.
We have, for example, applied the same methodology de-
scribed in this paper to the C Preprocessor (Cpp), i.e., we
have used Maude to specify Cpp refactorings on top of a
formal specification of Cpp, which allowed us to prove Cpp
refactorings correct based on the semantics of the language
[19].

This paper is organized as follows. The next subsection
describes other efforts to formalize refactorings. Section 2
gives an overview of the rewriting logic specification for
the Java syntax and semantics on which we base our work.
Section 3 first describes some generic operations that are
used by different refactorings. It then provides details of
the specification of ‘Push Down Method’, ‘Pull Up Field’
and ‘Rename Temporary’ and then describes how refactor-
ings can be composed to create new refactorings. Section
4 presents the formal proofs of correctness for ‘Push Down
Method’ and ‘Pull Up Field’ and Section 5 concludes with
some remarks and future work.

1.1 Related work

We discuss related work on formal approaches to refac-
toring and also some related work on program transforma-
tion.

Most formal approaches to refactoring focus on task (1),
that is, on giving a precise formal specification of refactor-
ings. Work in this direction includes [6, 11, 7, 22, 21, 20].
Several formalisms are used for this purpose. For example,
[7, 22] represent programs as graphs and use graph rewrit-
ing to specify refactorings. Instead, [21] uses monads and
polymorphic functions in Haskell to specify refactorings in
a language-generic way. The work in [20, 6, 11] agrees in
specifying refactorings as transformation rules with formal
predicates for applicability preconditions. In [20] the em-
phasis is on allowing user-defined refactorings by compos-
ing basic ones, whereas in [6, 11] refactorings are viewed
as bi-directional transformation rules for which precondi-
tions are specified for use in each direction. Our approach

to task (1) has some similarities with [7, 22, 21], since we
represent programs as terms and specify refactorings equa-
tionally as conditional term rewrite rules, which are similar
to both graph rewrite rules with applicability constraints and
to functional program definitions. What the approaches in
[7, 22, 21, 20] lack in relation to our work is a formal se-
mantics of the underlying programming language.

Task (2), in the full sense of proving behavior preserva-
tion with respect to the language semantics, is studied much
less often, or is even despaired of as in [22], where it is as-
serted (pg. 253) that “all researchers agree that a full guar-
antee of preservation of behavior is impossible,” although
[22] nevertheless shows some preservation of static prop-
erties. We of course beg to disagree with such pessimism.
In fact, the work in [6, 11] has shown how, for a simplified
Java-like sequential language, refactorings can be formally
proved correct with respect to an axiomatic, weakest pre-
condition (WP) semantics. Our work is indeed in the same
spirit as [6, 11], but addresses Java itself, and uses a dif-
ferent semantics (algebraic, instead of axiomatic) with two
important advantages: (1) executabilty, since for us both
the Java semantics and the refactoring specifications are ex-
ecutable and yield Java tools; and (2) extensibility, since our
language definitions are modular and will support reasoning
about refactorings in a more general context such as multi-
threaded programs, whereas extensibility of a WP seman-
tics with new features such as exceptions or concurrency
would be a nontrivial and perhaps problematic task.

We can also mention some related work on program
transformation. Visser [33] surveys several approaches and
extensions to term rewriting, like different strategies for tree
parsing, tree traversal and programmable transformations.
Examples of these approaches are those in Stratego [32]
and ASF+SDF [31]. However, these approaches to program
transformation differ from refactoring in that transforma-
tion rules are usually applied to the entire program, with the
objective of normalizing the program or optimizing it [33].

Another formalism for program transformation is the
method based on WSL (Wide Spectrum Language) [34]. It
has an associated tool with a library of transformations that
have been proved correct, and the transformations are ap-
plied to refine a specification or to abstract a program writ-
ten in WSL. Translators to/from WSL exist for IBM 370
Assembler and Jovial [34].

Ahrend, Roth and Sasse have used Maude and the formal
specification of the Java language written in Maude [12] to
cross-validate the rules of a programming language proof
calculus called KeY [29, 5]. The rules in KeY are program
transformation rules that apply only to the first statement of
the remaining program [29, 5].

2. Maude Specification of the Java Semantics

Rewriting logic provides a powerful framework for spec-
ifying the semantics of both sequential and concurrent pro-
gramming languages by unifying SOS and equational se-
mantics [24]. Moreover, the Maude environment [9, 10]
allows the direct execution of semantic specifications as in-
terpreters with high efficiency.

The semantics of the Java programming language is
specified as a rewrite theory (ΣJava, EJava, RJava), where
the signature ΣJava specifies Java’s syntax, EJava is a set
of equations that specify the semantics of all the sequential
features of Java and of the auxiliary operations, and RJava

is a set of labelled rules that specify the semantics of all the
concurrent features of Java [12]. The complete specification
can be found in [17]. In this work we will not consider the
concurrent aspects of Java, so we restrict ourselves to the
equational theory (ΣJava, EJava).

The formal specification of a programming language is
defined in Maude by a sequence of modules [24]. Since
we do not consider the concurrent aspects of Java in this
presentation, we will only deal with functional modules.
A Maude’s functional module is a set of definitions that
specify an equational theory (Σ, E), with Σ a signature
specifying a collection of sorts and operations on these
sorts, and E a collection of equational axioms. Such func-
tional modules are defined between the keywords fmod and
endfm. Figure 1 shows three Maude modules specifying
the syntax of Java classes (CLASS-SYNTAX), field decla-
rations (FIELD-DECLARATION-SYNTAX) and methods
(METHOD-DECLARATION-SYNTAX), which have been
extracted from [17] but are simplified for this presentation
(excluding for example the syntax of exception handling).
In order to help understand Figure 1, Maude’s basic syntax
and semantics is described below.

A Maude module extends a previously defined module
by importing it with the keyword pr (for ‘protecting’) or
ex (for ‘extending’). There is a subtle difference between
the two, but it is out of the scope of this presentation; a de-
tailed explanation can be found in [10]. Sorts are declared
with the keywords sort or sorts. For example, Class,
ClassMember and FieldDeclaration are some of the de-
clared sorts in the Java syntax specification of Figure 1. The
modules in the figure use sorts declared in other modules,
like Type for basic Java types, CType for class types, Dec-
laration, which represents a variable declaration, and Qid,
a sort defined in Maude to represent quoted identifiers.

The set of declared sorts can be partially ordered by a
subsort relationship. The keywords subsort and the “<”
character are used for this purpose. The subsort relationship
s ≤ s′ is interpreted semantically by the subset inclusion
As ⊆ As′ between the sets As and As′ of data elements
associated to s and s′ in an algebra A [10]. In Figure 1, the

fmod CLASS-SYNTAX is pr TYPE .
sorts Modifier ClassMember ClassMembers ClassBody

Supers Class .
subsort ClassMember < ClassMembers .
ops final static abstract public private protected

transient native: -> Modifier .
op __ : Modifier Modifier -> Modifier [comm assoc] .
op {} : -> ClassBody .
op {_} : ClassMembers -> ClassBody .
op noMember : -> ClassMembers .
op __ : ClassMembers ClassMembers -> ClassMembers

[assoc id: noMember] .
op extends_ : CType -> Supers .
op extends_implements_ : CType ITypes -> Supers .
op _Class___ : Modifier Qid Supers ClassBody-> Class.

endfm

fmod FIELD-DECLARATION-SYNTAX is ex CLASS-SYNTAX .
ex DECLARATION-SYNTAX .
sort FieldDeclaration .
subsort FieldDeclaration < ClassMember .
op __; : Modifier Declaration -> FieldDeclaration .

endfm

fmod METHOD-DECLARATION-SYNTAX is ex CLASS-SYNTAX .
ex DECLARATION-SYNTAX .
ex TYPE .
sorts MethodDeclaration Parameters .
subsort MethodDeclaration < ClassMember .
subsort Declaration < Parameters .
op ‘(‘) : -> Parameters .
op _,_ : Parameters Parameters -> Parameters

[assoc id: ()] .
op _____ : Modifier Type Qid Parameters Block

-> MethodDeclaration .
endfm

Figure 1. Specification of the syntax of
classes, methods and field declarations

expression
subsort FieldDeclaration < ClassMember

means that a FieldDeclaration is a ClassMember (note
that the same is true for a MethodDeclaration). Moreover,
the expression
subsort ClassMember < ClassMembers

says that a ClassMember is a list of ClassMembers (a list
with one element), which makes it easy to deal with lists or
single elements in the same way.

Operations are declared using the keyword op or ops
followed by the name of the operation(s), then a colon, then
the sorts of the arguments, then an arrow, and finally the
sort of the result. Maude understands both prefix and mixfix
notation for operations. When declaring an operation with
mixfix notation, underscore characters are used to specify
the places for the arguments. For example, the operation
op {_} : ClassMembers -> ClassBody

constructs a ClassBody by placing a list of ClassMem-
bers between curly braces. Although not shown in Fig. 1, a
Java program is defined to have sort Pgm and is constructed
with the following operation:
op __ : Classes Exp -> Pgm .

that is, a set of classes and an expression to evaluate.

A binary operation in Maude can be declared to
satisfy some equational axioms like associativity (with
the keyword assoc), commutativity (with the key-
word comm), identity with respect to an identity ele-
ment (keyword id), etc. An example is the operation:
op __ : ClassMembers ClassMembers

-> ClassMembers [assoc id: noMember]

which concatenates ClassMembers by using empty juxta-
position syntax and declaring the operation as associative
and having noMember as the identity element.

Other modules presented later in the paper use variable
declarations and equations. Mathematical variables are de-
clared inside a module with the keywords var or vars,
followed by the variable name(s), a colon and the sort to
which the variable(s) belong. Equations define the proper-
ties that the operations should satisfy. Equations start with
the keyword eq followed by two expressions separated by
an “=” character. As a final note on the Maude syntax, com-
ments can be added by preceding them with three asterisks
or three dashes.

The semantics of Java in Maude uses continuation-
passing style [24] to capture the next statement or expres-
sion to execute. Continuations in Maude are first-order
structures resembling stacks [24]. The continuation is part
of a State data structure, which also includes the current
state of the memory and environment. The elements of the
state have sort StateAttribute and are specified with con-
structor operators that take as argument the value that each
one stores. The main StateAttributes are:

• Context: specified with the constructor c, which takes
three elements:

– Continuation: wrapped with operation k, it in-
cludes ContinuationItems that are concatenated
with the operator ->.

– Environment: wrapped with operation e, and
mapping variable names to locations.

– Current object: on which the current method is
executed. It is specified with three components:
the static type, the dynamic type and the object
environment, all wrapped by the operation o.

• Memory: specified with the constructor m, it maps lo-
cations to values.

• Classes: the cl operation wraps the list of all class def-
initions used in the program.

• Static environment: wrapped with the operation s, the
static environment includes all static attributes of all
classes.

• Output: this is the accumulated output that is wrapped
inside the constructor out and its value is returned at
the end of the computation.

fmod JAVA-REF is
pr PGM-SYNTAX .
sorts JavaRefactoring JavaBlockRefactoring

JavaClassesRefactoring .
op _<-_ : Pgm JavaRefactoring -> Pgm .
op _<-_ : Classes JavaClassesRefactoring -> Classes .
op _<-_ : Block JavaBlockRefactoring -> Block .

endfm

Figure 2. Module JAVA-REF

To execute a program, the operation run is called on a
Pgm, that is, a set of classes Cl and an expression E, and
the operation creates the initial state, which includes Cl and
a continuation with E as the next expression to evaluate. The
result is the final value of the state attribute out. In [18], we
present more details about semantic definitions. The full
specification used for the Java semantics can be found in
[17].

3. Formal Semantics of Java Refactorings

This section presents the formal specifications of three
Java refactorings: ‘Push Down Method’, ‘Pull Up Field’
and ‘Rename Temporary’. We have also specified ‘Pull Up
Method’ and‘Push Down Field’ in [18] . Their precondi-
tions and transformations are based on the formal specifica-
tion of the Java syntax presented in the previous section.

The module JAVA-REF in Figure 2 specifies the basic
syntax of refactoring operations. It defines three sorts and
three overloaded versions of the operation <- that applies a
refactoring to different parts of the code:

• a JavaRefactoring is applied to a Pgm (a Java pro-
gram) and returns a transformed Pgm (or the same
Pgm if the preconditions do not hold); an example is
the refactoring ‘Rename Field’;

• a JavaClassesRefactoring is applied to a set of
Classes and returns the same or a transformed set of
Classes; an example is the refactoring ‘Push Down
Method’;

• a JavaBlockRefactoring is applied to a Block and re-
turns the same or a transformed Block. An example is
‘Rename Temporary’ refactoring.

During the course of specifying refactorings, we have
created some generic operations that were found applicable
in many refactorings. These operations are important, since
they ease the introduction of new refactorings. We present
a few of them in the first subsection. Due to space limita-
tions, we do not give details about the formal specification
of auxiliary operations, but they can be found, together with
the full specification of the refactorings, in [17].

Finally, the last subsection describes how refactorings
can be composed to create new refactorings.

3.1 Generic Auxiliary Operations

In this subsection we list a few of the generic auxiliary
operations used in the refactorings described later.

getMethod. This is an example of a query operation. The
typing of this operation is:
op getMethod:Class Qid Types ->ClassMembers

where the first argument is the class that defines the method,
the second is the method name, and the third is the pa-
rameter types. The return value has sort ClassMembers
to account for the possibility of a noMember value (see
Figure 1).

noSuperCalls. This is an example of the kind of test
operations invoked during the checking of preconditions.
Its typing is: op noSuperCalls : Block -> Bool.

and it checks whether the method body represented by the
parameter contains any method calls using “super”.

usesVar. This operation checks whether a block refers to a
variable. Its signature is:
op usesVar : Block Var -> Bool .

moveClassMemberMult. This operation is called from
every refactoring where there is a class member (a field
or a method) that should be removed from a set of classes
and added to another set of classes. Examples of these
refactorings are Push Down Method and Pull Up Field.
The typing of this operation is:
op moveClassMemberMult : ClassMember

Classes Classes -> Classes.

where the first parameter is the field or method to be moved,
the second represents the class(es) from where the member
is to be removed, the third parameter is the class(es) to
which the member is added, and the return value is the set
of all transformed classes.

removeAll. This operation is called after the previous one
to remove from the set of all classes those that have been
modified, and return the remaining, unchanged classes. The
semantics is very general and just removes from the first set
of classes the ones in the second set given as parameter.

3.2 Push Down Method Refactoring

With this refactoring, a user selects a method MN in a
class CN and, if the preconditions hold, MN is moved from
CN to all subclasses of CN. Figure 3 shows the module spec-
ifying this refactoring. The main operation is specified with:

op PushDownMethod : Qid Qid Types

-> JavaClassesRefactoring.

fmod PUSH-DOWN-METHOD is
pr JAVA-REF . pr CLASS-REF-HELPERS .
var md:Modifier. vars CN MN:Qid. var cb:ClassBody.
--- other variable declarations omitted

op PushDownMethod : Qid Qid Types
-> JavaClassesRefactoring .

eq Cl <- PushDownMethod(CN, MN, TS)
= if precondsPushDownMethodHold(Cl, CN, MN, TS)

then applyPushDownMethod(Cl, CN, MN, TS)
else Cl fi .

op precondsPushDownMethodHold : Classes Qid Qid
Types -> Bool .

eq precondsPushDownMethodHold(noClass, CN, MN, TS)
= false . --- no classes in the program ***1
eq precondsPushDownMethodHold(((md Class CN sp cb)

Cl), CN, MN, TS)
= isAbstract(md) and ***2

precondsPushDownMethodHold((md Class CN sp cb),
getMethod(cb,MN,TS), subclasses(CN,Cl), Cl).

eq precondsPushDownMethodHold(Cl, CN, MN, TS)
= false [owise] . --- no class CN ***1

op precondsPushDownMethodHold : Class ClassMembers
Classes Classes -> Bool .

eq precondsPushDownMethodHold(C, noMember, SubCl, Cl)
= false . --- no method MN ***1

eq precondsPushDownMethodHold(C, CM, noClass, Cl)
= false . --- no subclasses ***5

eq precondsPushDownMethodHold(C, (md T MN pl block),
SubCl, Cl)

= not isStatic(md) and noSuperCalls(block) and ***3,4
noCallsToSuper(SubCl, MN, GetTypes(pl)). ***5

op applyPushDownMethod : Classes Qid Qid Types
-> Classes .

eq applyPushDownMethod(((md Class CN sp cb) Cl),
CN, MN, TS)

= applyPushDownMethod(getMethod(cb, MN, TS),
(md Class CN sp cb), subclasses(CN, Cl), Cl).

op applyPushDownMethod : MethodDeclaration Class
Classes Classes -> Classes .

eq applyPushDownMethod(MD, C, SubCl, Cl)
= (moveClassMemberMult(MD, C, SubCl)

removeAll(Cl, SubCl)) .
endfm

Figure 3. Specification of Push Down Method

where the first argument is the class name (CN), the sec-
ond is the method name (MN) and the third argument are
the types of the method parameters (TS), to distinguish it
from other possible overloaded names for MN. The operation
PushDownMethod, when applied to a set of classes Cl,
first checks the preconditions by calling precondsPush-
DownMethodHold, and if that operation returns true then
applies the transformation by calling applyPushDown-
Method. Otherwise, it just returns the same set of classes
Cl. This is simply specified with the first equation in mod-
ule PUSH-DOWN-METHOD (see Figure 3).

The preconditions for this refactoring are the following
(note that some equations in Fig. 3 are numbered on the
right to provide easy reference with the following list):

1. The input is valid, i.e., there is a class named CN which
defines a method MN with parameter types TS.

2. Class CN is abstract, so MN will never be called on an

instance of CN.

3. Method MN(TS) is not static, so it will not be called
on the class CN.

4. The body of MN does not call other methods using su-
per, to avoid changes in method look-up.

5. Class CN has subclasses, and none of the subclasses
call MN by way of super, for the same reason as the
previous one.

Note the use of the attribute [owise] (otherwise) in the
fourth equation in Fig. 3, which makes it applicable when
all the previous equations have failed to apply, i.e., the set
Cl is not empty but it does not contain a class named CN.
The attribute [owise] can be desugared into an equivalent
conditional specification [10].

The mechanics of applyPushDownMethod are to re-
trieve the method MN(TS) from the class CN, retrieve CN’s
subclasses, and call the overloaded version of applyPush-
DownMethod. The latter calls the auxiliary operations
moveClassMemberMult, to move the MethodDeclara-
tion MD from the superclass C to all subclasses SubCl, and
the operation removeAll to append to the result of move-
ClassMemberMult (the changed classes), the rest of the
classes that have not been changed.

3.3 Pull Up Field Refactoring

This refactoring is used when all subclasses of a class
CN define the same field FN, which should be therefore
abstracted to the superclass CN. Figure 4 shows the for-
mal specification of this refactoring. The operation that
applies the refactoring is PullUpField, which receives the
class name CN and the field name FN as parameters, and in
the same way as in the previous refactorings, carries out the
transformation if the preconditions hold.

The preconditions for this refactoring are:

1. There is a class named CN in the set of classes.

2. Class CN has at least one subclass.

3. Class CN does not define the field FN.

4. All subclasses of CN define the field FN.

These preconditions are checked by operation precond-
sPullUpFieldHold (again, the equations in Fig. 4 are num-
bered to show which equation checks each precondition).

The transformation is carried out by operation apply-
PullUpField, which in turn calls moveClassMemberMult
to move the field from the subclasses to the superclass, and
calls removeAll to get the subset of unchanged classes, just
like in previous cases.

fmod PULL-UP-FIELD is
pr JAVA-REF . pr CLASS-REF-HELPERS .

---variable declarations omitted
op PullUpField : Qid Qid -> JavaClassesRefactoring .
eq Cl <- PullUpField(CN, FN)
= if precondsPullUpFieldHold(Cl, CN, FN)

then applyPullUpField(Cl, CN, FN)
else Cl fi .

op precondsPullUpFieldHold : Classes Qid Qid -> Bool .
eq precondsPullUpFieldHold(noClass,CN,FN) = false. ***1
eq precondsPullUpFieldHold(((md Class CN sp cb) Cl),

CN, FN)
= subclasses(CN, Cl) =/= noClass and ***2

getField((md Class CN sp cb), FN) == noMember ***3
and
allClassesDefineField(subclasses(CN,Cl),FN). ***4

eq precondsPullUpFieldHold(Cl,CN,FN)= false[owise].***1

op applyPullUpField : Classes Qid Qid -> Classes .
eq applyPullUpField(((md Class CN sp cb) Cl), CN, FN)
= applyPullUpField(subclasses(CN, Cl),

(md Class CN sp cb), FN, Cl) .
op applyPullUpField : Classes Class Qid Classes

-> Classes .
eq applyPullUpField((SubC SubCl), SupC, FN, Cl)
= (moveClassMemberMult(getField(SubC, FN),

(SubC SubCl), SupC)
removeAll(Cl, (SubC SubCl))) .

endfm

Figure 4. Specification of Pull Up Field Refac-
toring

3.4 Rename Temporary Refactoring

Renaming is probably the best known and most used
refactoring. Figure 5 shows the Maude specification of Re-
name Temporary Variable for Java. It differs from the pre-
vious refactorings in several aspects: it is an example of
a JavaBlockRefactoring, it does not involve code move-
ment, and it requires the construction of a symbol table of
the block on which the refactoring is applied, to check vari-
able declarations and visibility. The operation that carries
out this refactoring is RenameTemp. It receives as pa-
rameters the Old name and the New name for the variable,
and the code location L of the selected declaration for Old.
This location helps to distinguish between different possi-
ble declarations of Old. The location L is specified as a
list of numbers (of sort NatList) that represents a path from
the root in the syntax tree and identifies the positions of the
nested scopes that contain the declaration for Old, with the
entire list of numbers indicating the position for the declara-
tion itself. Each entry in the symbol table has an associated
NatList specifying the location of its declaration.

The preconditions for this refactoring are checked
with operation precondsRenTempHold, which requires
the construction of the symbol table. The oper-
ation computeSymbolTable is specified in module
SYMBOL-TABLE. This module is extended by the module
ST-QUERIES, which specifies the operations isDeclara-

fmod RENAME-VAR-REF is
pr JAVA-REF. pr BLOCK-REF-HELPERS. pr ST-QUERIES.
var B:Block. vars Old New: Name. var L:NatList.
var ST:SymbolTable. var bs:BlockStatements. var N:Nat.

op RenameTemp : Name Name NatList
-> JavaBlockRefactoring.

eq B <- RenameTemp(Old, New, L)
= if precondsRenTempHold(computeSymbolTable(B),

Old, New, L)
then applyRenTemp(B, Old, New, front(L))
else B fi .

op precondsRenTempHold : SymbolTable Name Name
NatList -> Bool.

eq precondsRenTempHold(ST, Old, New, L)
= isDeclarationAt(ST, Old, L) and

not isNameVisible(ST, New, front(L)) .

op applyRenTemp : Block Name Name NatList -> Block.
eq applyRenTemp({ bs }, Old, New, (0 L))
= { applyRenTemp(bs, Old, New, L) } .

eq applyRenTemp(bs, Old, New, (N L))
= replaceSubtree(bs, N,

applyRenTemp(subterm(bs, N), Old, New, L)).
eq applyRenTemp(bs, Old, New, nil)
= replace(Old, New, bs) .

op replaceSubtree : BlockStatements Nat
BlockStatements -> BlockStatements.

op replace : Name Name BlockStatements
-> BlockStatements.

Figure 5. Specification of Rename Temporary
Refactoring

tionAt, used to check if there is a declaration for Old at lo-
cation L, and isNameVisible, to check that the New name
is not visible in the scope of Old.

The operation applyRenTemp traverses nested blocks
until the scope for the selected variable Old is found (in
the third equation for applyRenTemp), when it calls re-
place to change each reference to Old by New. Interme-
diate scopes are replaced by operation replaceSubtree. In
turn, the operation subterm(bs,N) returns the N-th subterm
inside bs. The equations for these operations are omitted
due to space limitations; they can be found in [17].

3.5 User-Definable Refactorings

Kniesel and Koch [20] argue that refactoring tools should
allow the composition of refactorings by end users. With
our approach, composition of refactorings is not only pos-
sible but easy, by arranging refactorings in a sequence with
the <- operator. For example, take the refactoring ‘Pull Up
Field’; as described in [16], it is possible that originally, the
fields to be pulled up do not have the same name, so it is
first necessary to give all fields the same name and then pull
the field up. Therefore, a user may want to define a refac-
toring ‘Rename And Pull Up Field’ applicable to this more
general situation. It takes a class name, the list of differ-
ent field names in the subclasses and the target name for all
fields, and then first applies ‘Rename Field’ to the fields in
the subclasses and then applies ‘Pull Up Field’. This can be

easily defined by the equation:

eq Cl <- RenameAndPullUpField(CN, LNs, TN)
= (Cl <- RenameFieldAny(subclasses(#c(CN),

Cl), LNs, TN))
<- PullUpField(CN, TN) .

where Cl:Classes, CN,TN:Qid, LNs:QidList, and Re-
nameFieldAny renames, in each class received as first pa-
rameter, the fields with any of the names in the second pa-
rameter, to the target name in the third parameter.

Note that any user-definable refactoring constructed this
way, as successive application of a finite number of basic
refactorings, will preserve program behavior by construc-
tion, provided we have already verified that the basic refac-
torings it uses do preserve such behavior.

4. Proving Correctness of Java Refactorings

4.1 Correctness of Push Down Method

Theorem 1. Applying PushDownMethod does not change
the output of the program:
run(Cl E) = run((Cl <-

PushDownMethod(CN, MN, TS)) E)
where Cl:Classes, E:Exp, CN,MN:Qid and TS:Types.

PROOF. Note that if the return value of precondsPush-
DownMethodHold is false, no changes are applied to the
set of classes Cl and the theorem trivially holds. Other-
wise, we know that there is a class named CN in Cl, that it
is abstract, it has a non-static method MN(TS) and has at
least one subclass. Let us call that subclass SubCN. Using
this information and by applying the equations in module
PUSH-DOWN-METHOD, we can derive the following:

Cl <- PushDownMethod(CN, MN, TS)
= ((md Class CN sp

{CMs (m T MN pl block)})
(mds Class SubCN sps {CMsub}) Cl’)

<- PushDownMethod(CN, MN, TS)
= (moveClassMemberMult((m T MN pl block),

(md Class CN sp
{CMs (m T MN pl block)}),

(mds Class SubCN sps {CMsub}))
removeAll(

(mds Class SubCN sps {CMsub}) Cl’,
(mds Class SubCN sps {CMsub})))

= ((md Class CN sp {CMs})
(mds Class SubCN sps

{CMsub (m T MN pl block)}) Cl’)

assuming variables md,mds,m:Modifier, sp,sps:Supers,
CMs,CMSub:ClassMembers, T:Type, pl:Parameters,
block:Block.

As described in Section 2, the operation run(Cl E)
creates the initial program State, which in turn creates a

continuation where the expression E is the next step to
execute. From there, it may eventually happen that the
method MN(TS) is called. If it is never called, the theorem
holds trivially. Otherwise, we know that MN(TS) cannot be
called on an instance of CN, because CN is abstract. There-
fore, let us assume that it is called on an instance of SubCN.
The semantics of a method call is formally specified with
the equations that appear in Figure 6. Upon an expression
(E . mn El), the semantics is to evaluate E to an ob-
ject of the form o(CT,CT’,oEnv), then evaluate the ar-
guments El to a list of values Vl, and as specified in the
second equation that appears in Fig. 6, call GetMethod to
obtain a MethodAux, which is a representation of a method
body to execute.

The key to proving this theorem lies in the operation
GetMethod, which before or after applying the refactoring,
should return the same MethodAux. We therefore need to
prove the following equality:

GetMethod(CT, mn, Vl,
((md Class CN sp {CMs (m T MN pl block)})
(mds Class SubCN sps { CMsub }) Cl’))

= GetMethod(CT, mn, Vl,
((md Class CN sp { CMs })
(mds Class SubCN sps

{ CMsub (m T MN pl block) }) Cl’))

which is easily proven by evaluation of the equations in Fig.
6. Moreover, the precondition that SubCN methods do not
call super.MN ensures that MN will not be searched start-
ing from CN.

Also, the precondition that the body of MN does not call
other methods using super ensures that no errors will occur
during the execution of MN.

4.2 Correctness of Pull Up Field

Theorem 2. Applying PullUpField does not change the
output of the program:
run(Cl E) = run((Cl <-

PullUpField(CN, FN)) E)
where Cl:Classes, E:Exp, and CN,FN:Qid.

PROOF. If the return value of precondsPullUpField-
Hold is false, no changes are applied to the set of classes
Cl and the theorem trivially holds. Otherwise, we know
that there is a class named CN in Cl, and that every sub-
class of CN defines FN but CN does not. Let us call SubCN
one of those subclasses. Using this information and by ap-
plying the equations in module PULL-UP-FIELD, we can
derive the following:

Cl <- PullUpField(CN, FN)
= ((md Class CN sp { CMs })

(mds Class SubCN sps
{CMsub (m T FN ;)}) Cl’)

<- PullUpField(CN, FN)

= (moveClassMemberMult((m T FN ;),
(mds Class SubCN sps

{CMsub (m T FN ;)}),
(md Class CN sp {CMs}))

removeAll((mds Class SubCN sps
{CMsub (m T FN ;)}) Cl’,

(mds Class SubCN sps
{CMsub (m T FN ;)})))

= ((md Class CN sp {CMs (m T FN ;)})
(mds Class SubCN sps {CMsub}) Cl’)

assuming variables md,mds,m:Modifier, sp,sps:Supers,
CMs,CMSub:ClassMembers and T:Type, besides the vari-
ables previously defined. Note that (m T FN ;) repre-
sents the declaration for field FN.

As described in Section 2, the operation run(Cl E)
creates the initial program State, which in turn creates a
continuation where the expression E is the next step to exe-
cute. From there, if an object of type CN is created, it will
have the additional field FN but it will not be used (assum-
ing we start from a correct program). So there will not be
any change in the functionality, and therefore in the output.

Let us suppose that an object of class SubCN is created.
We give a brief description of the semantics of object cre-
ation here and more details of the specification can be found
in [18]. The equation:
eq k((new CT (El)) -> K)

= k((El) -> newObj(CT) -> K).

specifies that when a ‘new’ expression is found, the se-
mantics is to first evaluate the arguments of the construc-
tor and then apply the operation newObj. The operation
newObj calls itself on each class in the hierarchy from CT
to Object, and once Object is reached, it stacks the op-
eration created in the continuation. The fields of each class
in the path from CT to Object are then ‘declared’, i.e., are
added to the environment. At the end of the field decla-
rations of each class, the names in the global environment
are moved to the current object environment. Let us then
apply the equations involved in the creation of an instance
of SubCN, assuming that the constructor does not take any
arguments and that the superclass of CN is Object. Other-
wise there would be extra steps involved below, but they do
not interfere with the outcome of our proof.

k((new SubCN ()) -> K)
= k(noVal -> newObj(SubCN) -> K)
= k(newObj(SubCN) -> endnew(...
= k(newObj(SuperClass(SubCN, Cl)) ->

newObj(SubCN) -> endnew(...
= k(newObj(CN)-> newObj(SubCN)-> endnew...
= k(newObj(SuperClass(CN, Cl)) ->

newObj(CN)->newObj(SubCN)->endnew...
= k(newObj(Object) -> newObj(CN) ->

newObj(SubCN) -> endnew...
= k(created-> newObj(CN) -> newObj(SubCN)

-> endnew...

eq k((E . mn El) -> K) = k((E, El) -> . (mn) -> K) .
eq c(k((o(CT, CT’, oEnv), Vl) -> . (mn) -> K), cnt), cl(Cl) =

c(k(GetMethod(CT’, mn, Vl, Cl) -> fn (o(CT, CT’, oEnv), mn, Vl) -> K), cnt), cl(Cl) .

op GetMethod : CType MName ValueList Classes -> MethodAux .
eq GetMethod(CT, mn, Vl, Cl) = GetMethod(GetMethods(CT, mn, Cl), Vl, Cl) [owise] .

--- first find all methods named mn and then filter by parameter types
op GetMethod : MethodList ValueList Classes -> MethodAux .
eq GetMethod((m(CT, Tl, pl, block), Ml), Vl, Cl) =

if Compatible(pl, Vl, Cl) then m(CT, Tl, pl, block) else GetMethod(Ml, Vl, Cl) fi .
op GetMethods : CType MName Classes -> MethodList .
eq GetMethods(CT, mn, Cl) = Compact(GetMethodList(CT, mn, Cl, Cl), Cl) .
op GetMethodList : CType MName Classes Classes -> MethodList .
eq GetMethodList(CT, mn, noClass, Cl’) = none .
eq GetMethodList(CT, mn, ((md Class Xc sp cb) Cl), Cl’) =

(if SuperOf(#c(Xc), CT, Cl’) then GetMethodList(CT, mn, #c(Xc), cb) else none fi), GetMethodList(CT,mn,Cl,Cl’) .
op GetMethodList : CType MName CType ClassBody -> MethodList .
eq GetMethodList(CT, mn, CT’, {CM}) = GetMethodList(CT, mn, CT’, CM) .
op GetMethodList : CType MName CType ClassMembers -> MethodList .
eq GetMethodList(CT, mn, CT’, noMember) = none .
eq GetMethodList(CT, #m(mc), CT’, ((md T mc pl block) CM)) =

(m(CT’, GetTypes(pl), pl, block) fi fi), GetMethodList(CT, #m(mc), CT’, CM) .
op Compact : MethodList Classes -> MethodList .
eq Compact((m(CT, Tl, pl, block), m(CT’, Tl, pl’, block’), Ms), Cl) =

Compact(((if SuperOf(CT, CT’, Cl) then m(CT’, Tl, pl’, block’) else m(CT, Tl, pl, block) fi), Ms), Cl) .

Figure 6. Semantics of a method call

At this point, the next equation will call the operation
newObj on the class CN and CN’s body, and a subsequent
equation will call newObj on SubCN and SubCN’s body.
Before the refactoring, the declaration for FN will be added
to the environment when SubCN’s body is processed. After
the refactoring has been applied, the declaration for FN will
be added to the environment earlier that before, when CN’s
body is processed, but since the environment is a commu-
tative data structure, the order of field declarations does not
change the semantics of the resulting object.

5. Conclusions

We have presented an executable formal specification of
three Java refactorings that were developed on top of the
formal specification of the Java programming language, and
we have given detailed proofs of correctness of two such
refactorings based on the underlying Java semantics. This
work shows how three important goals can be simultane-
ously achieved within the same framework: (1) formally
specifying refactorings for a language; (2) proving them
correct with respect to the language semantics; and (3) de-
riving a provably correct refactoring tool from the formal
refactoring specifications. However, this is work in progress
and further research is needed both for Java refactoring and
to make the technology more generic.

For Java, the obvious tasks ahead include: (i) extending
the current library of generic operations to facilitate the in-
troduction of new refactorings; (ii) extending the library of
basic refactorings to include most of the refactorings sup-
ported by other tools and entirely new ones, for example for
multi-threaded programs; (iii) developing formal proofs of

correctness for all those refactorings and also mechanized
versions of such proofs; (iv) developing a user interface for
the Java refactoring tool easing both refactoring application
and introduction of new user-defined refactorings; (v) inte-
grating this tool within the JavaFAN environment and ex-
perimenting with a substantial collection of case studies to
evaluate the tool in practice and compare it with other tools.

With the intention of generalizing our approach, we will
also work on introducing Maude strategies [10] in the def-
inition of refactorings. These strategies will help defining
generalized traversal mechanisms, like ASF+SDF traversal
functions [31] or Stratego strategies [32], simplifying re-
placement operations in refactorings like RenameTemp,
which currently requires one equation for each kind of state-
ment and each kind of expression in the language.

The semantics-based approach to refactoring is part of a
broader effort to base software tools on semantic definitions
(see [24, 14, 13, 12, 5, 8]). A key emphasis in this broader
effort is the development of generic techniques, that can be
applied to many concrete language instances. For example,
the same methodology applied here to Java has been ap-
plied in [19] to formally specify C preprocessor refactorings
and prove them correct. A longer-term goal is to develop a
generic library of provably correct refactorings, based on
modular semantic definitions of language features, so that a
correct refactoring tool for a given language will be derived
automatically from a modular semantics for it.

Acknowledgements. We would like to thank Ralf Sasse
for his help in this project. This research has been supported
in part by ONR Grant N00014-02-1-0715.

References

[1] Eclipse.org main page. http://www.eclipse.org.
[2] IntelliJ IDEA: the most intelligent Java IDE around.

http://www.intellij.com/idea/.
[3] jFactor. http://www.instantiations.com/jfactor/.
[4] Xrefactory for Java. http://xref-tech.com/xrefactory-

java/main.html.
[5] W. Ahrendt, A. Roth, and R. Sasse. Automatic Validation of

Transformation Rules for Java Verification against a Rewrit-
ing Semantics. In LPAR’05, Jamaica, 2005.

[6] P. Borba, A. Sampaio, A. Cavalcanti, and M. Cornélio. Al-
gebraic Reasoning for Object-Oriented Programming. Sci-
ence of Computer Programming, 52(1-3), 2004.

[7] P. Bottoni, F. P. Presicce, and G. Taentzer. Specifying Inte-
grated Refactoring with Distributed Graph Transformations.
In Proc. of AGTIVE 2003 (LNCS 3062), 2003.

[8] F. Chen, M. Hills, and G. Roşu. A Rewrite Logic Approach
to Semantic Definition, Design and Analysis of Object-
Oriented Languages. Technical Report UIUCDCS-R-2006-
2702, Univ. of Illinois at Urbana-Champaign, 2006.

[9] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and J. Quesada. Maude: specification and pro-
gramming in rewriting logic. Theoretical Computer Science,
285:187–243, 2002.

[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Olliet,
J. Meseguer, and C. Talcott. Maude Manual (Ver. 2.2).
http://maude.cs.uiuc.edu/maude2-manual/, 2005.

[11] M. Cornélio. Refactorings as Formal Refinements. PhD the-
sis, Univ. of Pernambuco, Brazil, 2004.

[12] A. Farzan, F. Chen, , J. Meseguer, and G. Roşu. Formal
Analysis of Java Programs in JavaFAN. In Int. Conf. on
Computer Aided Verification, Boston, Mass., 2004.

[13] A. Farzan and J. Meseguer. Partial Order Reduction for
Rewriting Semantics of Programming Languages. Tech-
nical Report UIUCDCS-R-2005-2598, Univ. of Illinois at
Urbana-Champaign, 2005.

[14] A. Farzan, J. Meseguer, and G. Roşu. Formal JVM Code
Analysis in JavaFAN. In Proc. of AMAST’04, 2004.

[15] B. Foote and W. Opdyke. Lifecycle and refactoring patterns
that support evolution and reuse. In Pattern Languages of
Program Design I. Addison-Wesley, 1995.

[16] M. Fowler. Refactoring. Improving the Design of Existing
Code. Addison-Wesley, 1999.

[17] A. Garrido. Java Refactoring in Maude.
https://netfiles.uiuc.edu/garrido/www/JavaRef/.

[18] A. Garrido and J. Meseguer. Formal Specification and Veri-
fication of Java Refactorings. Technical Report UIUCDCS-
R-2006-2731, Univ. of Illinois at Urbana-Champaign.
https://netfiles.uiuc.edu/garrido/www/publications.html,
2006.

[19] A. Garrido, J. Meseguer, and R. Johnson. Algebraic
Semantics of the C Preprocessor and Correctness of
its Refactorings. Technical Report UIUCDCS-R-
2006-2688, Univ. of Illinois at Urbana-Champaign.
https://netfiles.uiuc.edu/garrido/www/publications.html,
2006.

[20] G. Kniesel and H. Koch. Static composition of refactorings.
Science of Computer Programming, 52(1-3), 2004.

[21] R. Lämmel. Towards generic refactoring. In Proc. of Work-
shop on Rule-based Programming, 2002.

[22] T. Mens, N. V. Eetvelde, S. Demeyer, and D. Janssens. For-
malizing Refactorings with Graph Transformations. Journal
of Software Maintenance and Evolution, 17(4), 2005.

[23] T. Mens and T. Tourwé. A Survey of Software Refactoring.
IEEE Transactions on Software Engineering, 30(2), 2004.

[24] J. Meseguer and G. Roşu. The Rewriting Logic Seman-
tics Project. In Proc. of Structural Operational Semantics
(SOS’05), 2005.

[25] M. Ó Cinnéide. Automated Application of Design Patterns:
a Refactoring Approach. PhD thesis, Univ. of Dublin, 2001.

[26] W. Opdyke. Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[27] W. Opdyke and R. Johnson. Refactoring: An Aid in Design-
ing Application Frameworks and Evolving Object-Oriented
Systems. In Proc. of Sym. on OO Programming Emphasiz-
ing Practical Applications (SOOPPA’90), 1990.

[28] D. Roberts. Eliminating Analysis in Refactoring. PhD thesis,
University of Illinois at Urbana-Champaign, 1999.

[29] R. Sasse. Taclets vs. Rewriting Logic - Relating Semantics
of Java. Master’s thesis, University of Karlsruhe, 2005.

[30] L. Tokuda and D. Batory. Evolving object oriented designs
with refactoring. In ASE’99, 1999.

[31] M. van den Brand, P. Klint, and J. Vinju. Term Rewriting
with Traversal Functions. ACM Transaction on Software En-
gineering and Methodology.

[32] E. Visser. Program Transformation with Stratego/TX:
Rules, Strategies, Tools, and Systems in StrategoXT-0.9. In
Domain-Specific Program Generation. In: LNCS vol.3016.
Springer-Verlag, 2004.

[33] E. Visser. A Survey of Strategies in Rule-Based Program
Transformation Systems. Journal of Symbolic Computation,
40(1), 2005.

[34] M. Ward and K. Bennett. Formal Methods to Aid the Evolu-
tion of Software. Int. Journal of Software Engineering and
Knowledge Engineering, 5(1), 1995.

