
Tool Demonstration: Silver Extensible Compiler Frameworks and Modular
Language Extensions for Java and C∗

Eric Van Wyk, Lijesh Krishnan, Derek Bodin, Eric Johnson, August Schwerdfeger, Phil Russell
Department of Computer Science and Engineering

University of Minnesota

In this tool demonstration of Silver extensible compiler
frameworks for Java and C we illustrate how new languages
that are adapted to specific problem domains can be eas-
ily created, by their users, by importing a set of desired
domain-specific language extensions into an extensible host
language compiler. Language extensions for computational
geometry and database access will be shown. We also show
extensions that provide general purpose language features
such as algebraic types and pattern matching can be im-
ported into an extensible language compiler.

Each Silver extensible compiler framework supports the
development of language extensions that have two impor-
tant facets. First, language extensions should satisfy acom-
pleteness requirement. That is, they should be as well-
developed as host language features and fit seamlessly into
the host language. In particular, the language feature de-
signer should be able to specify new language constructs
together with their domain-specific semantic analyses and
techniques for their optimization. One aspect of this re-
quirement is that language extension should report a useful
error message when they are used incorrectly. Second, the
extensions should bemodular so that a programmer can ex-
tend his or her language by choosing from a collection of
previously defined features knowing only the functionality
they provide and with no implementation-level knowledge
or a detailed analysis of their interactions. Thus we draw a
distinction between the programmer importing an extension
and the feature designer who implements it.

We will show extensible compilers for both C and Java.
These compilers are defined by an attribute grammar writ-
ten in the Silver attribute grammar language. A Silver com-
piler analyses attribute grammar specifications and gener-
ates an executable compiler for the defined (extended) lan-
guage by translating the Silver specifications into an ef-
ficient Haskell representation. Language extensions are
also specified as Silver attribute grammar fragments and
the framework tools automatically compose specifications
of the host language and chosen language extensions into a

∗This work was partially funded by NSF CAREER Award #0347860,
NSF CCF Award #0429640, and the McKnight Foundation.

specification for the custom extended language.
We have built several modular language extensions that

extend either Java or C in this framework and will demon-
strate aspects of the implementation of these extensions per-
formed by the domain-expert feature designer. We will also
show the process of using the framework to automatically
compose language features performed by a programmer.

Two domain-specific language extensions highlight the
analysis (via error checking) and optimization capabilities
of the frameworks. An extension that embeds SQL into
Java so that queries can be written directly, as opposed to
creating character strings containing the SQL queries as is
done in library-based approaches. This extension checks at
compiler-time that no syntax errors and no type errors have
been made. A second domain-specific extension, written to
extend C, introduces optimizing program transformations
for unbounded numeric types and perturbation transforma-
tions for coping with data degeneracies that are specific to
the domain of computational geometry. We have also cre-
ated a number of modular language extensions that add new
general purpose features to Java. One such extension adds
algebraic data types and pattern matching similar to those
found in ML and Pizza [1]. These extensions make use of an
enhancement to attribute grammars calledforwarding [2].
This provides the modularity that allows programmers, not
language designers, to construct new custom extended lan-
guages from a host language and a set of modular language
extensions.

Silver and the C, Java, and extension specifications are
available athttp://www.melt.cs.umn.edu.

References

[1] M. Odersky and P. Wadler. Pizza into Java: translating theory
into practice. InProc. of ACM Symposium on Principles of
Programming Languages (POPL), pages 146–159, 1997.

[2] E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski.
Forwarding in attribute grammars for modular language de-
sign. InProc. 11th Intl. Conf. on Compiler Construction, vol-
ume 2304 ofLNCS, pages 128–142. Springer-Verlag, 2002.


