
Formal Specification and 
Verification of Java Refactorings

Alejandra Garrido and José Meseguer
University of Illinois at Urbana-Champaign

SCAM’06
September 2006



Garrido - Meseguer. SCAM'06 2

Context

• Refactoring of Java programs and its 
formalization.

• Refactorings are small, usually interactive 
transformations that preserve program behavior. 
Refactorings improve code readability and 
extensibility, making it easier to reuse.



Garrido - Meseguer. SCAM'06 3

Motivation

1. Lack of formal specifications of refactorings, in 
terms of preconditions and transformation.

2. Lack of verification of refactoring correctness, 
i.e.,, there is generally no proof that a 
refactoring preserves behavior.



Garrido - Meseguer. SCAM'06 4

Maude provides us with:

• A framework for rewriting logic, which has been 
proved particularly suitable for source code 
transformations.

• A powerful way for specifying the syntax and 
semantics of programming languages.

• An interpreter that allows the direct execution of 
semantic specifications with high efficiency.



Garrido - Meseguer. SCAM'06 5

The Semantics of Java

• A rewrite theory (ΣJava, EJava, RJava), though we 
restrict ourselves to the equational theory 
(ΣJava, EJava)

• The syntax and semantics of Java are specified 
as a series of modules, each module 
concentrating on a particular language feature.



Garrido - Meseguer. SCAM'06 6

Using Maude for Refactoring

• We specify the refactorings with transformation 
rules in the form of Maude equations, based on 
the Maude specification of the syntax of Java.

• We prove the refactorings correct by reasoning 
about the Maude specification of the semantics
of the Java entity being transformed.

• We get a correct refactoring engine for free, 
because of the executability of Maude 
specifications.



Garrido - Meseguer. SCAM'06 7

Examples

• Push Down / Pull Up Method

• Push Down / Pull Up Field

• Rename Temporary



Garrido - Meseguer. SCAM'06 8

Conclusions

This work shows how three important goals can be 
simultaneously achieved within the same 
framework:

1. Formally specifying refactorings for a language;

2. Proving them correct with respect to the 
language semantics;

3. Deriving a provably correct refactoring tool from 
the formal refactoring specifications.



Garrido - Meseguer. SCAM'06 9

Future Work

• Extend the library of basic refactorings for Java, 
together with their proofs, trying to mechanize 
those proofs.

• Generalize the approach by using Maude 
strategies in the definition of refactorings.

• Develop a generic library of provably correct 
refactorings, based on modular semantic 
definitions of language features.


