
An Evaluation of Slicing Algorithms for Concurrent Programs

Dennis Giffhorn
Universität Passau
Passau, Germany

giffhorn@uni-passau.de

Christian Hammer
Universität Passau
Passau, Germany

hammer@fmi.uni-passau.de

Abstract

Program slicing is a program-reduction technique for
extracting statements that may influence other statements.
While there exist efficient algorithms to slice sequential pro-
grams precisely, there are only two algorithms for precise
slicing of concurrent interprocedural programs with recur-
sive procedures. We implemented both algorithms for Java,
applied several new optimizations and examined their pre-
cision and runtime behavior. We compared these results
with two further algorithms which trade precision for speed.
We show that one algorithm may produce incorrect slices
and that precise slicing of concurrent programs is very ex-
pensive in terms of computation time.

1. Introduction

Program slicing is a widely recognized technique for an-
alyzing programs. It has many applications such as de-
bugging [1, 11], testing [2], complexity measurement [19],
model-checking [9], and information flow control [8]. As
most up-to date languages, like Java or C�, have built-in
support for concurrent execution and may even implicitly
use threads (e.g. graphical user interfaces in Java programs),
program slicing must be able to cope with concurrent pro-
grams.

Unfortunately, the precise and efficient slicing algo-
rithms known for sequential programs cannot be applied
to concurrent programs. Currently, there exist several al-
gorithms for slicing concurrent programs, but only two of
them can slice concurrent interprocedural programs with re-
cursive procedures and yield precise slices. These two algo-
rithms were developed by Nanda [16] and Krinke [14]. In
this paper, we present an evaluation of these two algorithms
and compare them with less precise algorithms in terms of
precision and runtime behavior. We show that the precise
algorithms may yield significantly smaller slices, but at the
price of high execution times. We further show that Nanda’s
algorithm may compute incorrect slices and present a fixed

version as well as an improved version of Krinke’s algo-
rithm with a set of new optimizations.

2. Slicing

A slice of a program consists of all statements and pred-
icates that may influence a given program point of interest,
the so-called slicing criterion. Slicing was first introduced
by Weiser in 1979 for reducing programs during debugging
[23]. His approach uses an iterative data flow analysis to
compute slices. Today, most slicing techniques use a differ-
ent approach: They compute slices using reachability anal-
ysis in program dependence graphs [19], where the nodes
represent statements or predicates and the edges represent
possible influences. Horwitz et al. [10] introduced the sys-
tem dependence graph (SDG), an extension of the PDG for
procedural programs and developed the two-phase slicing
algorithm, which uses summary edges to compute context-
sensitive slices in O(|graph|). An overview of fundamental
slicing techniques can be found in Tip’s survey [22].

A statement-minimal slice for a slicing criterion s is a
slice that does only contain statements that are guaranteed to
influence s. Weiser showed that computation of statement-
minimal slices is undecidable, as the evaluation of condi-
tional branches cannot be analyzed [23]. Therefore, condi-
tional branching is handled as non-deterministic branching.
We will refer to context-sensitive slicing algorithms of se-
quential programs that abstract conditional branching in this
way as precise slicing.

2.1. Slicing of concurrent programs

SDGs can be extended to concurrent system dependence
graphs (cSDG) to represent concurrent programs that com-
municate via shared variables. We will use the term ‘thread’
for concurrently executing tasks in the remaining of this pa-
per. Concurrent programs exhibit a special kind of data de-
pendence called interference dependence, represented in the
cSDG by interference edges. A node n is interference de-
pendent on node m if m defines a variable that n uses and

 fork
thread_1

y = 1

control dependence edges

data dependence edges

fork and fork-in edges

1

2 3

4

5 6

7

8

9

10

11 12

13

14

15

interference edges

entry
main

x = 0

x = xin y = yin

 start
thread_1

x = xin y = yin

p = x-2

q = p + 1

y = q * 3

a = y+1

 b = a-4

x = b/2

int x, y;

main () {
 x = 0;
 y = 1;
 fork (thread_1);
 int p = x - 2;
 int q = p + 1;
 y = q * 3;
}

thread_1 () {
 int a = y + 1;
 int b = a * 4;
 x = b / 2;
}

Figure 1. An example cSDG

m and n belong to different threads. Then the cSDG con-
tains an interference edge m →id n. The invocation of
a thread is modeled similar to procedure calls [10] using
fork sites. Sharing of variables between different threads
is simulated by passing them as parameters during a thread
invocation. We define fork edges and fork-in edges in anal-
ogy to call and parameter-in edges [10]. There is no need
for an equivalence to parameter-out edges, as changes in
parameters (the shared variables) are propagated immedi-
ately via interference edges. We do not model join points
of threads, as in many languages like Java or C� this would
require must-aliasing between the target objects calling fork
and join: We assume conservatively that all threads run
until the last thread terminates. Figure 1 shows an exam-
ple cSDG (for better readability, we will omit some con-
trol dependences in our figures that do not influence the
result of our demonstrated slices). Several authors define
further dependences in concurrent programs based on syn-
chronization like synchronization dependence or ready de-
pendence [3, 9, 25]. Both Nanda and Krinke suggest using
synchronization-related constructs to prune interference de-
pendences. As we do not consider data flow computation in
this paper, these details are omitted.

Unfortunately, the two-phase slicing algorithm for se-
quential programs cannot be used to slice cSDGs, as sum-
mary edges do not capture interprocedural effects of inter-
ference dependences [16]. But a simple modification en-
ables slicing of cSDGs: A two-phase slice is computed for
the slicing criterion s and each time an interference depen-
dence edge is traversed the reached node becomes a new
slicing criterion. This iterated two-phase slicer was first
described by Nanda [16] as a two-phase slicer nested in an
outer while loop. It can be modified to yields correct slices
in O(|graph|) (Figure 2).

Input: The cSDG G, a slicing criterion s.
Output: The slice S for s.

W = {s}, a worklist
M = {s �→ true}, a map for marking the contents of W
repeat

W = W \ {n}, f = M(n) remove next node n from W
foreach m →e n consider all incoming edges of n

if m �∈ dom M ∨ (f ∧ (m �→ false) ∈ M)
if f ∨ e /∈ {pi, c}

W = W ∪ {m}
if f ∧ e = po

M = M ∪ {m �→ false}
elseif ¬f ∧ e = id

M = M ∪ {m �→ true}
else

M = M ∪ {m �→ f}
until W = ∅
return dom M

Figure 2. Iterated two-phase slicer

The computed slices are, however, imprecise as interfer-
ence dependence is not transitive. Consider the example in
figure 1, where the slice for node 14 computed by the it-
erated two-phase slicer is shown in gray. The computation
will leave thread 1 at node 13 towards node 9 and later
return to node 15 via the interference edge from node 7. Ob-
viously, node 15 cannot influence the slicing criterion 14,
as it cannot execute before node 14 (Krinke calls this effect
time travel [12]). The intransitivity of interference depen-
dence results from its weaker requirements: Unlike the de-
pendences in sequential programs, interference dependence
does not require an execution order between the interfering
nodes. As the scheduling between concurrent statements is
non-deterministic, it cannot be made a prerequisite for in-
terference dependence. Therefore transitive traversal of in-
terference edges can result in invalid execution orders sim-
ilar to the example above. One approach to analyze which
interference edges are valid to traverse is to trace the exe-
cution states of the threads. For this, each visited node is
annotated with a state tuple Γ that contains for every thread
the node last visited in that thread. If the slicing algorithm
wants to traverse an interference edge q →id m towards q,
where t is the thread of q, and p is the state of t in m’s state
tuple, then a reachability analysis on the CFG of t checks
whether q may reach p. If not, the traversal forms an invalid
execution order and is rejected. This approach is still impre-
cise as the states of threads are only represented by a node.
To gain more precision, one can additionally consider the
calling contexts of the nodes. Both Nanda’s and Krinke’s
algorithms use this approach. In the remainder, we will use
the term context for a node and its calling context.

As Müller-Olm et al. have shown, precise slicing of con-
current interprocedural programs is undecidable [15]. Ba-
sically, if two nodes n and m are interference dependent
n →id m due to some variable v, then it is not decidable

whether another statement s that redefines v may execute
between n and m (i.e. s is a killing definition). This fol-
lows from the conservative assumption that scheduling is
non-deterministic to abstract from the scheduler. Therefore
slicing of concurrent interprocedural programs may only
be precise up to killing definitions for interference depen-
dences. We will refer to it as precise concurrent slicing.

3. Nanda’s and Krinke’s algorithms

To gain a precise concurrent slice, one has to determine
the calling contexts of the nodes at which the slice com-
putation leaves and enters threads. For this purpose Nanda
and Krinke use slicers that work with contexts instead of
nodes. These slicers are called for a context c as slicing
criterion and return its intra-thread slice S̄(c) and the con-
texts I ∈ S̄(c) where the thread can be left. Figure 3 shows
the basic structure of both algorithms: First they compute
all possible contexts C of slicing criterion s. These con-
texts are annotated with an initial state tuple Γ0, where the
execution state of every thread is at its end context, and in-
serted into a worklist W : Every interference edge traversal
towards a thread with initial execution state is valid accord-
ing to the reachability analysis. Now the algorithms iter-
ate over every element (c, Γ) of W and compute an intra-
thread slice S̄ for c and the set of visited contexts I where
the thread can be left. Then they compute the valid inter-
ference edges: For every context i ∈ I they determine for
every incoming interference edge m →id n, where n is the
node of i, the set of valid contexts C ′ of m. A context c′ of
m is considered valid if c′ may reach the context saved in
Γ as the state for thread t′, where t′ is the thread of c′. The
valid contexts c′ ∈ C ′ are then annotated with an updated
state tuple Γ′ = [i/t]Γ, where t is the thread of i, and in-
serted into worklist W . The slicing result ist the union of
all slices S̄.

Krinke’s slicing algorithm is described in detail in [14].
Nanda describes two versions of her algorithm in [16]; a
generic version with cobegin-coend parallelism and a spe-
cial version with fork-join parallelism suitable for Java. As
we implemented the algorithm for Java, we will only refer
to the latter.

3.1. Differences between the algorithms

In Krinke’s algorithm, a context of a node is represented
by the node annotated with a call string [21]. A call string
for a node n represents a sequence of procedure calls lead-
ing to the procedure that n belongs to. The contexts are
computed dynamically during the slice. To compute them,
the algorithm uses a slightly modified explicitly context-
sensitive slicer (ECSS, [13]). This intra-thread slicing al-
gorithm does not use summary edges but call strings to

Input: The cSDG G, a slicing criterion s.
Output: The slice S for s.

let C̄t(n) return all possible contexts for node n
let θ(c) return the thread context c belongs to
let SeqSlice(c) return the intra-thread slice S̄ for context c
and the contexts I where the thread of c can be left

Initialize the worklist W with an initial state tuple:
Γ = (⊥, ...,⊥), every thread is at its end node
W = {(c, Γ′) | t = θ(s) ∧ c ∈ C̄t(s) ∧ Γ′ = [c/t]Γ}
M = {s}, a list for marking the contents of W
repeat

remove next element w = (c, Γ) from W
Compute a sequential slice (S̄) for c and the visited
contexts with incoming interference edges I
(S̄, I) = SeqSlice(c)
S = S ∪ S̄

foreach i ∈ I, compute valid interference edges
foreach m →id n | n is node of i

t = θ(n), current thread
t′ = θ(m), reached thread
Γ′ = [i/t]Γ, save where thread t is left

Compute the valid contexts of m
C′ = {c′|c′ ∈ C̄t′(m) ∧ c′ reaches context Γ[t′]}

foreach w′ ∈ {(c′, [c′/t′]Γ′)|c′ ∈ C′}
if w′ /∈ M

W = W ∪ {w}
M = M ∪ {w}

until W = ∅
return S

Figure 3. Slicing concurrent programs

gain context-sensitive slices. It returns a precise intra-thread
slice for the context that serves as slicing criterion, and the
set of visited contexts where the thread may be left.

The reachability analysis to determine if an interference
dependences between two contexts is valid uses a similar
approach. The call strings of the contexts are used to tra-
verse the related control flow graph in a context-sensitive
manner. To avoid infinite stacking of call strings, it folds
cycles in control flow graphs and dependence graphs result-
ing from loops and recursion. For this, it applies a folding
algorithm that preserves context-sensitivity [14].

Nanda uses a special folding method for cycles in control
flow graphs with the resulting graph called interprocedural
strongly connected regions (ISCR) graph. This method al-
lows enumerating the contexts of a CFG topologically in
reverse preorder, such that contexts are represented as a sin-
gle integer. For that purpose instances of methods that are
called (transitively) from within a recursive or loop-based
cycle are included into the cycle (called virtual inlining by
Nanda [16]). This results in a stronger folded graph than
in Krinke’s algorithm and thus in a smaller number of con-
texts. The reachability analysis is done by a traversal on

the ISCR graph, where the context enumeration is used to
preserve context-sensitivity.

The intra-thread slicer used in Nanda’s algorithm is a
modified two-phase slicer that works on contexts instead
of nodes. Unlike Krinke’s algorithm, it does not compute
contexts itself but queries them from the ISCR graph. This
basically works as follows: After traversing a dependence
edge m → n towards m where c is the current context of
n, all contexts C ′ of m are queried from the ISCR graph of
m’s thread. Then a reachability analysis on the ISCR graph
is used to determine every context c′ ∈ C ′ that reaches c.

The algorithm contains a conservative approximation to
handle dynamic thread generation inside of loops: Let l be a
loop that dynamically invokes instances of a thread t. Dur-
ing the ISCR Graph computation, all nodes of l and the
nodes of t are folded into a single fold node f . As now
every node of thread t has the same context, every interfer-
ence edge traversal towards an instance of t during the slice
computation will be considered to be valid by the reachabil-
ity analysis. It does not handle dynamic thread generation
inside of recursive methods.

Nanda identifies combinatorial explosion in the thread
state tuples to be a major issue of the algorithm’s per-
formance. She defines restrictive state tuples as a way
to reduce that combinatorial explosion. Let [c1, ..., cn],
[c′1, ..., c′n] be two state tuples. If ∀i ∈ 1, ..., n :
c′i reaches ci holds, then [c′1, ..., c

′
n] is a restrictive state

tuple according to [c1, ..., cn]. If c is a context, t and t′ are
state tuples and t′ is restrictive according to t, then a slice
for the slicing criterion (c, t′) is a subset of the slice for
slicing criterion (c, t). This results from t′ making higher
restrictions to the set of valid interference edges than t. The
algorithm uses this property to identify redundant pairs of
contexts and state tuples: After a dependence edge e is tra-
versed towards a context c, the associated state tuple t′ is
computed. Then t′ is compared with all state tuples T of
earlier visits of c. If t′ is restrictive to a tuple t ∈ T , the
traversal of e towards c is discarded. The algorithm uses
this optimization after every edge traversal.

3.2. Model of concurrency

Krinke uses a conservative model of concurrency where
all threads of a program execute entirely in parallel. He
defines a threaded interprocedural program dependence
graph (tIPDG) consisting of the IPDGs of each thread that
are only connected with interference edges. The control
flow graphs of the threads are entirely disjoint. Further-
more, he does not allow dynamic generation of threads.

Nanda’s algorithm uses a more precise model of concur-
rency, a fork-join mechanism to model thread invocation
and joining. As a result, the dependences are represented in
a threaded system dependence graph (TSDG) that is similar

control dependence edges

data dependence edges

call, fork and parameter edges

interference edges

entry main

x = 0 y = 1

 fork
thread_1

x = xin y = yin

p = x-2

 q = p+1

y = q*y

 start
thread_1

x = xin y = y in

 a = y+1

b = a-4

x = b/2

 fork
thread_2

y = yin

 start
thread_2

y = y in

y = 0

1

2 3

4

5 6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

int x, y;

main () {
 x = 0;
 y = 1;
 fork (thread_1);
 int p = x - 2;
 int q = p + 1;
 y = q * z;
}

thread_1 () {
 int a = y + 1;
 fork (thread_2);
 int b = a * 4;
 x = b / 2;
}

thread_2 () {
 y = 0;
}

Figure 4. Thread regions allow higher preci-
sion

to the cSDG introduced in section 2. The threaded control
flow graph (TCFG) consists of the CFGs of each thread that
are connected at fork nodes and join nodes, respectively.
Using this concurrency model enables a more precise anal-
ysis of whether two nodes in different threads may execute
in parallel. This is done by dividing the threads into thread
regions according to fork and join points of threads. Parallel
execution is then determined on the level of thread regions.

The state tuples for tracing the execution states of the
threads also work on the level of thread regions and contain
one element per region. If the entry of a thread region p
is to be updated to a new value, context c, then all entries
of thread regions that execute sequential to p are given the
same value c (this may result in an entry of a thread region
containing a context of a different thread). Using this, the
algorithms are able to find more time travel situations: Con-
sider figure 4 as an example. With Krinke’s model of con-
currency the algorithms compute the set of shaded nodes as
the slice for node 14. With Nanda’s model, however, they
only compute the set of dark gray nodes, as they identify the
interference edge traversal 20 →id 9 towards 20 as invalid.
To influence the slicing criterion node 14, node 20 must be
executed before nodes 9 and 13. As thread 2 is started af-
ter the statement of node 13, this would require time travel.
To keep track of the thread regions’ states, the intra-thread
slicer has to annotate every visited context with a state tuple
and to update it after every edge traversal. By comparison,
Krinke’s model of concurrency allows updating state tuples
only after interference edge traversals, his intra-thread slicer
does not consider state tuples at all.

control dependence edges

summary and data dependence edges

call and parameter edges

interference edges

entry main

foo() bar()

f = xin

1

2

3
4

5

b = xin

 entry
 foo

x = f in m()

m = xin

 entry
 bar

x = b in m()

m = xin
x = m out x = m out

 entry
 m

x = x + a

x = m in m = xout

 start
thread_1

x = z +1

z = x

x = f out
x = b

out

f = xout b = xout

a = a+x

a = a in

a = aout

a = ain
a = a out

a = 1

a = 0in b = aout

6

7 8

9

10 11 12 13

14 15

16 17

18

19 20 21

22 23

24 25

26

27

28 29

30

31

32

33

35

b = b+x

36

x = 1

37

x = 1

34

int x;

main () {
 foo();
 x = 1;
 bar();
}

void foo() {
 int a = 1;
 a = m(a);
}

void bar() {
 int b = m(0);
 b = b + x
}

void m(int a) {
 x = x + a;
 a = a + x;
 x = 1;
 return a;
}

thread_1 () {
 int z = x;
 x = z + 1;
}

Figure 5. Incorrect Slice by Nanda’s Algorithm

3.3. Further development

During our work, we developed and applied several fur-
ther optimizations. We extended Krinke’s algorithm with
an approach to handle dynamic thread invocation inside of
loops and recursion using conservative approximation. The
initial execution state of every thread is set to the exit node
of that thread, to allow initial interference edge traversal.
With dynamic thread invocation inside of loops and recur-
sion, we conservatively assume that these threads have an
infinite number of instances, so every traversal of an inter-
ference edge towards such a thread is able to find an in-
stance whose execution state is at its exit node. Thus the
algorithm omits the reachability analysis when traversing
towards a thread that is invoked dynamically in a loop or
recursion (note that therefore the iterated two-phase slicer
is able to handle dynamic thread invocation as well). We
also adopted Nanda’s more precise model of concurrency
to Krinke’s algorithm. For this the intra-thread slicer must
be modified to update state tuples after each edge traversal
to keep track of the thread region execution states. We ap-
plied further optimizations to the reachability analysis and
to the intra-thread slicer which we will omit here due to
space restrictions.

We applied an optimization to Nanda’s algorithm that
eliminates the reachability analysis after each traversal of an
intraprocedural dependence edge. During the ISCR graph
construction, we annotate every context with an ID of the
method instance it belongs to. Then, after traversing an
intraprocedural dependence edge, the algorithm can deter-
mine the context of the reached node n by retrieving that

context of n that is annotated with the same method instance
ID as the current context.

3.4. Imprecise Algorithms

We further use two imprecise algorithms in our evalua-
tion. The first algorithm is the iterated two-phase slicer. The
second algorithm trades precision for speed by using nodes
instead of contexts to mark the thread execution states. It
uses Krinke’s model of concurrency and applies Nanda’s
optimization of restrictive state tuples after every interfer-
ence edge traversal. We are not aware of any previous work
describing the latter algorithm.

4. Implementation and evaluation

We implemented all algorithms in Java. All algo-
rithms work on dependence graphs computed by Hammer’s
dataflow analysis for Java [7]. This analysis computes a
variant of the standard SDG that represents nested parame-
ter objects precisely. For the tests we used a uniprocessor
2.2Ghz AMD 3200+ workstation with 2GB of memory run-
ning Fedora 2.6.16 Linux. We expected that Nanda’s and
Krinke’s algorithms do not scale well and that their gain of
precision do not outweigh their costs.

4.1. Correctness

In this section we will show that Nanda’s algorithm may
compute incorrect slices. This incorrectness results from

Name Instances I2P S K GK* GK N ON
(Nodes / Edges / Classes / Methods / Threads)

1 .001 .001 .005 .003 .003 .001 .001
PrecisionTest 2 .001 .002 .212 .076 .048 .005 .005
(328 / 904 / 6 / 10 / 2) 3 .001 .004 6.184 .489 .312 .016 .016

1 .001 .001 .001 .001 .001 .001 .001
TimeTravel 2 .001 .001 .010 .002 .002 .001 .001
(413 / 1136 / 7 / 14 / 2) 3 .001 .003 .149 .005 .007 .002 .002

1 .001 .001 .007 .004 .002 .002 .001
ProducerConsumer 2 .001 .001 .239 .006 .009 .003 .002
(420 / 1159 / 6 / 10 / 2) 3 .001 .003 5.464 .022 .031 .004 .003

1 .001 .004 .371 .023 .043 .091 .053
BoundedBuffer 2 .001 .037 67.325 .106 .233 .106 .071
(1324 / 3900 / 14 / 25 / 3) 3 .001 .127 – .411 .879 .126 .088
Primes 1 .001 .023 3.883 .181 .258 .124 .050
(2906 / 9693 / 18 / 36 / 2) 2 .001 .178 – 5.411 7.916 .692 .416
AlarmClock 1 .003 .099 – 3.641 3.358 .832 .202
(4085 / 13842 / 17 / 74 / 2) 2 .003 .895 – 346.413 281.477 4.430 1.467
LaplaceGrid 1 .007 .323 111.900 1.945 .428 .476 .126
(10022 / 100730 / 22 / 95 / 1) 2 .007 1.868 – 27.836 4.775 2.141 .315
SharedQueue 1 .034 .385 – 49.198 5.052 .566 .309
(17998 / 139480 / 23 / 122 / 1) 2 .034 31.930 – – – 15.370 11.334

Table 1. Average execution times per slice for concurrent programs (in seconds)

the application of the restrictive state tuple optimization af-
ter every edge traversal. Consider Figure 5 as an exam-
ple. The program consists of two threads - the main thread
and thread 1. For simplicity we will apply Krinke’s model
of concurrency: Both threads execute entirely in parallel.
Method m is called by both methods foo and bar, where
foo can reach bar in the corresponding CFG. Thus each
node of method m has two different contexts, where the con-
text resulting from method foo can reach the context re-
sulting from method bar. All other nodes have one con-
text. We will denote every context of a node with the node
itself, for nodes n of m we will append a suffix foo or bar,
respectively (e.g. 30bar denotes the context of node 30 in
the calling context of method bar). The shaded nodes rep-
resent the precise concurrent slice for node 26, the darker
gray shaded nodes represent the slice computed by Nanda’s
algorithm. It performs the following steps:

Initialization: Worklist W0 is initialized with element
(26, [26, ⊥]), where [26, ⊥] is the state tuple, ⊥ is the initial
state of thread thread 1.

First intra-thread slice for (26, [26, ⊥]): In phase 1,
the algorithm visits the nodes {26, 25, 24, 23, 34, 33,
22, 20, 19, 18, 7, 6, 5, 1}, traverses the interference edge
37 →id 26 towards node 37 and inserts element (37, [26,
37]) into worklist W0. The elements (33bar , [33bar, ⊥])
and (34bar, [34bar, ⊥]) are inserted in worklist W2. The
elements (33foo, [33foo, ⊥]) and (34foo, [34foo, ⊥]) are
also visited, but are discarded due to restrictive state tuples
(foo can reach bar). In phase 2, the algorithm visits the
nodes {34, 33, 32, 31, 30, 29, 28, 27}, where every node n
is inserted as an element (nbar, [nbar, ⊥]) in W2. Again,
the also visited elements (nfoo, [nfoo, ⊥]) are discarded as
containing restrictive state tuples. Additionally, it traverses

the interference edges 37 →id 31 and 37 →id 30 and thus
inserts elements (37, [31bar , 37]) and (37, [30bar, 37]) into
the outer worklist W0.

Second intra-thread slice for (37, [26, 37]): In phase 1,
the nodes {37, 36, 35} are visited. At node 36, with state
tuple [26, 36], the thread can be left via interference edge
30 →id 36 towards node 30. Contexts 30foo and 30bar

are valid according to the reachability analysis, as both can
reach the saved context 26. But the state tuples of the re-
sulting elements (30foo, [30foo, 36]) and (30bar, [30bar ,
36]) are restrictive according to the state tuple of the earlier
inserted element (30bar, [30bar, ⊥]), as context 30foo can
reach 30bar and context 36 can reach ⊥. Thus the traver-
sal towards node 30 is discarded. The same happens for
interference edge 32 →id 36 towards node 32 and later
for the slices of (37, [31bar, 37]) and (37, [30bar, 37]):
Method m cannot be entered again an thus the algorithm
omits nodes that belong to the slice. This problem can be
fixed by only applying the optimization when traversing in-
terference edges.

4.2. Precision and runtime behavior

We use the following algorithms for our evaluation:
Krinke’s algorithm (K), a fixed version of Nanda’s algo-
rithm (N), another version of Nanda’s algorithm using the
optimization proposed in section 3.3, (ON), our modifica-
tion of Krinke’s algorithm 1. using Nanda’s model of con-
currency (GK), and 2. using Krinke’s model of concurrency
(GK*), the imprecise slicer described in section 3.4 (S), and
the iterated two-phase slicer (I2P).

Our case study consists of eight programs. Preci-
sionTest and TimeTravel are small programs that model

Name Instances I2P S K GK* GK N ON
1 2.4 1.0 25.9 14.6 9.1 4.0 4.0

PrecisionTest 2 2.4 1.1 615.8 76.1 39.7 9.3 9.3
3 2.4 1.3 11000.2 219.6 118.3 16.5 16.5
1 1.9 1.0 5.9 5.7 5.4 4.9 4.9

TimeTravel 2 1.9 1.0 41.0 15.1 12.1 6.9 6.9
3 1.9 1.0 526.3 31.8 22.4 8.8 8.8
1 3.2 1.1 24.7 11.1 11.1 10.0 10.0

ProducerConsumer 2 3.2 1.3 358.6 34.1 28.5 11.6 11.6
3 3.2 1.6 6854.8 173.6 57.0 13.2 13.2
1 15.3 1.0 360.5 96.7 96.7 90.2 90.2

BoundedBuffer 2 15.3 1.1 43112.0 316.8 232.1 99.9 99.9
3 15.3 1.1 – 685.8 426.1 105.8 105.8

Primes 1 17.5 1.6 1189.1 195.5 142.6 108.6 108.6
2 17.5 3.0 – 1458.5 788.2 338.9 338.9

AlarmClock 1 66.9 1.6 – 875.1 313.0 127.2 127.2
2 66.9 3.5 – 2380.1 1607.7 397.2 397.2

LaplaceGrid 1 38.2 1.6 6376.7 167.6 59.4 27.4 27.4
2 38.2 2.6 – 2409.3 441.9 100.5 100.5

SharedQueue 1 87.9 2.1 – 1599.7 145.1 111.7 111.7
2 87.9 5.3 – – – 636.3 636.3

Table 2. Average number of elements inserted into the outer worklists per slice

nested thread invocation and potential time travel situations.
ProducerConsumer implements a producer-consumer rela-
tion, BoundedBuffer is a bounded buffer example, Primes
is a concurrent implementation of Eratosthenes’ primes
sieve, AlarmClock simulates an alarm clock, Laplace-
Grid solves Laplace’s equation over a rectangular grid and
SharedQueue starts a set of threads that communicate via
a shared queue. AlarmClock, BoundedBuffer, LaplaceGrid
and SharedQueue are taken from the test suite of the Ban-
dera project from the SAnToS Laboratory at the Kansas
State University1. In our graph representation, threads are
annotated with the number of their instances that exist at
runtime. To observe how the algorithms cope with com-
binatorial explosion of thread states, we artificially raised
the number of thread instances. This way we created sev-
eral versions of the eight programs, resulting in a total of 20
programs. For each program, we computed 100 slices.

Table 1 shows the the average computation times per
slice for our concurrent test programs in seconds. Omitted
entries mean that the corresponding test suite run was not
finished after 24 hours. The values for ‘nodes’ and ‘edges’
show the number of nodes and edges, respectively, of the
dependence graphs, the value for ‘thread’ shows the num-
ber of different thread types in the programs, and the values
for ‘classes’ and ‘methods’ show the number of classes and
methods that are used in the programs. Table 2 shows the
average number of elements inserted into the outer worklists
due to interference edge traversals. Table 3 shows the av-
erage size of the computed slices in number of nodes. Col-
umn ‘instances’ in tables 1, 2 and 3 shows the number of
instances of every thread that exist at runtime. For exam-
ple: BoundedBuffer contains 3 threads. The column with
‘instances = 2’ means that the running program contains

1http://www.cis.ksu.edu/santos/

each two instances of every thread, resulting in 6 threads
at runtime.

As table 3 shows, all algorithms are able to compute
smaller slices than the iterated two-phase slicer I2P. The
gain of precision ranges between 0%, for ProducerCon-
sumer, and 30%, for LaplaceGrid and Shared Queue. The
algorithms using Nanda’s model of concurrency, N, ON and
GK, are the most precise. The algorithms using Krinke’s
model of concurrency, K, OK and GK*, gain less preci-
sion. The imprecise algorithm S is more precise than the
I2P slicer, but its gain of precision ranges only between 0%
and 5%. It is further remarkable that increasing the num-
ber of thread instances decreases the benefit of the precise
algorithms, whereas the needed computation times rise sig-
nificantly: The more thread instances exist, the more inter-
ference edge traversals find a thread instance providing a
fitting execution state.

We identified two major issues that influence the perfor-
mance of the tested precise algorithms: combinatorial ex-
plosion of state tuples and the context computation and rep-
resentation in the intra-thread slicers. The combinatorial ex-
plosion of state tuples directly influences the number of ele-
ments inserted into the outer worklist (table 2). Krinke’s al-
gorithm K suffers from both issues and could only slice our
smaller test programs in reasonable time. Table 2 shows that
the size of its outer worklists grows very fast when the num-
ber of thread instances is raised. Nanda’s algorithm uses the
restrictive state tuple optimization to ease this combinato-
rial explosion, which is very effective (table 2). Addition-
ally, the ISCR graph construction creates fewer contexts as
in Krinke’s algorithm (see section 3.1), further reducing the
possible combinations. Another advantage of Nanda’s algo-
rithm is, that it represents contexts as single integers instead
of call strings like Krinke’s algorithm. The call string rep-

Name Instances I2P S K GK* GK N ON
1 31.2 27.0 26.6 26.6 24.7 24.7 24.7

PrecisionTest 2 31.2 31.1 31.1 31.1 28.8 28.8 28.8
3 31.2 31.1 31.1 31.1 28.9 28.9 28.9

TimeTravel 1 24.1 23.5 23.5 23.5 23.5 23.5 23.5
2 24.1 24.1 24.1 24.1 24.1 24.1 24.1

ProducerConsumer 1 38.8 38.8 38.8 38.8 38.8 38.8 38.8
BoundedBuffer 1 211.9 211.1 211.1 211.1 211.1 211.1 211.1

2 211.9 211.9 211.9 211.9 211.9 211.9 211.9
Primes 1 353.4 342.3 335.7 335.7 335.7 335.7 335.7

2 353.4 353.4 – 353.4 353.4 353.4 353.4
AlarmClock 1 918.5 910.6 – 831.8 683.4 683.4 683.4

2 918.5 910.6 – 909.8 762.3 762.3 762.3
LaplaceGrid 1 1534.6 1498.4 1179.5 1179.5 1019.3 1019.3 1019.3

2 1534.6 1534.6 – 1301.1 1055.8 1055.8 1055.8
SharedQueue 1 2174.2 2082.3 – 2019.9 1479.9 1479.9 1479.9

2 2174.2 2169.9 – – – 1890.1 1890.1

Table 3. Average size per slice (number of nodes)

resentation is likely to decline performance in bigger pro-
grams, as its size can grow arbitrarily. The performance of
our improved versions of Krinke’s algorithm, GK and GK*,
is similar to the performance of Nanda’s algorithm for the
smaller programs. For the bigger programs, however, their
performance declines, as they use the call site representa-
tion for contexts. Nanda’s model of concurrency used in
GK can gain a speed-up compared to Krinke’s model of
concurrency used in GK* (e.g. AlarmClock, LaplaceGrid,
SharedQueue). Our optimized version of Nanda’s algo-
rithm, ON, has noticeably lower execution times, e.g. for
AlarmClock, LaplaceGrid and SharedQueue. Of all precise
algorithms it performed best. The S algorithm is less af-
fected by the combinatorial explosion of thread state tuples,
as it does not use contexts as thread states. The I2P algo-
rithm is not affected at all as it does not consider thread
states nor contexts.

Nanda’s algorithm might perform poorly for programs
with deep call-chains or high usage of libraries. Both fac-
tors affect the cost of the reachability analysis which is com-
puted after every edge traversal. We made a small case
study with sequential programs to observe these factors; it
is shown in table 4. We used the two-phase slicer (2P), the
iterated two-phase slicer (I2P) and the intra-thread slicing
algorithms of K, N and ON, abbreviated with (K’), (N’) and
(ON’). JavaCard Wallet is a program with deep call-chains
and high usage of libraries. Here Nanda’s algorithm per-
forms worst. On the other hand, the algorithm might per-
form well for big programs that are highly recursive. As
described in section 3.1, recursive cycles and all procedure
calls within a cycle are collapsed into one single node. In
highly recursive programs, this can reduce the number of
contexts significantly.

Nanda provides an evaluation for her algorithm [16];
however, it is difficult to compare its results with ours, as her
original algorithm may compute incorrect slices by pruning
valid interference edges. We fixed the algorithm by only ap-

plying the restrictive state tuple optimization when travers-
ing interference edges, which avoids such pruning but raises
execution times. For example, our implementation of the
original algorithm that computes incorrect slices needs 1.6
seconds on average to slice the SharedQueue program with
2 instances for each thread (not shown in our tables), the
fixed algorithms N and ON need 15.4 seconds and 11.4 sec-
onds respectively (table 1).

Krinke did not implement his algorithm. To the best of
our knowledge, our implementation is the first, so we could
not compare it with another evaluation.

4.3. Study Summary

The algorithms for precise slicing of concurrent pro-
grams are able to decrease the size of the slices significantly
– up to 30% in our tests – but they pay a high price: The
execution times rise dramatically and are dependent on the
numbers of threads in the analyzed program. A vital re-
quirement for an application of one of these algorithms is, in
our opinion, to use Nanda’s restrictive state tuple optimiza-
tion. Nanda’s more precise model of concurrency is not
bound to increase the execution times – it can even decrease
it – so we also recommend to use it. Two of the examined
algorithms, Nanda’s algorithm and our improved version of
Krinke’s algorithm, use both recommendations. Nanda’s
algorithm has an advantage as it represents contexts by sin-
gle integers. The application area of these algorithms is, in
our opinion, bound to concurrent programs with a low num-
ber of threads, as increasing numbers of threads decrease
the precision benefits and at the same time raise execution
times. The iterated two-phase slicer is by far the most effi-
cient algorithm. Additionally, it is easy to implement, so we
recommend its use for slicing bigger concurrent programs,
for programs with high numbers of threads and in applica-
tion areas where its imprecision is negligible.

4.4. Threats to validity

As evaluations depend on the quality of the used bench-
mark, we want to discuss possible flaws of our selected pro-
grams.

Our case study lacks bigger programs. As the size of
a program does not necessarily influence the number of
thread-shared data, the algorithms might work well for big-
ger programs with sparse interference dependences. In our
case study we examined programs with a small number of
threads and artificially raised their number of instances. As
a result the performance and the precision benefit declined.
However, that needs not be the case for programs with many
threads but only few thread instances. Future work could
therefore investigate how the algorithms cope with bigger
programs with few threads or few instances of threads, e.g.
graphical user interfaces written in Java. Further threats to
validity are possible bugs in the implementations, as these
algorithms are not easy to implement.

5. Related work

We only gave a summary of Krinke’s and Nanda’s al-
gorithms. Both have described their algorithms in detail in
several publications [14, 16]. Also, there exist earlier, in-
traprocedural variants of both algorithms [12, 17].

Chen [3] developed a different approach to handle the
intransitivity of interference dependence. He uses execution
orders, MHP analysis and synchronization information to
detect time-travel situations during slicing. As his approach
needs to inline synchronized methods, it cannot completely
handle recursion.

Probably the first who addressed slicing of concurrent
programs was Cheng [4, 5]. He developed a Program De-
pendence Net (PDN) for representing dependences in par-
allel or distributed programs without procedures, where the
concurrent tasks communicate via channels. He defines se-
lection dependence which is a kind of control dependence
for nondeterministic selection of communication partners,
synchronization dependence, a special control dependence
based on synchronization, and communication dependence,
a dependence between statements that are transitively de-
pendent via a path that contains both data dependence and
communication dependence. Slicing on PDNs is then per-
formed using simple graph reachability.

The PDN is extended to the System Dependence Net
SDN for representing concurrent object-oriented programs
by Zhao et al. [24]. To slice on this SDN, they extend the
two-phase-slicer to traverse the additional kinds of depen-
dences in both phases. A similar algorithm is used by Zhao
to slice concurrent Java programs [25]. His Multithreaded
Dependence Graph (MDG) is similar to the cSDG and
additionally contains synchronization dependences arising

Dijkstra MatrixMult JavaCard Wallet
nodes 2927 3346 23340
edges 8837 20706 109360
K’ .128 4.826 636.137
N’ .006 .047 10130.578
ON’ .004 .037 4806.853
2P .001 .007 .032
I2P .001 .007 .031

Table 4. Average execution time per slice for
sequential programs (in seconds)

from Java’s operations for synchronization. To slice on
MDGs he uses a modified two-phase slicer that additionally
traverses interference and synchronization dependences in
both phases. Nanda shows that such a simple inclusion of
interference dependence into both phases of the two-phase
slicing algorithm results in incorrect slices [16].

Hatcliff et al. [9] use slicing in their Bandera project, a
tool set for compiling Java programs into inputs of several
existing model-checkers, to analyze and omit program parts
that are unrelated to a given specification. They use similar
dependences as in the cSDG and define further dependences
to represent synchronization and indefinitely delays of exe-
cution. Their synchronization dependence captures depen-
dences between a statement and its innermost-enclosing ac-
quisition and release of a monitor. The divergence depen-
dence represents the situation where an infinite loop may in-
finitely delay the further execution, ready dependence sim-
ilarly represents the situation where a statement may block
the further execution of a thread. They trade precision for
efficiency by treating interference dependence as transitive.

Ramalingam shows that synchronization-sensitive
context-sensitive slicing slicing of concurrent programs
is undecidable [20]. This is achieved by reducing Post’s
Correspondence Problem to the synchronization-sensitive
context-sensitive reaching problem.

6. Conclusion and future work

We evaluated Nanda’s and Krinke’s algorithms for pre-
cise slicing of concurrent programs. Our results can be sum-
marized as follows: Both algorithms are able to raise preci-
sion significantly, but do not scale well for larger programs
or higher numbers of threads. We showed that Nanda’s orig-
inal algorithm can compute incorrect slices, and a way to fix
it. We further applied several optimizations to both algo-
rithms. For most programs in our test suite, our optimized
version of Nanda’s algorithm performed best.

A major handicap of the precise concurrent slicing algo-
rithms is, that in programs with many thread instances the
computational costs may rise extremely, while the precision
benefit decreases. This seems to restrict their usability to

programs with a small number of thread instances. One
way to cope with this problem could be to conservatively
approximate a thread, when its instances exceed a certain
number, the way we treat threads generated in loops: Every
traversal of an interference edge towards such a thread is
considered to be valid. Apart from that, incremental preci-
sion can be employed in applications like e.g. information
flow control [8]. If an illegal influence is detected with the
I2P slicer, a more precise slicer may prune that dependence
(but at a higher cost). Since this analysis is only done at
compile time, a larger overhead for parts of the problem is
probably acceptable.

Another problem we encountered is the usage of the pro-
gram’s CFG to determine valid execution orders. For that
purpose, it it necessary that the generated CFG does in fact
represent the execution order in the executed program. A
Java compiler, for example, is permitted to reorder the in-
structions in a thread, as long as the reorderings do not affect
the semantics of that thread in isolation [6]. This may result
in spuriously rejected interference edge traversals and thus
in incorrect slices.

A finer grained concurrency model – e.g. modeling join
points of threads – based on the happens-before relation de-
fined in the Java Memory Model (JMM)[6] or based on
MHP (may-happen-in-parallel) analysis [18] would allow
pruning of redundant interference dependence edges and
detecting more time travels, resulting in fewer reachability
checks and higher precision. Apart from that, reachability
itself could become more precise, such that a smaller num-
ber of contexts is encountered

References

[1] H. Agrawal, R. Demillo, and E. Spafford. Debugging with
dynamic slicing and backtracking. SoftwarePractice and Ex-
perience, 23(6):589–616, 1993.

[2] S. Bates and S. Horwitz. Incremental program testing using
program dependence graphs. Proc POPL ’93, pp. 384–396,
ACM Press, 1993.

[3] Z. Chen and B. Xu. Slicing concurrent java programs. ACM
SIGPLAN Notices, 36(4):41–47, 2001.

[4] J. Cheng. Slicing concurrent programs. Automated and Al-
gorithmic Debugging, 1993.

[5] J. Cheng. Dependence analysis of parallel and distributed
programs and its applications. International Conference on
Advances in Parallel and Distributed Computing, 1997.

[6] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Addison Wesley Prof., 3rd edition,
2005. http://java.sun.com/docs/books/jls/.

[7] C. Hammer and G. Snelting. An improved slicer for Java.
PASTE’04, 2004.

[8] C. Hammer, J. Krinke, and G. Snelting: Information flow
control for java based on path conditions in dependence

graphs. Proc. IEEE International Symposium on Secure Soft-
ware Engineering, 2006

[9] J. Hatcliff, J.C. Corbett, M.B. Dwyer, S. Sokolowski, and
H. Zheng. A formal study of slicing for multi-threaded
programs with jvm primitives. Static Analysis Symposium,
pages 1–18, 1999.

[10] S.B. Horwitz, T.W. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Trans. Prog. Lang.
Syst., 12(1):26–60, 1990.

[11] M. Kamkar, N. Shahmehri, and P. Fritzson. Bug localization
by algorithmic debugging and program slicing. Proceedings
of International Workshop on Programming Language Im-
plementation and Logic Programming, LNCS, 456pp.60–74,
Springer, 1990.

[12] J. Krinke. Static slicing of threaded programs. PASTE ’98,
pp. 35–42, 1998.

[13] J. Krinke. Evaluating context-sensitive slicing and chopping.
International Conference on Software Maintenance, pages
22–31, 2002.

[14] J. Krinke. Context-sensitive slicing of concurrent programs.
Proc. ESEC/FSE’03, pages 178–187, 2003.

[15] M. Müller-Olm and H. Seidl. On optimal slicing of parallel
programs. STOC 2001 (33th ACM Symposium on Theory of
Computing), pages 647–656, 2001.

[16] M.G. Nanda and S. Ramesh Interprocedural slicing of
multithreaded programs with applications to Java. ACM
TOPLAS., 28(6):1088–1144, 2006.

[17] M.G. Nanda and S. Ramesh. Slicing concurrent programs.
ISSTA 2000, pages 180–190, 2000.

[18] G. Naumovich, G. S. Avrunin, and L. A. Clarke. An effi-
cient algorithm for computing MHP information for concur-
rent java programs. In Proc. ESEC/FSE ’99, pages 338–354.
Springer, 1999.

[19] K.J. Ottenstein and L.M. Ottenstein. The program depen-
dence graph in a software development envi- ronment. ACM
Softw. Eng. Notes, 9(3):177–184, 1984.

[20] G. Ramalingam. Context-sensitive synchronization-sensitive
analysis is undecidable. ACM Trans. Prog. Lang. Syst., 22
(2):416–430, 2000.

[21] M. Sharir and A. Pnueli. Two approaches to interprocedu-
ral data flow analysis. Program Flow Analysis: Theory and
Applications, 1981.

[22] F. Tip. A survey of program slicing techniques. Journal of
Prog. Lang., 3(3):121–189, Sept. 1995.

[23] M. Weiser. Program slicing. IEEE TSE, pages 352–357
1984.

[24] J. Zhao, J. Cheng, and K. Ushijima. Static slicing of con-
current object-oriented programs. Proceedings of the 20th
IEEE Annual Int. Computer Software and Applications Con-
ference, pages 312–320, 1996.

[25] J. Zhao. Slicing concurrent java programs. Proceedings of
the 7th IEEE International Workshop on Program Compre-
hension, pages 126–133, 1999.

