
Static Slicing of Concurrent Programs
- An Evaluation -

Dennis Giffhorn, Christian Hammer

Universität Passau

October 11, 2007

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Initial situation

Precise slicing of concurrent programs with procedures and
recursion

J. Krinke: Context-Sensitive Slicing of Concurrent
Programs (ESEC/FSE, September 2003)

M. Nanda and S. Ramesh: Interprocedural slicing of
multithreaded programs with applications to Java (ACM
TOPLAS, 2006)

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Extending SDGs for concurrent programs

Interference dependence
Statement n ist interference dependent on statement m, if:

1 n uses variable v and m defines v
2 m and n are executed concurrently

No execution order between n and m
→ Interference dependence is not transitive

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Extending SDGs for concurrent programs

Interference dependence
Statement n ist interference dependent on statement m, if:

1 n uses variable v and m defines v
2 m and n are executed concurrently

No execution order between n and m
→ Interference dependence is not transitive

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Extending SDGs for concurrent programs

Interference dependence
Statement n ist interference dependent on statement m, if:

1 n uses variable v and m defines v
2 m and n are executed concurrently

No execution order between n and m
→ Interference dependence is not transitive

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Example – slice for node 7

 start
thread_1

control dependence

data dependence

1

2

3

4

5

6

7

interference dependence

 int x = 0, y = 1;

1: main ()
2: int p = x - 2;
3: int q = p + 1;
4: y = q * 3;

5: thread_1 ()
6: int a = y + 1;
7: int b = a - 4;
8: x = b / 2;

entry
main

p = x-2

q = p+1

y = q*3

a = y+1

 b = a-4

x = b/2

8

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Example – slice for node 7

 start
thread_1

control dependence

data dependence

1

2

3

4

5

6

7

interference dependence

 int x = 0, y = 1;

1: main ()
2: int p = x - 2;
3: int q = p + 1;
4: y = q * 3;

5: thread_1 ()
6: int a = y + 1;
7: int b = a - 4;
8: x = b / 2;

entry
main

p = x-2

q = p+1

y = q*3

a = y+1

 b = a-4

x = b/2

8

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Example – slice for node 7

 start
thread_1

control dependence

data dependence

1

2

3

4

5

6

7

interference dependence

 int x = 0, y = 1;

1: main ()
2: int p = x - 2;
3: int q = p + 1;
4: y = q * 3;

5: thread_1 ()
6: int a = y + 1;
7: int b = a - 4;
8: x = b / 2;

entry
main

p = x-2

q = p+1

y = q*3

a = y+1

 b = a-4

x = b/2

8

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Example – slice for node 7

 start
thread_1

control dependence

data dependence

1

2

3

4

5

6

7

interference dependence

 int x = 0, y = 1;

1: main ()
2: int p = x - 2;
3: int q = p + 1;
4: y = q * 3;

5: thread_1 ()
6: int a = y + 1;
7: int b = a - 4;
8: x = b / 2;

entry
main

p = x-2

q = p+1

y = q*3

a = y+1

 b = a-4

x = b/2

8

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Example – imprecise result

 start
thread_1

control dependence

data dependence

1

2

3

4

5

6

7

interference dependence

 int x = 0, y = 1;

1: main ()
2: int p = x - 2;
3: int q = p + 1;
4: y = q * 3;

5: thread_1 ()
6: int a = y + 1;
7: int b = a - 4;
8: x = b / 2;

entry
main

p = x-2

q = p+1

y = q*3

a = y+1

 b = a-4

x = b/2

8

Node 8 cannot influence node 7
⇒ Time travel

→ Solution: remember where threads are left

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Example – imprecise result

 start
thread_1

control dependence

data dependence

1

2

3

4

5

6

7

interference dependence

 int x = 0, y = 1;

1: main ()
2: int p = x - 2;
3: int q = p + 1;
4: y = q * 3;

5: thread_1 ()
6: int a = y + 1;
7: int b = a - 4;
8: x = b / 2;

entry
main

p = x-2

q = p+1

y = q*3

a = y+1

 b = a-4

x = b/2

8

Node 8 cannot influence node 7
⇒ Time travel

→ Solution: remember where threads are left

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Problem of this approach

Nodes can be visited multiple times
Remember where each thread was left to reach a node

→ Nodes are annotated with thread states

Visited as often as its thread state annotations differ
→ Worst case number of visits: O(|nodes||threads|)

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Problem of this approach

Nodes can be visited multiple times
Remember where each thread was left to reach a node

→ Nodes are annotated with thread states

Visited as often as its thread state annotations differ
→ Worst case number of visits: O(|nodes||threads|)

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Problem of this approach

Nodes can be visited multiple times
Remember where each thread was left to reach a node

→ Nodes are annotated with thread states

Visited as often as its thread state annotations differ
→ Worst case number of visits: O(|nodes||threads|)

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Problem of this approach

Nodes can be visited multiple times
Remember where each thread was left to reach a node

→ Nodes are annotated with thread states

Visited as often as its thread state annotations differ
→ Worst case number of visits: O(|nodes||threads|)

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Problem of this approach

Nodes can be visited multiple times
Remember where each thread was left to reach a node

→ Nodes are annotated with thread states

Visited as often as its thread state annotations differ
→ Worst case number of visits: O(|nodes||threads|)

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Sample case study

Algorithms
T – transitive approximation
K – optimized version of Krinke’s algorithm
N – optimized version of Nanda’s algorithm

4 sample programs
Name Nodes Edges Classes Methods Threads
PrecisionTest 328 904 6 10 2
AlarmClock 4085 13842 17 74 2
LaplaceGrid 10022 100730 22 95 3
SharedQueue 17998 139480 23 122 3

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Average size

Gain of precision: up to 35%

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Average speed

K and N are much more expensive than T

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Stress test

Now we double the number of threads in these programs
What will happen?

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Stress test

Now we double the number of threads in these programs
What will happen?

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Average size

The gain of precision decreases...

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Average speed

...and the costs explode

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Conclusion

⇒ Precise slicing of concurrent programs does not
scale for real-world programs

⇒ We need a trade-off between precision and speed
K-limitation for time travel detection

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Conclusion

⇒ Precise slicing of concurrent programs does not
scale for real-world programs

⇒ We need a trade-off between precision and speed
K-limitation for time travel detection

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

Questions?

Dennis Giffhorn, Christian Hammer Static Slicing of Concurrent Programs

