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Initial situation

Precise slicing of concurrent programs with procedures and
recursion

J. Krinke: Context-Sensitive Slicing of Concurrent
Programs (ESEC/FSE, September 2003)

M. Nanda and S. Ramesh: Interprocedural slicing of
multithreaded programs with applications to Java (ACM
TOPLAS, 2006)
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Extending SDGs for concurrent programs

Interference dependence
Statement n ist interference dependent on statement m, if:

1 n uses variable v and m defines v
2 m and n are executed concurrently

No execution order between n and m
→ Interference dependence is not transitive
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Example – slice for node 7

    start 
thread_1

control dependence

data dependence

1

2

3

4

5

6

7

interference dependence

    int x = 0, y = 1;

1: main () 
2:    int p = x - 2;
3:    int q = p + 1;
4:    y = q * 3;

5: thread_1 () 
6:    int a = y + 1;
7:    int b = a - 4;
8:    x = b / 2;

entry
main

p = x-2

q = p+1

y = q*3

a = y+1

 b = a-4

x = b/2

8
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Example – imprecise result
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8

Node 8 cannot influence node 7
⇒ Time travel

→ Solution: remember where threads are left
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Problem of this approach

Nodes can be visited multiple times
Remember where each thread was left to reach a node

→ Nodes are annotated with thread states

Visited as often as its thread state annotations differ
→ Worst case number of visits: O(|nodes||threads|)
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Sample case study

Algorithms
T – transitive approximation
K – optimized version of Krinke’s algorithm
N – optimized version of Nanda’s algorithm

4 sample programs
Name Nodes Edges Classes Methods Threads
PrecisionTest 328 904 6 10 2
AlarmClock 4085 13842 17 74 2
LaplaceGrid 10022 100730 22 95 3
SharedQueue 17998 139480 23 122 3
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Average size

Gain of precision: up to 35%
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Average speed

K and N are much more expensive than T
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Stress test

Now we double the number of threads in these programs
What will happen?
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Average size

The gain of precision decreases...
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Average speed

...and the costs explode
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Conclusion

⇒ Precise slicing of concurrent programs does not
scale for real-world programs

⇒ We need a trade-off between precision and speed
K-limitation for time travel detection
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Questions?
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