
Constructing Accurate Application Call Graphs For Java
To Model Library Callbacks

Weilei Zhang, Barbara G Ryder
Department of Computer Science

Rutgers University
Piscataway, NJ 08854

{weileiz,ryder}@cs.rutgers.edu

Abstract

Call graphs are widely used to represent calling relation-
ships among methods. However, there is not much inter-
est in calling relationships among library methods in many
software engineering applications such as program under-
standing and testing, especially when the library is very big
and the calling relationships are not trivial. This paper ex-
plores approaches to generate more accurate application
call graphs for Java. A new data reachability algorithm
is proposed and fine-tuned to resolve library callbacks ac-
curately. Compared to a simple algorithm that generates
an application call graph by traversing the whole-program
call graph, the fine-tuned data reachability algorithm re-
sults in fewer spurious callback edges. In experiments with
the spec jvm98 benchmarks, the new algorithm shows a sig-
nificant reduction in the number of spurious callback edges
over the simple algorithm: on average, the number of call-
back edges is reduced by 74.97%, amounting to overall
64.43% edge reduction for the generated application call
graphs.

1. Introduction

A call graph is the representation of calling relation-
ships among methods: a directed edge from method a to b
denotes that a may call b directly. Call graphs are widely
used as a program representation in software engineering
and optimizing compilation. Construction of call graphs is
usually straightforward in classical procedural languages;
for example, in C, barring the use of function pointers, a
call site has exactly one possible callee. In object-oriented
languages, a call site may invoke several callees due to dy-
namic dispatch. The corresponding call graph construction
([4]) uses some form of reference analysis. Reference anal-
ysis calculates type information about the objects to which
reference variables can point. There is a wide variety of ref-
erence analyses which differ in terms of cost and precision.

An in-depth discussion can be found in [12, 5].
Precise reference analysis requires a whole-program

analysis. The constructed call graph includes both applica-
tion and library methods as its nodes. However for many
software engineering applications such as program under-
standing and testing, there is not much interest in the call-
ing relationships among library methods. In these contexts,
an accurate application call graph is more useful than a
whole-program call graph. Also, a static analysis requir-
ing a call graph can run more efficiently and produce more
accurate results for application program if an accurate ap-
plication call graph can be substituted for a whole-program
call graph.

1.1. Application Call Graph

An application call graph represents calling relation-
ships among application methods. There are two kinds of
edges: direct and callback. For application methods a
and b, a direct edge from a to b means that there is a
call site in a that resolves to a call of b. A callback edge
from a to b means that a may call back b through the li-
brary; that is to say, a may call a library method that may
eventually call b, and there exists a call path from a to b,
a → m1 → m2 → ... → mn → b on which all the interme-
diate methods (mi) are library methods. Call edges in an
application call graph may have labels to denote call site
information. For example, a callback edge from a to b with
label s means that at statement s, method a makes a library
call, from which it may eventually call back b; we say that
”call site s calls back b” for brevity.

The contributions of this work are:

• Design of new approaches to construct an accurate ap-
plication call graph for Java. A new variant of the data
reachability algorithm ([3]) is proposed and fine tuned
to resolve library callbacks accurately.

• Implementation of the proposed algorithm and exper-

iments with it.

• Description of the potential usages of application call
graphs in white-box testing.

1.2. Outline

The rest of the paper is organized as follows: Section 2
discusses a simple algorithm to generate application call
graphs by traversing whole-program call graphs. Section 3
presents an algorithm to resolve library callbacks accu-
rately. Section 4 describes the empirical study. Section 5
discusses the potential usages of application call graphs
generated by the given algorithm. Section 6 discusses re-
lated work. Section 7 gives conclusions and directions for
future work.

2. A Simple Algorithm And Its Imprecision

After a whole-program call graph is generated by us-
ing some form of reference analysis, an application call
graph can be generated by traversing the whole-program
call graph. A direct call edge is generated if there is a
call edge between two application methods in the whole-
program call graph. A callback edge is generated between
a pair of application methods if there is a directed path be-
tween them in the whole-program call graph on which all
intermediate nodes are library methods.

The application call graph generated by the above sim-
ple algorithm represents the calling relationships among
application methods that can be captured by the whole-
program call graph. There is a one-to-one mapping be-
tween direct edges and call edges among application meth-
ods in the whole-program call graph, so the precision for
direct edges corresponds directly to the precision for the
whole-program call graph([4]). Callback edges are gener-
ated by collapsing through-library call paths that connect
a pair of application methods in the whole-program call
graph. Many such through-library call paths cannot hap-
pen at runtime; consequently, the corresponding callback
edges generated by the simple algorithm are spurious.

Figure 1 shows an example to illustrate the simple
algorithm and its imprecision. Figure 1-(a) is a piece
of Java code, and 1-(b) shows part of the correspond-
ing whole-program call graph. App.appendA() and
App.appendB() are two application methods both calling
the library method StringBuffer.append(Object) at
call sites (5) and (9), respectively. Classes StringBuffer
and String both come from the java.lang library
package. StringBuffer.append(Object) calls
String.valueOf(Object), which in turn calls
a toString() method. If r is the actual param-
eter passed to StringBuffer.append(Object),

StringBuffer.append(Object)

String.valueOf(Object)

A.toString() B.toString()

App.appendA() App.appendB()

Library

class App{
 StringBuffer local;
 StringBuffer appendA(){
 A a=new A();
 return(local.append(a));
 }
 StringBuffer appendB(){
 B b=new B();
 return(local.append(b));
 }
}

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

(b) Whole-program Call Graph

(a) Code

class A{
 String toString(){...}
}
class B{
 String toString(){...}
}

App.appendB()

A.toString()

App.appendA()

B.toString()

callback callback

(c) Precise Application

Call Graph

App.appendB()

A.toString()

App.appendA()

B.toString()

callback
callback

callback

callback

(d) Application Call Graph

Generated by the Simple

Algorithm

Figure 1. A Example to Illustrate the Simple Algorithm
and its Imprecision

then String.valueOf(Object) will call
Object.toString() on the object pointed to by r.
In this example at call site (5), r points to the A object cre-
ated at (4), and class A overrides the toString() method,
so App.appendA() will call back A.toString() at
runtime. Similarly, App.appendB() will call back
B.toString(). Consequently, an accurate application
call graph should look like Figure 1-(c), in which there are
two callback edges. But in Figure 1-(b), there is a directed
path from App.appendB() to A.toString(), and all
intermediate nodes, StringBuffer.append(Object)

and String.valueOf(Object), are library meth-
ods. According to the simple algorithm, a spurious
callback edge will be generated from App.appendB() to
A.toString(); similarly, another spurious callback
edge will be generated from App.appendA() to
B.toString(), as shown in Figure 1-(d).

The above problem exists because the whole-
program call graph lacks calling context infor-
mation. The shared segments (in this case the
path from StringBuffer.append(Object) to
String.valueOf(Object)) result in infeasible call
paths connecting different start and end points. This
problem cannot be completely solved unless enough
context information is added to the call graph construction
algorithm. For example, the specific problem in Figure 1
can be solved by 2-CFA [14, 15], but 2-CFA is very
expensive for whole-program analysis. What’s more, in
many cases the length of the shared segment is much
longer than 2. The overarching problem will require
n-CFA with a very large n or the use of a call tree [13]
instead of a call graph to represent calling relationships.
Currently, both approaches are impractical because they
are not scalable for real-world programs.

3. A Data Reachability Algorithm To Resolve
Library Callbacks

We want to use a rather precise yet practical analysis to
eliminate as many infeasible through-library call paths as
possible, to reduce the number of spurious callback edges
in the generated application call graph. The data reach-
ability algorithm ([3]) is used to solve this problem. In
this section, we begin by introducing the data reachabil-
ity algorithm. Then a new variant of data reachability, V a-
DataReach, is proposed and compared to the existing V -
DataReach algorithm. Finally the algorithm is fine-tuned
specifically to resolve library callbacks more accurately, re-
sulting in V a-DataReach f t.

3.1. Data Reachability Algorithm

The intuitive idea of the data reachability al-
gorithm is to resolve control-flow reachability (i.e.,
find feasible call paths) via data reachability analy-
sis. Call paths requiring receiver objects of a spe-
cific type can be shown to be infeasible, if those
types of objects are not reachable through dereferences
at the relevant call site. In Figure 1, the call path
App.appendA() → StringBuffer.append(Object)

→ String.valueOf(Object) → B.toString() is
feasible, only if during the lifetime of the library call
StringBuffer.append(Object) at call site (5), the re-
ceiver object of the site calling Object.toString() in-
side the method String.valueOf(Object) can be of
type B; if this cannot happen, then the above call path is
infeasible.

Fu, et. al present three forms of data reachability algo-
rithms in [3]: DataReach, M-DataReach and V-DataReach,
listed in order of accuracy of their solutions. DataReach
uses one set to record all possible reachable objects dur-
ing the lifetime of a specific method call. M-DataReach
uses a separate set for each method to record that method’s
possible reachable objects during the lifetime of a specific
method call. V-DataReach uses a separate set for each ref-
erence variable and each object field to record its possible
referenced objects during the lifetime of a specific method
call.

In essence, the data reachability algorithm performs
a separate reference analysis for each call site after a
whole-program reference analysis. More specifically for V-
DataReach, there are two kinds of points-to analyses in the
algorithm: one is a whole-program analysis, and the other
is a call-site specific analysis. During the call-site specific
points-to analysis, an object is either accessible or local.
Accessible means that before the end of the call, the object
may be accessed from code executed outside the reachable
methods of this method call (e.g., through another thread).
Consequently, for an instance field read statement l = r. f 1

encountered during the call-site specific analysis, if r points
to an accessible object o, it means that o. f may have been
changed elsewhere, so the global points-to result for o. f
is used in the call-site specific points-to analysis. In V -
DataReach, in order to calculate the set of those accessible
objects, a global escape analysis ([2]) is performed after
the whole-program points-to analysis and before the call-
site specific analysis. If an object may escape the method
that creates it according to the escape analysis, it is con-
sidered accessible in V -DataReach. In this paper, we pro-

1For brevity, we omit the cases for static fields and arrays in our dis-
cussion. The static fields can be considered to belong to a single (fake)
object that is accessible. An array instance is regarded as one object and
all accesses to elements of this array are modelled using a single field.

pose a new variation of the data reachability algorithm: V a-
DataReach, that differs from V -DataReach by calculating
the set of accessible objects on the fly during the process of
calculating the set of methods reachable from a call, using
a call-site specific points-to analysis.

3.2. Va-DataReach.

Similarly to V -DataReach, V a-DataReach needs an ini-
tial whole-program points-to analysis, whose result is de-
noted as Pt. For a given call site, the algorithm computes
the set of accessible objects (Accessible), the call-site spe-
cific points-to result (U) and the set of reachable methods
(R). If needed, the reachable sub-call graph can be also
computed.

Both of the points-to analysis results, Pt and U , contain
points-to information (P(O)) for each reference variable
(Re f) and object field (O×F), where O is the set of object
creation sites and F is the set of object fields. U is a subset
of Pt. During the call-site specific analysis to calculate U ,
the points-to information for the fields of the accessible ob-
jects comes from Pt, while the points-to information for the
local reference variables and the fields of the local objects
comes from U .

An object o is accessible if it satisfies one of the follow-
ing:

• o is referenced by an actual parameter passed to the
call site.

• o is referenced by a static field.

• o is reachable from an accessible object a through
field access (i.e., there exists a list of object fields fis
such that a. f1. f2...... fn refers to o).

In V a-DataReach, the set of accessible objects is calcu-
lated on the fly during the call-site specific points-to analy-
sis. For example, if an instance field read statement l = r. f
is encountered, and if r points to an accessible object o,
both Ul and Accessible will be updated and Pt(o. f) will be
included in Accessible (see constraint 4 below).

V a-DataReach is defined by the following constraints,
using the constraint-based formalism from [18], analogous
to the data reachability algorithm schema defined in [3]:

• input:
{

Pt : Re f → P(O),O×F → P(O)
the original call site as the starting point.

• output:






R
Accessible
U : Re f → P(O),O×F → P(O)

• initialize: for each target M at original call and the corre-
sponding actuals ai and formals M. fi :







M ∈ R∧
Pt(ai) ⊆ Accessible∧
Pt(ai) ⊆UM. fi

Initialize UM.this of targets M accordingly
Initialize all other Uv and Uo. f to /0

1. For each method M and for each object creation statement
si: l = new oi in M:
(M ∈ R) ⇒ oi ∈Ul

2. For each method M and for each reference assignment state-
ment si: l = r in M:
(M ∈ R) ⇒Ur ⊆Ul

3. For each method M, and for each instance field write state-
ment l. f = r in M and each oi ∈ Pt(l):
(M ∈ R)∧ (oi ∈Ul) ⇒
{

oi /∈ Accessible ⇒Ur ⊆Uoi. f
oi ∈ Accessible ⇒Ur ⊆ Accessible

4. For each method M, and for each instance field read state-
ment l = r. f in M and each oi ∈ Pt(r):
(M ∈ R)∧ (oi ∈Ur) ⇒






oi /∈ Accessible ⇒Uoi. f ⊆Ul

oi ∈ Accessible ⇒

{

Pt(oi. f) ⊆Ul ∧
Pt(oi. f) ⊆ Accessible

5. For each method M, for each virtual call site
l = e.m(e1, . . . ,en) occurring in M, and for each o ∈ Pt(e)
where StaticLookup(o,m) = M′:
(M ∈ R)∧ (o ∈Ue) ⇒














M′ ∈ R ∧
Uei ⊆UM′. fi

where fi are the formal parameters of M′ ∧
UM′ .ret var ⊆Ul ∧
o ∈UM′.this

6. For each method M and for each static field write statement
C. f = l in M:
(M ∈ R) ⇒Ul ⊆ Accessible

7. For each method M and for each static field read statement
l = C. f in M:
(M ∈ R) ⇒
{

Pt(C. f) ⊆Ul
Pt(C. f) ⊆ Accessible

8. For each method M and for each static call site
l = C.M′(e1, . . . ,en) in M:
(M ∈ R) ⇒






M′ ∈ R ∧
Uei ⊆Upi where pi are the formal parameters of M′ ∧
UM′ .ret var ⊆Ul

During initialization, V a-DataReach populates U and
Accessible according to the whole-program points-to infor-
mation for the corresponding actual parameters, and initial-
izes R to include the possible target methods of the origi-
nal call site. Constraints 1 and 2 handle object creation
and reference assignment statements and update U accord-
ingly. Constraint 3 handles the instance field write state-
ment l. f = r: for an object oi pointed to by l, if oi is local,

3
f

Method Entry

Method Exit

b

7

ret

9

public class EG{
 public static void assignX(B p){
 X x=new X();
 p.f=x;
 }
 public static Y entry(){
 B b=new B();
 assignX(b);
 Y y=new Y();
 return y;
 }
}

 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)
 (9)
(10)
(11)
(12)

(a) Code (b) EG.assignX(B) (c) EG.entry()

f

Method Entry

Method Exit

p

ret

3 x
ret

n object created at statement n

b reference variable or parameter

return node

points to

points to via fieldf

Figure 2. An Example to Illustrate the Difference between Va-DataReach vs. V-DataReach

then Uoi. f is updated by Ur. Uoi need not be updated when
oi is accessible because the whole-program points-to in-
formation will be used for oi; also, objects in Ur will be
marked as accessible if oi is accessible. Constraint 4 han-
dles the instance field read statement l = r. f : if r refers
to an accessible object oi, the result of the whole-program
points-to analysis for oi. f will be used to update Ul and
Accessible; otherwise (oi is local), Accessible remains un-
changed, and the result of the call-site specific points-to
analysis for oi. f will be used to update Ul . Constraint 5
specifies the addition of new methods to the set of reach-
able methods at virtual calls: a new method M′ is added to
R only if the required object(s) to trigger the invocation of
M′ are in the call-site specific points-to set of the receiver
reference variable. U is modified because of parameter
assignments and the return value. The auxiliary function
StaticLookup returns the dynamic dispatch target of virtual
call, given the receiver object and the compile-time target
method. Constraints 6, 7 and 8 handle static field writes,
static field reads and static call sites, respectively.

Comparison: Va-DataReach vs. V-DataReach.
V -DataReach and V a-DataReach calculate the set of

accessible objects differently. V a-DataReach calculates
the set on the fly as shown in the constraints. In contrast,
V -DataReach requires the result of a separate escape anal-
ysis, and considers an object accessible if the object may
escape the method that creates it. Figure 2 illustrates the
difference between both algorithms. Figure 2-(a) is a piece
of Java code that contains two methods: EG.entry() and
EG.assignX(B). Figures 2-(b),(c) illustrate the points-to
graph for the two methods, in which we use the state-
ment sequence number to represent the object created at
that creation statement. Assume that we apply the two
data reachability algorithms to the same call site that calls
EG.entry(). Because Object 3 is referenced via a field
from the parameter of method EG.assignX(B), which

creates it, it escapes EG.assignX(B), and thus is regarded
as accessible by V -DataReach. In contrast, it can be seen
from Figure 2-(c) that Object 3 is not accessible from the
code executed beyond the method call of EG.assignX(B),
and thus is regarded as local by V a-DataReach. Another
example is Object 9: it also escapes the method creating it
via the return node and thus is regarded as accessible by
V -DataReach; but it is not accessible from the code exe-
cuted beyond the method call to EG.assignX(B) until af-
ter the call finishes and returns, so it will not be considered
accessible by V a-DataReach.

In both V a-DataReach and V -DataReach the points-to
information for fields of accessible objects comes from Pt,
while the points-to information for fields of local objects
comes from U . U is a subset of Pt, so the fewer the number
of accessible objects, the more accurate the data reachabil-
ity algorithm result can be. In the example shown in Fig-
ure 2, two fewer objects, 3 and 9 are considered accessible
in V a-DataReach than in V -DataReach, so V a-DataReach
can get more accurate results than V -DataReach. However,
it is hard to draw a general conclusion from this simple ex-
ample. As part of future work, we will examine the dif-
ference between the two notions of accessible objects and
its influence on the accuracy of the data reachability algo-
rithms, through empirical studies.

Using Va-DataReach to Resolve Library Callbacks
If in constraints 5 and 8 of V a-DataReach, the reach-

able call edge < M, cs, M′ > is recorded for each reached
method M′ at call site cs in M, then a sub-call graph reach-
able from a specific call site can be generated. Given a
library call, libcall, and the sub-call graph reachable from
it generated by V a-DataReach, callback edges can be re-
solved in a similar way as in the simple algorithm: if there
is a call path from libcall to an application method am,
and all the intermediate nodes on the path are library meth-
ods, then libcall calls back am. The application call graph

can be formed using these callback edges found from each
library call plus the direct call edges found by the whole-
program points-to analysis.

3.3. Va-DataReach f t: Fine-Tuned Algorithm To
Resolve Library Callbacks

To calculate callback edges for each library call from an
application method, the data reachability algorithm needs
some fine tuning to increase accuracy, as illustrated in Fig-
ure 3.

Figure 3-(a) is a slight modification of Figure 1-(a),
where method B.toString() contains one more state-
ment in line 20. Originally in Figure 1, V a-DataReach de-
termines that call site (9) of method App.appendB() calls
back B.toString() only. But the new codes in Figure 3-
(a) introduce the following complication: at call site (20),
method B.toString() calls App.appendA(), which in
turn calls back A.toString(). Figure 3-(b) shows the
discovered sub-call graph by running V a-DataReach on
call site (9): both A.toString() and B.toString()

show up, and it is hard to distinguish A.toString()

from B.toString() while generating callback edges
for call site (9) of method App.appendB(). Figure 3-
(c) shows the application call graph generated by V a-
DataReach. Compared to the actual application call graph
shown in Figure 3-(d), one spurious callback edge from
App.appendB() to A.toString() is generated.

In order to solve this problem, we propose V a-
DataReach f t based on V a-DataReach. The intuition is that
only library methods are included in R during the call-site
specific points-to analysis. The following is the substi-
tute for constraint 4 in V a-DataReach to handle virtual call
sites:

5’. For each method M ∈ Lib, for each virtual call site
l = e.m(e1, . . . ,en) occurring in M, and for each o ∈ Pt(e)
where StaticLookup(o,m) = M′ and fi are the formal
parameters of M′:

(M ∈ R)∧ (o ∈Ue) ⇒






















































M′ ∈ Lib ⇒















M′ ∈ R ∧
Uei ⊆UM′ . fi

∧
UM′ .ret var ⊆Ul ∧
o ∈UM′.this

M′ /∈ Lib ⇒















M′ ∈ Callback ∧
Uei ⊆ Accessible ∧
Pt(M′.ret var) ⊆Ul ∧
Pt(M′.ret var) ⊆ Accessible

The target method M′ of a virtual call site is added to the set R
only if M′ is a library method. If not, M′ is added to the Callback
set. Also, the objects referenced by the parameters passed to M′

or returned by M′ are accessible from the code executed beyond
this library entry before this library call finishes. There is also

(b) Discoverd Sub Call Graph While Running General Data

Reachability Algorithm On Call Site (9) In Figure 3-(a)

(a) Code For B.toString()

App.appendA() App.appendB()

A.toString() B.toString()

Direct
Callback Callback

(d)�� Actual Application Call Graph

StringBuffer.append(Object)

String.valueOf(Object)

A.toString() B.toString()

App.appendA()Library

local.append(b)(9)

App.appendA() App.appendB()

A.toString() B.toString()

Direct
Callback Callback

Callback

(18)
(19)
(20)
(21)
(22)

class B{
 String toString(){
 new App().appendA();
 }
}

(c) Application Call Graph Generated by V -DataReacha

class App{
 StringBuffer local;
 StringBuffer appendA(){
 A a=new A();
 return(local.append(a));
 }
 StringBuffer appendB(){
 B b=new B();
 return(local.append(b));
 }
}
class A{
 String toString(){...}
}

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)

Figure 3. An Example to Illustrate the Need for Fine-
Tuned Algorithm

a similar substitute for constraint 8 in V a-DataReach to handle
static call site. For brevity, it is not shown here.

4. Empirical Study

We have implemented two algorithms to generate the applica-
tion call graph. The first one, denoted as simple, generates the
application call graph by traversing the whole-program call graph
generated by a 0-CFA points-to analysis [11, 8]. The second one,
denoted as new, starts from the results of the same 0-CFA analy-
sis, and resolves library callbacks according to V a-DataReach f t

presented in Section 3. This section describes our experiments
with the two algorithms. We aim to answer the following two
questions in the experimental study:

• Accuracy: how many spurious callback edges can be elimi-
nated by V a-DataReach f t from those generated by the sim-
ple algorithm?

• Practicality: the advantage for the simple algorithm is that
it is cheap after a whole-program call graph is generated.
Comparatively, is V a-DataReach f t practical enough? Is it
also scalable?

4.1. Experiment Setup and Benchmark Introduc-
tion.

We experimented on all eight benchmarks in the SPEC jvm98
suite ([17]). All experiments were run on a 1.8GHz AMD
Athlon(tm) 64 Processor 3000+, 2GB-memory PC with Linux
2.6.12-gentoo-r10 and Sun JVM 1.4.1.07 (32-bit). The algorithm
is implemented in the framework presented in [19], which utilizes
a Java optimization framework, Soot ([7]) and a BDD-based con-
straint solver, bddbddb ([6]).

Table 1 lists all eight benchmarks. For each benchmark, it
shows the number of total methods (#methods), the number of ap-
plication methods (#app methods) and the number of total state-
ments (#statements). All the numbers are calculated on the call
graph generated by the 0-CFA analysis using on-the-fly construc-
tion. The statements are Soot’s jimple statements, which is a
three-address representation for Java bytecode. From this table
it can be observed that a large number of library methods exist
in a whole-program call graph: even in the smallest benchmark
(compress) with only 60 application methods, the whole-program
call graph still contains 3468 methods, 3408 of which are library
methods.

4.2. Accuracy.

Table 2 shows the size of the generated application call graph
in terms of the number of call edges. Each call edge is a four-
tuple < caller, call site, type, callee >, in which type can be either
direct or callback. Both simple and new algorithms generate the
same set of direct call edges, which correspond to the call edges
between application methods in the whole-program call graph.
The numbers of direct call edges are shown in column #direct.
The numbers of callback edges generated by both algorithms are
shown in the columns #callback. The reduction rate achieved by
the new algorithm over the simple one is also shown.

Benchmark compress does not have callback edges. Both al-
gorithms produce precise results, so its reduction rate is unavail-
able and thus not counted in calculating the average. The new
algorithm reduces at least 43% of the callback edges generated
by the simple one for all the other seven benchmarks. On av-
erage, the reduction rate is 74.94%, that amounts to an overall
64.43% on average call edge reduction for generated application
call graphs. Note that benchmark mtrt is a dual-threaded ver-
sion of raytrace, and the calculated callback edges are exactly
the same for both benchmarks by either algorithm, so they are re-
garded as one benchmark and only counted once in calculating
the average.

benchmark #direct #callback
simple new Reduction

compress 122 0 0 NA
jess 2241 17790 10001 43.78%

raytrace 1081 3400 129 96.21%
db 158 5088 1455 71.40%

javac 13069 43241 17889 58.63%
mpegaudio 689 7659 29 99.62%

mtrt 1082 3400 129 96.21%
jack 1283 8076 1614 80.01%

Average 74.94%

Table 2. Generated Application Call Graph

benchmark Time Cost(sec) #Library Calls
0-CFA V a-DataReach f t

compress 41 360 806
jess 46 468 1584

raytrace 43 446 986
db 41 417 994

javac 56 781 2432
mpegaudio 57 427 904

mtrt 43 445 986
jack 53 465 1884

Table 3. Time Cost for New Algorithm

4.3. Practicality.

Table 3 shows the time cost for the new algorithm. There
are mainly two phases that cost considerable time: one is 0-
CFA, the whole-program points-to analysis, and the other is V a-
DataReach f t to resolve library callbacks. It can be seen that the

benchmark #methods #app methods #statements Description
compress 3468 60 20271 A high-performance application to compress or uncompress

large files; based on the Lempel-Ziv method(LZW)
jess 3907 465 23163 A Java expert shell system based on NASA’s CLIPS system

raytrace 3610 190 21541 Ray tracer application
db 3480 66 20555 Performs database functions on a memory-resident database

javac 4661 1155 27574 JDK 1.0.2 Java compiler
mpegaudio 2667 256 21215 MPEG-3 audio file compression application

mtrt 3610 190 21542 Dual-threaded version of raytrace
jack 3736 318 22854 A Java parser generator with lexical analyzers (now JavaCC)

Table 1. Benchmarks Description

algorithm is practical in that it finishes in reasonable time for all
benchmarks.

V a-DataReach f t performs a call-site specific points-to analy-
sis for each library call, so its time cost is closely related to the
number of library calls in the benchmark. In order to show the
correlation between the time cost and the number of library calls,
we chose various subsets of all library calls in benchmark javac,
and applied V a-DataReach f t to them. The subsets are chosen
randomly and cumulatively. For example, initially we chose 100
library calls randomly as the first subset, then we chose another
100 randomly and added them to the first subset to form the sec-
ond one. As shown in Figure 4, the x-axis is the number of li-
brary calls in a chosen subset. The y-axis is the time cost to run
V a-DataReach f t on all library calls in a subset using our imple-
mentation. We can see that the time cost increases more slowly
than the number of library calls (e.g., the size-100 subset costs
249 seconds, while the size-2000 subset costs 696 seconds, much
less than 4980 (i.e., 249*2000/100) seconds). The reason is that
a BDD-based solver is used to implement V a-DataReach f t , and
several call-site specific points-to sets for different library calls
can be updated at the same time with a single BDD operation, so
the implementation is more scalable than performing those anal-
yses one after another.

 0

 100

 200

 300

 400

 500

 600

 700

 800

2432200015001000500100

tim
e

co
st

(s
ec

on
d)

#(library calls)

Figure 4. Time Cost for V a-DataReach f t on javac with
Increasing Numbers of Library Calls

5. Potential Usage Of Application Call Graph

An accurate application call graph is useful in many software
engineering applications. Compared to the whole-program call
graph, the application call graph has the following two advan-
tages: (1) it can capture the calling relationships more accurately
among application methods; (2) an application call graph contains
fewer nodes, and those algorithms whose cost is closely correlated
to the call graph size will be more efficient if the application call
graph can be substituted for the whole-program call graph. Based
on these advantages, this section explores the potential usage of
an accurate application call graph in white box testing.

White Box Testing
White box testing, a widely used testing technique, is also

called clear box testing, glass box testing or structural testing.
The term white box indicates that testing is done with specific
knowledge of the code to be executed. A test coverage criterion is
generated according to the control-flow and/or data-flow informa-
tion from the code, and one goal of white box testing is to improve
the test coverage ratio. There are different kinds of white box test-
ing techniques as classified by the coverage criterion used, such
as call-chain based testing [10], def-use pair based testing, etc.

5.1. Call-Chain Based Testing.

A call chain corresponds to a directed path on a call graph.
Call-chain based testing involves static analysis and dynamic
analysis: static analysis computes a set of call chains that may
be observed during runtime. As a conservative estimate, this set
is used as the test coverage requirement. Dynamic analysis ob-
serves the run-time behaviour and calculates the call chain cover-
age achieved during test execution.

The time cost allowed for testing an application is often lim-
ited. Unlike application methods, the library methods are usually
considered well tested, so testing is usually focused on covering
those call chains made up of application methods. Because the
application call graph can capture the calling relationships more
accurately among application methods than the whole-program
call graph, it can be used to generate a more accurate set of
application-method call chains including callbacks. This means
that fewer infeasible call chains will be included in the test cov-
erage requirements, so the unnecessary cost of test data genera-

tion and manual code inspection can be reduced. For example,
as shown in Figure 1, App.appendA() → B.toString()
and App.appendB() → A.toString() may be generated
by a whole-program call graph, while an accurate application call
graph will consider those call chains infeasible and not include
them in the test coverage requirements.

5.2. Def-Use Pair Based Testing.

Def-use pair (DU-pair) based testing is referred to as all-uses
in a classic definition for a family of data flow testing criteria [9];
its goal is to cover all possible uses for each definition during
test execution. Similar to call-chain based testing, DU-pair based
testing involves a static analysis to calculate the set of DU-pairs
as a test coverage requirement, and dynamic analysis to measure
the achieved coverage. The static analysis requires a call graph to
compute inter-procedural DU-pairs.

For a Java application, one problem for DU-pair based testing
is that many DU-pairs exist in the library, so the set calculated
statically may contain too many DU-pairs for the test execution
to achieve a decent coverage ratio, which makes DU-pairs un-
realistic to use as a test criterion. In addition to the use of the
application call graph, our solution to this problem is to gener-
ate a summary statement for each library call from the applica-
tion to summarize side effect information for this library entry. A
summary statement consists of the following three kinds of oper-
ations:

I. Call an application method.

II. Read from an object field2.

III. Write to an object field.
Each summary statement corresponds to a library call from

the application program. The application methods called by a
summary statement are the callback targets of this library call,
as calculated by V a-DataReach f t . We want to capture the live
definitions and live uses for the library entry points, so the objects
in II and III only include those that are accessible from the code
executed beyond this library entry, namely:

1. objects that are initialized before the library call and passed
in through parameter or instance field read statements.

2. objects that are accessible by another thread during the life-
time of the library call.

3. objects that are accessible to the code executed in a callback
target method or its descendants.

4. objects that are accessible through the return node of the
library call to the code executed after the call finishes.

The set of the above objects is denoted by AllAccessible. There
may be more objects whose fields are read or written during this
library entry, but if they are not in AllAccessible, then any read
from or write to them is regarded as a local operation and will not
be summarized in the corresponding summary statement.

AllAccessible is different from Accessible calculated by the
V a-DataReach f t algorithm in that Accessible only contains the

2As in the previous sections, static fields and arrays are omitted in the
discussion.

objects that are accessible from the code executed beyond this li-
brary entry before the call finishes (i.e., cases 1-3). If the set of
objects in case 4 is denoted as LaterAccessible, then AllAccessible
is the union of Accessible and LaterAccessible.

After the V a-DataReach f t algorithm finishes, AllAccessible
can be calculated by the following constraints for a given library
call, in which U is the result for the call-site specific points to
analysis, M is a possible callee for the original call and M.ret var
is the reference variable returned by M:















UM.ret var ⊆ LaterAccessible ∧
Uo.f ⊆ LaterAccessible ∀o ∈ LaterAccessible ∧
LaterAccessible ⊆ AllAccessible ∧
Accessible ⊆ AllAccessible

For a method called by the library call, if there is a refer-
ence variable returned by the method, the reference variable’s
local points-to set is included in LaterAccessible. Also, all ob-
jects reachable via field references from the returned variable ac-
cording to the call-site specific points-to result are included in
LaterAccessible.

After AllAccessible is computed, the object fields read from
and written to by the summary statement are calculated using the
following constraints, and denoted by the sets Read and Write
respectively:

(a). For each method M in R, and for each instance field read
statement l = r. f in M and each oi ∈Ur:
(oi ∈ AllAccessible) ⇒ oi. f ∈ Read

(b). For each method M in R, and for each instance field write
statement w. f = l in M and each oi ∈Uw:
(oi ∈ AllAccessible) ⇒ oi. f ∈ Write

(c). For each method M in R, and for each static field read state-
ment l = C. f in M:
C. f ∈ Read

(d). For each method M in R, and for each static field write state-
ment C. f = l in M:
C. f ∈ Write

Given a library call, the sets Callback, Read and Write can
be generated by V a-DataReach f t and the above calculation. A
summary statement is assumed to perform the following opera-
tions: call methods in Callback, read from each object field in
Read and write to each object field in Write. By substituting the
summary statement for each library call, the DU-pairs excluding
those in the library can be calculated as test coverage requirement.
Also, static analysis to calculate the DU-pairs can be performed
on the application call graph, guaranteeing efficiency because of
the fewer method nodes, and accuracy because of the spurious
callback edges eliminated.

6. Related Work

Call Graph Construction & Reference Analysis For Object-
Oriented Program

Grove and Chambers presented a large number of call graph
construction algorithms for object-oriented languages [4]. There
is also a wide range of reference and points-to analyses [12, 5]
that can be used to construct call graphs. The key contribution
of our work is that we explore approaches to build application

call graphs that can capture calling relationships among applica-
tion methods induced by paths through the library more accurately
than the whole-program call graphs built by the previous work.

Data Reachability Algorithm
The algorithm V a-DataReach presented in this paper is one

variant of the data reachability algorithm presented in [3], in
which the data reachability algorithm was used to statically
discover Java exception throw-catch pairs accurately. The
data reachability algorithm calculates the methods or sub-call
graph reachable from a call site for object-oriented program.
[3] presents a detailed discussion and three forms of data reach-
ability algorithm: DataReach, M-DataReach and V-DataReach,
listed in increasing order of precision. One key contribution of
work is V a-DataReach, that differs from V-DataReach in calcu-
lating the accessibility information on the fly, as discussed in Sec-
tion 3.2.

There are also several other algorithms to detect infeasible
control flow paths statically ([1, 16]). Their difference from the
data reachability algorithm is discussed in [3].

7. Conclusion and Future Work

In this paper we have explored approaches to construct an ac-
curate application call graph for Java. We designed a new vari-
ant of the data reachability algorithm and fine tuned it to resolve
the library callback edges accurately. The experimental study
shows that the proposed new algorithm is practical and eliminates
a large amount of spurious callback edges from the application
call graph generated by a simple algorithm: on average, the num-
ber of callback edges is reduced by 74.97%, amounting to an
overall on average 64.43% edge reduction for the generated ap-
plication call graphs.

There are mainly two directions for our future work. One
is to evaluate algorithm accuracy through more empirical stud-
ies, including the comparison between V a-DataReach f t and V -
DataReach; the other is to explore the use of accurate application
call graphs in white box testing, to see its improvement in gener-
ating a better test coverage requirement.

References

[1] R. Bodik, R. Gupta, and M. L. Soffa. Refining data flow
information using infeasible paths. In M. Jazayeri and
H. Schauer, editors, Proceedings of the Sixth European Soft-
ware Engineering Conference (ESEC/FSE 97), pages 361–
377. Springer–Verlag, 1997.

[2] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and
S. P. Midkiff. Stack allocation and synchronization opti-
mizations for java using escape analysis. ACM Trans. Pro-
gram. Lang. Syst., 25(6):876–910, 2003.

[3] C. Fu, A. Milanova, B. G. Ryder, and D. Wonnacott.
Robustness Testing of Java Server Applications. IEEE
Transactions on Software Engineering, 31(4):292–311, Apr.
2005.

[4] D. Grove and C. Chambers. A framework for call graph
construction algorithms. ACM Transactions on Program-

ming Languages and Systems (TOPLAS), 23(6), 2001.
[5] M. Hind. Pointer analysis: haven’t we solved this problem

yet? In PASTE, pages 54–61, 2001.
[6] http://bddbddb.sourceforge.net/. bddbddb:bdd-based deduc-

tive database.
[7] http://www.sable.mcgill.ca/soot/. Soot: a java optimization

framework.
[8] O. Lhotak and L. Hendren. Scaling java points-to analysis

using spark. International Conference on Compiler Con-
struction, 2003.

[9] S. Rapps and E. Weyuker. Selecting software test data us-
ing data flow information. IEEE Transactions on Software
Engineering, SE-11(4):367–375, Apr. 1985.

[10] A. Rountev, S. Kagan, and M. Gibas. Static and dynamic
analysis of call chains in Java. In ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, pages
1–11, 2004.

[11] A. Rountev, A. Milanova, and B. G. Ryder. Points-to anal-
ysis for java using annotated constraints. In Proceedings
of the Conference on Object-oriented Programming, Lan-
guages, Systems and Applications, pages 43–55, 2001.

[12] B. G. Ryder. Dimensions of precision in reference analysis
of object-oriented programming languages. In Proceedings
of the Twelveth International Conference on Compiler Con-
struction, pages 126–137, April 2003. invited paper.

[13] M. L. Scott. Programming Language Pragmatics. Morgan
Kaufmann, 2000.

[14] M. Sharir and A. Pnueli. Two approaches to interprocedural
data flow analysis. In S. Muchnick and N. Jones, editors,
Program Flow Analysis: Theory and Applications, pages
189–234. Prentice Hall, 1981.

[15] O. Shivers. Control-Flow Analysis of Higher-Order Lan-
guages. PhD thesis, Carnegie Mellon University, 1991.

[16] A. L. Souter and L. L. Pollock. Characterization and au-
tomatic identification of type infeasible call chains. Infor-
mation and Software Technology, 44(13):721–732, October
2002.

[17] Specbench.org. Java client/server benchmarks.
[18] F. Tip and J. Palsberg. Scalable propagation-based call graph

construction algorithms. In Proceedings of the Conference
on Object-oriented Programming, Languages, Systems and
Applications, pages 281–293, Oct. 2000.

[19] W. Zhang and B. Ryder. A Semantics-Based Definition
for Interclass Test Dependence. Technical Report DCS-TR-
597, Department of Computer Science, Rutgers University,
January 2006.

