
SMART C: A Semantic Macro Replacement Translator for C

Matthew Jacobs E Christopher Lewis
Department of Computer and Information Science

University of Pennsylvania
{mrjacobs,lewis }@cis.upenn.edu

Abstract

Programmers often want to transform the source or bi-
nary representations of their programs (e.g., to optimize,
add dynamic safety checks, or add profile gathering code).
Unfortunately, existing approaches to program transforma-
tion are either disruptive to the source (hand transforma-
tion), difficult to implement (ad hocanalysis tools), or func-
tionally limited (macros). We propose an extension to the
C programming language called the Semantic Macro Re-
placement Translator (SMART C). SMART C allows for
the specification of very general type-aware transforma-
tions of all operations, statements, and declarations of the
C programming language without exposing the program-
mer to the complexities of the system’s internal representa-
tions. We have implemented a prototype SMART C source-
to-source translator and show its use in transforming pro-
grams for buffer overflow detection, format string vulnera-
bility detection, and weighted call graph profiling. We show
that SMART C achieves a pragmatic balance between gen-
erality and ease of use.

1. Introduction

Programmers and users often want to transform the
source or binary representations of their C language pro-
grams in particular ways. For example, the performance
conscious would like to perform domain or application-
specific optimization without hard coding these optimiza-
tions into the source program, thus preserving the natu-
ral (unoptimized) program logic. Programmers sometimes
want to encode dynamic checks in programs to ensure cer-
tain dynamic properties (e.g., that an array is not accessed
beyond its bounds), and users often want to use dynamic
checks to prevent potentially buggy applications from com-
promising user or system integrity (e.g., by restricting sys-
tem calls). Transformation is also used to inject instrumen-
tation code in order to gather profile data about a program’s
dynamic behavior which is useful in guiding offline opti-
mization.

A variety of techniques exists to effect such transforma-

tions on C programs, but they are each limited in that they
are disruptive to the program source, beyond the reach of
typical programmers, or restricted in the transformations
they may describe. Hand transformation clearly suffers
from the first limitation. The most powerful approach to
program transformation is to augment an existing compiler,
such as GCC, to build anad hoctransformation tool. Un-
fortunately, this requires considerable time and expertise;
most programmers lack one or both of these. Binary and
dynamic rewriting tools (e.g., ATOM [24] and Pin [17]) are
powerful, but they cannot reliably transform source-level
constructs because some constructs (e.g., structure field ac-
cess) are not necessarily apparent at the instruction level.
Aspect-oriented programming (AOP) systems [14] are easy
to use, but existing AOP designs (even those applied to
C) are limited in the language-level constructs that may be
transformed. Finally, macro systems such ascpp andm4
are simple and easy to use, but they are very limited in the
transformations they may specify.

In this paper, we propose a modest extension to the C
programming language called the Semantic Macro Replace-
ment Translator for C (SMART C). Unlike token-based
macros (e.g., those ofcpp), semantic macros operate on the
abstract syntax of a program and are type aware. SMART C
allows for the transformation of any declarative or compu-
tational element of the C language without exposing the
internal representation of the compiler. As a result, pro-
grammers can freely transform variable and function dec-
larations, statements, and even primitive operations such
as arithmetic or logical operations. SMART C transfor-
mations can be predicated on both syntactic (e.g., variable
names) and semantic (e.g., variable types) properties of
the code. In addition, SMART C includes a limited form
of transformation-time evaluation that balances generality
and ease of use. Finally, the SMART C design preserves
the spirit of the C language, introducing little new syntax
and leveraging existing programmer intuition. In summary,
SMART C is powerful, general, compact, and easy to use.

In order to use SMART C, a programmer defines a
set of semantic macros (s-macros). S-macro expansion is
guided by patterns that determine what source-level con-

1

Source code: Transformed code:
float a, b, c; =⇒ float a, b, c;
a = b/c; a = b * (1.0/c);

Transformation specification:
around(FP % / FP %) {

return tc operand * (1.0/tc operand2);
}

(a) Floating point division transformation.

Source code: Transformed code:
int a[10]; =⇒ struct {int value[10];

bool isValid; } a;

Transformation specification:
around(decl(Integer[] %)) {

struct {tc type value; bool isValid; } tc name;
tc body;

}

(b) Array declaration transformation.

Figure 1. Example SMART C transformation specification and their effect on C source.

structs (e.g., floating point division and integer array dec-
laration) are to be transformed. When a pattern specified
in an s-macro matches a source-level construct, the macro
is expanded. For example, suppose we wish to transform
floating point division into multiplication of the numera-
tor and the reciprocal of the denominator. The s-macro to
achieve this appears in Figure 1(a). The pattern “FP % /
FP %” indicates that the s-macro should match all division
operations that have floating point operands. Thearound
keyword indicates that the macro body should replace the
division operation (versus being inserted before or after it).
The macro body computes the product as a function of the
values of the numerator expression (tc operand) and de-
nominator expression (tc operand2). Figure 1(b) illus-
trates the transformation of all integer array declarations to
structure declarations containing the original integer array
and a boolean flag.

This work makes the following contributions. We
present the design of a semantic macro system for C that
is simple (leveraging programmer intuition, requiring lit-
tle new syntax, avoiding exposing intermediate representa-
tions), powerful (useful and interesting transformations may
be specified), and concise (requiring very little SMART C
code to achieve useful transformations). We describe our
SMART C implementation and show its utility via three
case studies.

This paper is organized as follows. Section 2 defines
SMART C and describes its use. Section 3 presents the
implementation. Section 4 presents the application of
SMART C to three problems requiring source-level trans-
formation. The final two sections summarize related work,
offer conclusions, and suggest future work.

2. SMART C Design

SMART C macro expansion is a source-to-source trans-
formation guided by a set of user-specified transformation
specifications. Each transformation specification consists
of both semantic macros (s-macros) and (transformation-
local) auxiliary code and data declarations required by the
s-macros. S-macros consist of (i) a pattern describing the
expressions, statements, or declarations to be transformed,

(ii) a body containing code, and (iii) a modifier describing
how a matched expression, statement, or declaration is to be
transformed via the body. Each s-macro operates by finding
a pattern match with amatch sitein thebase code; the code
at the match site is transformed by the s-macro into thetar-
get code. Below we introduce the components of s-macros,
but space constraints preclude complete, manual-style pre-
sentation.

2.1. Patterns

An s-macro pattern is an abstract description of C
source-level primitives and can describe any expression,
statement, or declaration (variable or function). The match-
ing process matches on both the primitive (e.g., addition
or function call) and the types/names of the operands. For
example, the s-macro in Figure 1(a) only matches on divi-
sion of floating point operands. Patterns have three com-
ponents, each of which plays a role in pattern matching:
(i) a type specifying the type of an operand (e.g., a float-
ing point number), (ii) an expression specifying the name
of an operand (e.g., a function calledmalloc), and (iii) a
C language primitive (e.g., division or variable declaration).
Below, we describe each pattern component.

Pattern types. A pattern typespecifies the data type of
an operand in a pattern. In addition to all the C primitive
data types, pattern types may include any of the additional
(shaded) types appearing in the type hierarchy in Figure 2.
These additional types are only available in SMART C
code. Each pattern type in Figure 2 matches all C types in
the nodes beneath it, thus allowing for the concise specifica-
tion of a set of related types (e.g., all signed integers of any
precision). Derived types such as structs, pointers or arrays
may be created from these primitive types. In addition, the
Any type can be used to specify any possible type, includ-
ing derived types. TheAny type may also be refined, as in
the case of the pattern typeAny * , which matches pointers
to any type. The syntax of pattern types is borrowed directly
from the C language.

Pattern names. A pattern namespecifies the name of an
operand in a pattern. This includes variable and function

2

Primitive
Number void

Integer

Signed
Int

Unsigned
Int

FP

long
double double float

unsigned
char

unsigned
int

unsigned
short

unsigned
long

char int shortlong

Figure 2. Primitive type hierarchy used for
matching in SMART C.

names as well as literals. Names may include the wildcard
character%, which matches any number of characters. For
example, the pattern name%alloc would match calls to
both malloc andcalloc . Pattern names can also rep-
resent literals by using quotes. The literals matched will
depend upon the pattern type (above). For example, if the
pattern type is Integer, then"1" refers to the integer literal
1, while "%" refers to any integer literal. Although general
regular expressions would provide additional flexibility be-
yond our wildcard character, we have not found a need for
this generality.

Pattern primitives. A pattern primitivespecifies the C
language primitive that the pattern should match. Pattern
primitives are built from names and types (specifying the
name and types of the primitive operands, where applica-
ble), and can represent C expressions, statements, or decla-
rations. The syntax of pattern primitives, again, is borrowed
from the C language itself. For example, the pattern in the
s-macro of Figure 1(a) matches division primitives; the two
type/name operands specify that we should only match if
the division operands are floating point values of any preci-
sion with any name.

SMART C provides pattern primitives for all arithmetic,
comparison, and logical operators, in addition to other prim-
itive operations of the C language (dereference, address-of,
array access, struct access, function call). SMART C pro-
vides pattern primitives representing sets of related C prim-
itives, thus allowing for the specification of more generic
patterns. For example, theBinop primitive matches all
binary operations andUnop matches all unary operations.
These abstract primitives are further refined based on their
potential return types.

Statement patterns (if , ifelse , switch , while ,
dowhile , for) do not require any pattern types or names
(i.e., anif pattern will match allif statements indepen-
dent of the type of its predicate expression or structure of its

body). We have not found a need for more selective match-
ing.

Declaration patterns match either variable or function
declaration. There our four kinds of variable declara-
tion patterns: decl , globaldecl , localdecl , and
formaldecl . Thedecl pattern matches all variable dec-
larations, while the remaining three match global, local, and
formal parameter declarations, respectively.

SMART C also contains the boolean patternsnot , and ,
andor that combine multiple patterns, which have the nat-
ural interpretation. This admits, for example, patterns that
match additions in whicheitheroperand is a pointer type.

2.2. Modifiers

An s-macromodifier describes how the s-macro body
should be inserted at the match site. The modifier may take
on the values ofbefore , after , or around (terms bor-
rowed from aspect-oriented programming [14]), indicating
whether the body of the s-macro should be inserted before,
after, or instead of, respectively, the matching expression,
statement, or declaration. The method by which bodies are
inserted is described in the next section.

2.3. Bodies

An s-macrobodydefines the code that is to be inserted
(according to the modifier) into the program (at the match
site). The body simply consists of C code, augmented with
SMART C-specific variables and syntax that allow the body
to be parameterized based on the context in which it is in-
serted.Context variablesdescribe properties of the matched
expression, statement, or declaration; andtransformation-
time controlallows for the body to be customized based on
these properties.

Context variables. Context variables are placeholders for
values, names, declarations, code, or operations that are
part of the matching expression, statement, or declaration.
Context variables allow the body code to be parameterized
based on properties of the match site. Each context variable
is recognized by the “tc ” prefix (“this context”). Since
context variables appear only in SMART C code, the usage
of variables beginning with “tc ” in C is unrestricted. Ta-
ble 1 shows the context variables available for each type of
pattern (although we will see that the context variables in
parentheses are not defined for all bodies).

The context variables that are available in a particular
body are determined by the properties of the match site,
which are apparent from the pattern associated with the
body. Thetc func context variable always denotes the
function in which the match site is located.

Expression patterns are created out of operands and an
operation. The value of the expression which matches
the pattern can be accessed bytc expr . Each operand
can, in general, be an arbitrary expression with some

3

Pattern: Available Context Variables:
Expression tc expr , tc operand , tc type ,

(tc operand2), (tc type2), tc operation ,
tc rettype , (tc args), (tc numargs),
tc func

Statement tc stmt , tc expr , (tc expr2), (tc expr3),
tc block , (tc block2) , tc func

Declaration tc declscope , tc name, tc type , tc decl ,
tc body , (tc args), tc func

Table 1. Context Variables.

type. The type and value of the expression that are
matched on are accessed through thetc type and
tc operand context variables. For unary operations,
there will be one set of type and expression context vari-
ables (tc type , tc operand), and binary operations
will have two sets (tc type , tc operand , tc type2 ,
tc operand2). The operation is accessed by calling the
tc operation function. The result type of the operation
is denoted bytc rettype . If the expression is a func-
tion call, then the argument list is denoted bytc args .
This is an array of arguments, each possessing type and
expression information. For example, the context variable
tc args[1].expr is a placeholder for the value of the
second argument to the function. The number of argu-
ments to the function is denoted by the context variable
tc numargs .

Statement patterns match control-flow statements. The
statement matched by the pattern may be accessed by
tc stmt . In each control-flow statement, there is an ex-
pression or series of expressions to be evaluated and con-
trol goes to a block of statements based upon the expres-
sion value. These expressions are denoted by thetc expr
context variables, and the code blocks are denoted by the
tc block context variables. For example, an if-else state-
ment possesses one expression to evaluate, and a choice of
two code blocks to be conditionally executed. The context
expressionstc expr , tc block , and tc block2 will
be available to use in the transformation body.

Declaration patterns match variable or function declara-
tions. Each variable declaration is associated with a state-
ment block, logically giving each declaration its own scope.
The context variabletc declscope is used to denote
the combination of the declaration and its associated code
block. The declaration itself is denoted bytc decl and
the associated code block bytc body . The type and
name of the declared variable are denoted bytc type and
tc name. For function declarations, the context variables
tc type and tc name denote the return type and func-
tion name respectively. In this case, the function body is
represented bytc body , and the function prototype by
tc decl . As in the function call case, the arguments can
be accessed though thetc args context variable.

It is often useful to have the textual representation of

that which a context variable represents. For example,
supposetc operand represents some match site variable
counter . It is useful to make the string"counter"
available to the transformation body. This is achieved by
preceding any context variable with a dollar sign. In this
example, we could include the following code in our body:
fprintf(log, $tc operand) .

Transformation-time control. Like context variables,
transformation-time control constructs are a SMART C-
specific construct that can appear within s-macro bodies.
The three possible transformation-time control constructs
are IF-ELSE , FOR, and SWITCH. These statements are
formed in the same way as their C counterparts. However,
they are restricted in what they may contain so that they may
be evaluated at transformation-time.

The IF and IF-ELSE constructs selectively include
code in the target program based on the value of a predi-
cate (i.e., the predicate is evaluated at transformation time
and either the then or the else statement is included in the
target code). The predicate must be a transformation-time
constant expression, consisting of C literals, context vari-
ables, any C operation, and the functional subset of the
string library. A simple example adapted from Engler [11]
appears in Figure 3. If a non-reentrant function is called
from within a signal handler (by convention named with a
“sig ” prefix), the transformation results in an error and
program termination. This s-macro matches all calls to non-
reentrant functions (justnonreentrant() in this exam-
ple). SMART C also provides transformation-time dis-
play (PRINTF()) and termination (EXIT()) operations
that could be used in this example to report the same er-
ror at transformation time.PRINTF() andEXIT() can-
not be nested within C control flow, but appearing within
transformation-time control flow is allowed.

Unlike the Cfor loop, the SMART CFORloop must
iterate a transformation-time constant number of iterations,
requiring that (i) the initializer must be a simple assignment
of an integer transformation-time constant, (ii) the com-
parator must compare the induction variable to an integer
transformation-time constant, and (iii) the incrementor may
increment or decrement the induction variable by an inte-
ger transformation-time constant. During transformation,
the number of iterations is computed and the loop is fully
unrolled.

Similarly, theSWITCHstatement must be governed by a
transformation-time constant expression. Although this ex-
pression may be any transformation-time constant expres-
sion, expressions representing C types will be particularly
useful, allowing for the insertion of type-specific code dur-
ing transformation. An example (also adapted from En-
gler [11]) exploiting both theFORandSWITCHstatements
appears in Figure 4. In this example, the programmer calls
an output(...) function in the base code that is type-

4

before(Any nonreentrant()) {
IF(strncmp($tc_func,"sig_",4) == 0)
{

printf("Sig handling error");
exit(1);

}
}

Figure 3. S-macro using IF .

around(void output(...)) {
char typeString[] = {0};
FOR(int i=0; i<tc_numargs; i++) {

SWITCH(tc_args[i].type) {
CASE FP:

strcat(typeString, "%f"); break;
CASE Char *:

strcat(typeString, "%s"); break;
CASE Any *:

strcat(typeString, "%p"); break;
...
}

}
printf(typeString, tc_args);
}

Figure 4. S-macro using FORand SWITCH.

unaware. This function call is transformed to an appropriate
type-dependentprintf() call.

The above transformation-time control allows s-macro
bodies to be parameterized based on the context of the
match site, yet they remain easy to reason about for both
the compiler (enabling static type checking) and program-
mer. We have considered more general computation (e.g.,
including transformation-time variables), but we have not
yet found a pressing need for it.

2.4. Discussion
SMART C presents a simple model of transformation

to programmers. In order to leverage the user’s intuition
from the C language and obviate the need to learn internal
representations, programmers can only define patterns that
match single primitives in the language (e.g., binary oper-
ations, function calls, declarations, etc.). SMART C users
can build patterns that match the operations or operands in
complex expressions (e.g.,a + b + c), but they cannot
match the whole expression. SMART C sacrifices this gen-
erality for three reasons: (i) the resulting language is much
simpler from a user’s perspective, (ii) the practical limita-
tion is minimal because multi-primitive patterns are fragile
in that they are tied to particular programming idioms, and
(iii) we find that the resulting language is still quite useful
and powerful.

S-macro bodies are type checked to ensure that if the
pattern they contain match any base code construct, the re-
sulting target code with be type correct (as far as the C lan-
guage is concerned). S-macros may be type checked inde-
pendent of the code to which they are applied because types

(or classes of types) are statically apparent from the s-macro
itself. The general procedure for type checking is identical
to C type checking except that context variables can take
on multiple types. This set of types is determined from the
pattern associated with the s-macro. The type checker con-
servatively assumes the context variables may have any of
these types and rejects programs that may violate C’s typing
rules.

3. Implementation

This section describes how pattern matching and s-
macro expansion are realized. We also summarize the cur-
rent implementation status.

3.1. Pattern Matching

Pattern matching determines which match sites will be
transformed by SMART C. Once a transformation specifi-
cation has been defined, SMART C inserts all variables and
functions that were declared at the top level of the transfor-
mation specification. Then, SMART C must perform pat-
tern matching to determine where to apply the s-macros.
First, the SMART C pattern matcher walks though the list
of declarations in the program, attempting to match each
against any of declaration patterns, if present. If a match
is found, both the declaration and associated code block
are transformed accordingly. An example of this can be
found in Figure 7(a). The SMART C pattern matcher then
walks through the AST corresponding to the source code
and examines each statement. If this statement matches a
statement pattern, the transformation is applied at this time.
Finally, the expression matching is performed by doing a
bottom-up walk over the syntax tree of this statement. Each
operation is checked for a match against all expression pat-
terns, and a transformation is applied if a match is found. In
each case, the pattern is considered a match only when the
pattern primitive matches as well as any expression, name
or type information embedded within the pattern matches as
well.

Each transformation specification operates indepen-
dently of all other transformation specifications. Multiple
transformation specifications can then be composed, with
each transformation specification being applied in full be-
fore the next may begin. This allows transformation speci-
fications to be modular, as is unaware of the operation of
any other transformation specifications. For example, a
programmer could write a transformation specification that
added null pointer checks, as well as one that logged all
function calls. These could be written separately, and ap-
plied in either order, with the according semantics.

For each transformation specification, each source code
primitive may match and be transformed by at most one s-
macro. This requires that some ordering be imposed upon
the s-macros, and that only the first match of some source

5

code primitive be transformed. SMART C processes the
s-macros in the order the programmer has arranged them
in the source file. This gives the programmer flexibility to
determine how s-macros should be applied.

3.2. Code Transformation

Once SMART C has found a pattern match, it must deter-
mine the transformation to apply to the match site. SMART
C must resolve both the transformation-time control con-
structs and context variables that appear in the transforma-
tion body. All of the context variables may be determined
statically by examining the match site. Each context vari-
able is replaced by the appropriate variable, type, operation,
expression, declaration or code block, as described above.

Expression transformation. An expression may be trans-
formed by a s-macro using thebefore , after , or
around modifiers. Since the expression is part of a state-
ment, it is desirable to isolate this expression from the rest
of the statement for transformation purposes. To do this,
SMART C creates a temporary variable of the expression’s
type and replaces the appearance of the expression at the
match site with this temporary variable.

If the transformation modifier isbefore or after , a
new statement is created that assigns the matched expres-
sion into the temporary variable from above. At this point,
the macro body (with context variables replaced, as above)
is inserted before or after the newly created statement. An
example is shown in Figure 5(a).

If the modifier isaround , the expression will be re-
placed by the result of the macro body. In this case, the
macro body must contain a return statement which specifies
a value of the same type as the matched expression. This
expression is assigned into the temporary variable described
above, and the macro body is inserted before this statement.
An example is shown in Figure 5(b).

Statement transformation. A statement may be trans-
formed by a s-macro using thebefore , after , or
around modifiers. If the modifier isbefore or after ,
the macro body is inserted directly before or after the match
site. If the modifier isaround , then the statement is re-
placed with the macro body. Examples of each are shown
in Figure 6.

Declaration transformation. A declaration may be trans-
formed by a s-macro using thebefore , around , or
after modifiers. This pattern matches on the declara-
tion and its associated scope, and may replace or add to the
declaration and the associated code. The modifiers specify
where code is added so that abefore s-macro will add
declarations before the match site and code before the as-
sociated scope. Theafter andaround cases are similar.
An example of changing a variable declaration has already
been presented in Figure 1(b). Examples demonstrating an-

other transformation of a variable declaration and the body
of a function declaration are shown in Figure 7.

3.3. Implementation Status

SMART C is implemented as a source-to-source trans-
lator. SMART C takes as input one file containing an arbi-
trary number of transformation specifications, and any files
containing source code that the user wishes to transform.
SMART C outputs the transformed versions of each of these
source files.

Our SMART C implementation has been built using the
C-Breeze compiler infrastructure [16]. C-Breeze provides a
number of predefined phases and allows for custom phases
to be built. Our implementation uses four phases. First,
the source code and the transformation specification are dis-
mantled using C-Breeze’s built-in dismantler, resulting in a
three-address-code-like intermediate representation. Then,
we parse the transformation specification(s). The next
phase walks through the dismantled AST to search for C
constructs which match a pattern. Upon a pattern match, the
transformation body is expanded and applied to the match
site as discussed in the previous section. The final phase
is a predefined phase which “undismantles” the code and
converts it to a higher-level, more readable version, which
serves as the output.

4. Applications

This section demonstrates the use of SMART C across
a wide variety of application domains. Space constraints
preclude the presentation of complete transformation spec-
ifications, so we instead describe only the most important
s-macros.

4.1. Buffer Overflow Detection

Recently, there has been a great amount of work done
to make C programs safe with respect to buffer overflows.
Buffer overflows are possible in C because no explicit
bounds-checking occurs. Hackers have found numerous
ways to construct malicious input which subverts control
of the system by overwriting critical control areas through
the use of carefully constructed strings which overwrite
unchecked buffers in C code. There are a variety of solu-
tions to this problem; we will examine two here. Both of
the solutions have been proposed and implemented previ-
ously by modifying a compiler. We will show that SMART
C provides a way to offer this functionality without having
to deal with the complexity of compiler internals.

The first buffer overflow detection mechanism we con-
sider is SafeC [2]. SafeC is a program transformation
that changes the representation of pointers to “fat pointers,”
which are C structures that contain spatial and temporal at-
tributes. This transformation requires that every use of a
pointer must be transformed to update or check this pointer
metadata appropriately.

6

Source code: Transformed code:
int *ptr, result; =⇒ int *ptr, *temp, result;
ptr = (int *) ptr = (int *)

malloc(sizeof(int)); malloc(sizeof(int));
result = *ptr; if (ptr == 0)

error("NULL DEREF");
temp = ptr;
result = *temp;

S-macro:
before(*Any* %) {

if (tc operand == 0) error("NULL DEREF")
}

(a) Before transformation on dereference expression.

Source code: Transformed code:
int a, b; =⇒ int a, b;
a = b * 2; a = b << 1;

S-macro:
around(Integer % * "2") {

return tc operand << 1;
}

(b) Around transformation on multiply expression.

Figure 5. Example SMART C expression transformations.

Source code: Transformed code:
if (x > 0) =⇒ printf("Test %s",

foo(x); "x > 0");
if (x > 0)

foo(x);

S-macro:
before(if) {

printf("Test %s", $tc expr);
}

(a) Before transformation on if statement.

Source code: Transformed code:
for(i=0; i < 10; i++) =⇒ i = 0;
{printf("i=%d", i); while (i < 10) {

} printf("i=%d", i);
i++; }

S-macro:
around(for) {

tc expr;
while(tc expr2) {

tc block;
tc expr3; }

}

(b) Around transformation on for statement.

Figure 6. Example SMART C statement transformations.

Source code: Transformed code:
int a; =⇒ int a;
foo(); add object(a);

foo();
del object(a);

S-macro:
around(decl(Integer %)) {

tc decl;
add object(tc name);
tc body;
del object(tc name);

}

(a) Around transformation on variable declaration.

Source code: Transformed code:
foo(int a, float b) =⇒ foo(int a, float b) {
{ do stuff(); } init table();

do stuff();
delete table(); }

S-macro:
around(decl(Any %(...))) {

tc decl {
init table();
tc body;
delete table(); }

}

(b) Around transformation on function declaration.

Figure 7. Example SMART C declaration transformations.

7

In SMART C, these transformations are easy to express.
The SafeC system has been implemented via SMART C us-
ing fifteen transformations, requiring 150 lines of code (ex-
cluding the C runtime library routines). The most important
SMART C-based SafeC transformation is the conversion
of pointer declarations to fat pointers. The transformation
specification to achieve this appears in Figure 8. Each oper-
ation that performs pointer arithmetic is modified to update
the correct SafePtr components. Assignments to pointers
must also reflect the new SafePtr representation. Pointer
creation through amalloc call or the ‘&’ operation must
generate pointer attributes to place in the SafePtr represen-
tation. The transformation of pointer dereferencing does
not change the semantics of dereference, but inserts checks
to ensure the spatial and temporal attributes of the pointer
result in a valid dereference. Finally, each function body
must be transformed to include prologue and epilogue code
to generate and discard scoping information, which is used
by the SafePtr representation to update and verify its tem-
poral attributes.

The second buffer overflow detection mechanism real-
ized with SMART C is a technique proposed by Ruwase and
Lam [20] named CRED (C Range Error Detector). CRED
does not change the pointer representation; rather, it keeps
object metadata in an auxiliary runtime table, and checks
each pointers’ value against this table to verify its validity.
This involves adding bounds information about each object
in the program to the table, and updating it appropriately
when objects are deallocated.

These transformations are easy to describe in SMART
C. The object table, out-of-bounds (OOB) table, and helper
functions which provide an interface to modify the tables
are provided at the top level of the transformation specifica-
tion. Objects must be inserted into the object table for each
object (non-pointer) declaration and each call tomalloc .
The code for themalloc case is shown in Figure 9. These
objects are deleted upon the termination of a scope or a call
to free , respectively. The only remaining set of transfor-
mations to make is to update the tables appropriately and
to perform checks upon pointer dereference. The transfor-
mation for binary operations where the left-hand side is a
pointer is shown in Figure 10.

4.2. Format String Vulnerability Detection

Programs written in C are also subject to format string
attacks. These attacks are implemented by giving the pro-
gram a string which will be passed toprintf as a for-
mat string. This string can be formed in a particular way
to use it’s % directives to write an arbitrary value to mem-
ory. Format string vulnerabilities are possible in C because
no checking is performed to ensure that the format string
contains % directives that match the number and types of
further arguments passed toprintf .

typedef struct {
void * value;
void * base;
unsigned size;
enum {Heap, Local, Global} storageClass;
int capability;

} SafePtr;

around(decl(Any * %)) {
SafePtr tc_name;
//make all ptrs into SafePtrs
tc_body;}
//keep body the same

}

Figure 8. SafeC s-macro that transforms
pointer declaration to fat pointer declaration
translation.

around(Void* %alloc(...)) {
tc_rettype ptr;
ptr = tc_expr;

//ptr stores result of malloc
add_object(ptr, tc_args[0].expr);

//add (address, size) to object table
return ptr;

//return address
}

Figure 9. CRED s-macro that transforms
malloc call to allocation plus object inser-
tion.

around(and(BinOp(Any * %, Any %),
not(BinOp(Any * %, Any * %))) {
//matches all expr of form : ptr (op) non-ptr

tc_type base;
tc_rettype result, retval;
result = tc_operation(

get_oob(tc_operand), tc_operand2);
//look up ptr in OOB, do original operation

if (check_ptr(result)) retval=result;
//nothing to do if object is inbounds

else
retval = add_oob(result, base_obj(tc_operand));
//if OOB, add (address,base) to OOB

return retval; //return result of computation }

Figure 10. CRED s-macro that transforms a
binary operation to use object and OOB table
information.

8

before(Int printf(...) {
char * formatStr = tc_args[0].expr;
int numPercent = parse(formatStr);
if (numPercent > tc_numargs-1)
{

printf("Attack detected!");
exit(1);

}
}

Figure 11. FormatGuard s-macro that trans-
forms calls to printf to check the number
of arguments.

FormatGuard [7] detects many forms of this attack by
dynamically ensuring that the number of arguments to
printf() are the same as the number of%directives in
the format string. While FormatGuard usescpp to effect
this transformation, SMART C admits a much simpler spec-
ification (Figure 11).

Alternatively, format string vulnerabilities can be stati-
cally detected. Shankar et al. use type qualifiers (specif-
ically tainted) to discover when format strings are de-
rived from user-supplied input [21]. SMART C can gener-
ate code to dynamically compute the same thing. To achieve
this, taintedness information is maintained and propagated
for each string, and all strings used as format strings are
checked to ensure that they are not tainted. This transfor-
mation is similar to Safe C, in that SMART C changes the
representation of strings to include a taintedness bit, and
each access to a string must be transformed in the obvious
manner.

4.3. Weighted Call Graph Construction

A useful tool in profiling applications is a call graph.
Call graphs encode the control flow between functions by
counting how many times and from where each procedure
gets called dynamically. A call graph must be built by ob-
serving the program run over some data set. Then, the func-
tion calls present in this instance of the executed program
are stored somewhere and analyzed afterward.

This is a simple application to implement using SMART
C. Themain function is augmented with code to initialize
a global data structure as its prologue, and code to calculate
the call graph from the global data structure as its epilogue.
Internally, pairs of (caller, callee) functions are stored in a
hash table and associated with a count. For each occurrence
of a (caller, callee) pair, the count is incremented. Each
function body is transformed to begin with an update to the
hash table that stores thecalleename. Each function call
is transformed to also include an update to the hash table
that stores the call site. Upon termination of the program,
there will be a sequence of pairs of function names (caller,
callee) with an associated count . From this information, it

is simple to construct the weighted call graph.

5. Related Work

Code transformation approaches may be distinguished
by the representations on which they operate. Below we
summarize systems that operate on the token stream, the
abstract syntax tree, or the machine code of a program.

Syntax-based patterns.Transformation systems which op-
erate on the syntactic structure of C code have more ex-
pressiveness than token-based transformations, and allow
transformations to be architecture-independent, unlike bi-
nary translators. SMART C provides the ability to match
and transform primitives of the C language.MAGIK [11]
provides a library to access AST primitives and transform
them. Unlike SMART C, traversals over the AST must be
explicitly performed by the programmer.

Systems exist that are able to match and transform ar-
bitrary ASTs. These transformations are sensitive to pro-
grammer idioms, and may be more brittle than transfor-
mations on primitives. Moreover, writing transformational
code is harder for these systems since there are more pieces
of the AST to reason about. The Code Transformation
Tool (ctt) [4] is an example of such a system. TheStrat-
ego[25] system uses term rewriting to express transforma-
tions.ASTLOG[8] uses a Prolog variant as a transformation
language.

Transformation systems may also operate on keywords
introduced by the programmer that will expand into C code.
ASTEC[18] is a system which operates on code that has not
yet been pre-processed, and is designed to be a replacement
for cpp . As cpp does,ASTECmatches on keywords in-
troduced by the programmer, and is therefore inappropriate
for applying transformations to preexisting base code. Like-
wise, theMS2 (Meta Syntactic Macro System) [26] uses a
language that may access pieces of the AST directly and use
them in code expansion.

Aspect-oriented programming (AOP) [14] is a general
framework for expressing crosscutting concerns in a modu-
lar fashion. The most well-known versions areAspectJ[13]
and AspectC++ [23]. These systems allow programmers
to match and transform method calls and variable access,
and refine the match sites by further matching upon dy-
namic control flow information. The transformations are
performed at compile-time in the form of a source-to-source
transformation. Many systems have brought AOP con-
cepts to C, includingAspectC[5], c4 [27], Aspicere[1],
Arachne[10] and TinyC [28]. These systems all provide
the ability to match on function calls, and in some cases
variable access and dynamic control flow information. We
argue that SMART C patterns made up of all primitive op-
erations of C allow a more expressive set of transformations
than solely function calls. In fact, the dynamic control flow
matching provided in some of these languages can be ex-

9

pressed as a transformation specification in SMART C, ob-
viating the need for a special language construct.

Token-based patterns. Transformation tools that reason
about a token representation of base code include thecpp
andm4macro systems. These tools suffer from the disad-
vantage that no contextual information is available about the
match site. Furthermore, subtle errors may be introduced
due to precedence and side-effects that are not obvious from
the macro code.

Binary-based patterns.Systems that operate on the binary
representation of the program are designed with a different
set of goals than systems which operate on ASTs. They aim
to provide a machine-specific transformation capability, at
the loss of semantic information (such as types), potential
optimization opportunities, and portability across architec-
tures. ATOM [24] andEEL [15] are examples of compile-
time transformation systems which operate on the binary
representation of the program. There are also a variety of
run-time transformation systems which allow programmers
hooks into the binary representation of a program, some ex-
amples includeDynamo[3], Pin [17], andDISE[6].

Metaprogramming. The concept of transformation-time
control in SMART C (IF-ELSE, FOR, SWITCH) is an
instance of metaprogramming. Other metaprogramming
systems include Template Haskell [22] and the Scheme
language [12]. Metaprogramming allows programmers to
write code which produces other code. Many metapro-
gramming systems, such astcc [19], allow this metacode
to be arbitrary. In general, this makes code written in a
metaprogramming language to be difficult to reason about.
SMART C provides only a limited set of language con-
structs to produce code at transformation-time. Again, this
is an example where SMART C attempts to limit the com-
plexity of transformational code, while still maintaining
enough power to express meaningful transformations.

6. Conclusion and Future Work

We have introduced semantic macros to the C program-
ming language via SMART C (Semantic Macros Replace-
ment Transformer for C). Our SMART C extensions allow
for far more transformation power than traditional C macro
systems because (i) type information is used the pattern
matching/replacement process, (ii) any C language prim-
itive may be transformed, and (iii) our macro bodies are
highly parameterizable. We show the use of SMART C in
several practical contexts (buffer overflow detection, format
string vulnerability detection, and call graph profiling), and
we find that powerful transformations can very simply and
succinctly be represented with SMART C.

Although our experience with SMART C has been very
positive and we’ve found it to be quite powerful despite its
simplicity, we believe its generality can be further enhanced

without unduly compromising ease of use. In particular, we
intend to introduce limited context sensitivity so that the
pattern matching and transformation process may be modi-
fied based on the enclosing control structures or properties
of the previously transformed code or declarations. For ex-
ample, this would allow us to transform variable references
based upon how the declarations of these variables are trans-
formed. In addition, we intend to explore multi-stage trans-
formations and user-provided annotations for communicat-
ing between them. This would allow complex transforma-
tions to be broken into components (phases, each of which
transforms the code in some manner) so that the transfor-
mation of later phases is guided in part by annotations left
on the code by earlier phases. Finally, we will pursue the
use of limited data-flow properties in the matching and re-
placement process.

References
[1] B. Adams and T. Tourẃe. Aspect Orientation for C: Express your-

self. InProceedings of the 3rd Software-Engineering Properties of
Languages and Aspect Technologies, 2005.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient Detection
of All Pointer and Array Access Errors. InProceedings of the ACM
SIGPLAN 1994 Conference on Programming Language Design and
Implementation, pages 290–301, 1994.

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transpar-
ent Dynamic Optimization System. InProceedings of the ACM
SIGPLAN 2000 Conference on Programming Language Design and
Implementation, pages 1–12, 2000.

[4] M. Boekhold, I. Karkowski, and H. Corporaal. Transforming and
Parallelizing ANSI C Programs Using Pattern Recognition. InPro-
ceedings of HPCN Europe 1999, the 7th International Conference
on High-Performance Computing and Networking (Lecture notes in
computer science 1593), pages 673–682, 1999.

[5] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to
Improve the Modularity of Path-Specific customization in operating
system code. InFoundations of Software Engineering, 2001.

[6] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A Programmable
Macro Engine for Customizing Applications. InProceedings of the
30th Annual International Symposium on Computer Architecture,
pages 362–373, 2003.

[7] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman. For-
matGuard: Automatic Protection Fromprintf Format String Vul-
nerabilities. InProceedings of the 10th 2001 USENIX Security Sym-
posium, 2001.

[8] R. F. Crew. ASTLOG: A Language for Examining Abstract Syn-
tax Trees. InProceedings of the USENIX Conference on Domain-
Specific Languages, 1997.

[9] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and J. A.
Fisher. DELI: A New Run-Time Control Point. InProceedings of
the 35th Annual ACM/IEEE International Symposium on Microar-
chitecture, pages 257–268, 2002.

[10] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Segura-
Devillechaise, and M. Sudholt. An expressive aspect language for
system applications with Arachne. InProceedings of the 4th In-
ternational Conference on Aspect-oriented software development,
2005.

[11] D. R. Engler. Incorporating application semantics and control
into compilation. InProceedings of the USENIX Conference on
Domain-Specific Languages, 1997.

[12] R. Kelsey, W. Clinger, and J. R. (Editors). Revised5 report on the
algorithmic language Scheme.ACM SIGPLAN Notices, 33(9):26–
76, 1998.

10

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An Overview of AspectJ. InProceedings of the European
Conference on Object-Oriented Programming, 2001.

[14] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In
M. Akşit and S. Matsuoka, editors,Proceedings of the European
Conference on Object-Oriented Programming, volume 1241, pages
220–242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[15] J. R. Larus and E. Schnarr. EEL: Machine-Independent Executable
Editing. InProceedings of the ACM SIGPLAN 1995 Conference on
Programming Language Design and Implementation, pages 291–
300, 1995.

[16] C. Lin, S. Z. Guyer, and D. Jimenez. The C-Breeze Compiler In-
frastructure. Technical Report TR-01-43, The University of Texas
at Austin, November 2001.

[17] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building Cus-
tomized Program Analysis Tools with Dynamic Instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 190–200, 2005.

[18] B. McCloskey and E. Brewer. ASTEC: A New Approach to Refac-
toring C. InProceedings of European Software Engineering Con-
ference/Foundations of Software Engineering, 2005.

[19] M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A System for
Fast, Flexible, and High-level Dynamic Code Generation. InPro-
ceedings of the ACM SIGPLAN 1997 Conference on Programming
Language Design and Implementation, pages 109–121, 1997.

[20] O. Ruwase and M. S. Lam. A Practical Dynamic Buffer Overflow
Detector. InProceedings of the Network and Distributed System
Security Symposium, pages 159–169, 2004.

[21] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting For-
mat String Vulnerabilities with Type Qualifiers. InProceedings of
the 10th 2001 USENIX Security Symposium, 2001.

[22] T. Sheard and S. P. Jones. Template Meta-programming for Haskell.
In Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell,
pages 1–16, 2002.

[23] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: An
Aspect-Oriented Extension to C++. InProceedings of the 40th
International Conference on Technology of Object-Oriented Lan-
giages and Systems, 2002.

[24] A. Srivastava and A. Eustace. ATOM: A System for Building Cus-
tomized Program Analysis Tools. InProceedings of the ACM SIG-
PLAN 1994 Conference on Programming Language Design and Im-
plementation, pages 196–205, 1994.

[25] E. Visser. Program transformation with Stratego/XT: Rules, strate-
gies, tools, and systems in StrategoXT-0.9. In C. Lengauer et al.,
editors,Domain-Specific Program Generation, volume 3016 ofLec-
ture Notes in Computer Science, pages 216–238. Spinger-Verlag,
2004.

[26] D. Weise and R. Crew. Programmable Syntax Macros. InPro-
ceedings of the ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation, pages 156–165, 1993.

[27] M. Yuen, M. Fiuczysnki, R. Grimm, Y. Coady, and D. Walker. Mak-
ing extensibility of system software practical with the C4 toolkit. In
AOSD Workshop on Software Wngineering Properties of Languages
and Aspect Technologies, 2006.

[28] C. Zhang and H.-A. Jacobssen. TinyC2: Towards Building a Dy-
namic Weaving Aspect Language for C. InFoundations of Aspect-
Oriented Languages, 2003.

11

