
Toward an Implementation of the “Form Template Method”
Refactoring

Nicolas Juillerat
University of Fribourg

nicolas.juillerat@unifr.ch

Béat Hirsbrunner
University of Fribourg

beat.hirsbrunner@unifr.ch

Abstract

This paper presents an implementation of the “form tem-
plate method” refactoring. This transformation has not
been automated yet, but has many similarities with other
transformations such as clone detection and removal or
method extraction. Forming a template method is a diffi-
cult process because it has to deal with code statements
directly. Few abstractions and algorithms have been
investigated yet, compared to transformations dealing
with higher level aspects such as the classes, methods,
fields and their relations. We present a new algorithm
that performs this transformation in a semi-automated
way on Java programs. We state the difficulties inherent
to this transformation and propose solutions to handle
them.

1. Introduction

It has been widely accepted in the software engineering
community that any software is subject to entropy: the
design of a system is constantly changing while it is being
developed, meaning that the initial architecture tends to
gradually degrade over time.

Refactorings [10, 14] are small semantics preserving
code transformations. Their aim is to counter care this
problem, by helping the developer to cope with changes
of a design over time. It is now becoming standard for a
development environment to provide at least a few refac-
toring implementations, such as renaming fields or meth-
ods, introducing delegates, etc.

In this paper, we present a new algorithm that performs
the “form template method” refactoring. This is a trans-
formation that takes as input two methods that are similar,
but not exactly the same, such as the following:

public void rotateAt(Point center,
 double amount) {
 translate(mult(center, -1 + 5));
 rotate(amount, center);
 translate(center);
 normalize(amount);
}

public void skewAt(Point center,
 double amount) {
 translate(mult(center, -1 - 4));
 amount = skew(amount);
 translate(center);
 normalize(amount);
}

Listing 1

The purpose of the refactoring is to build a template
method that captures all the statements that are the same
in both methods. The two methods typically belong to two
classes extending the same parent class. The differences
are extracted into new methods of both classes and the
template is then pulled up into the parent class. It may
look as follows in our example:

public void templateMethod(
 Point center, double amount) {
 translate(mult(center, d1()));
 amount = d2(amount, center);
 translate(center);
 normalize(amount);
}

The methods d1 and d2 contain the differences. They
are abstract in the parent class. They are implemented in
both subclasses and are invoked in a polymorphic way
from the template method in the parent class. This exam-
ple will be used throughout this paper as an illustration of
our algorithm.

Most other existing refactorings are dealing with
classes, fields, methods and their relations [10]. They are
thus limited to the “declarative” part of a program. Excel-
lent models and languages have been developed to help
their implementations [3, 5, 6, 7].

 Forming a template method on the other hand is a
transformation that has to deal directly with code state-
ments, or the “executable” part of a program. Models and
languages are much more limited in this area. The com-
monly used representation of code statements is the Ab-
stract Syntax Tree (AST) [3]. This representation is quite
poor in expressing information that is relevant for the
transformation of statements. As a result, few refactorings
dealing with statements have been successfully imple-
mented yet.

mailto:nicolas.juillerat@unifr.ch
mailto:beat.hirsbrunner@unifr.ch

The process of forming a template method is closely
related to the process of detecting and removing clones.
Both problems can be solved by similar algorithms, but
only clone detection and removal has been investigated
yet [2, 8, 13]. Clone removal is also closely related to the
“extract method” refactoring [12, 16].

In this paper we present an algorithm to form a tem-
plate method. The algorithm is based on existing tech-
niques used for clone detection and removal. Our contri-
butions are hence the following:

• The process of forming a template method has
some notable differences compared to the process
of clone detection and removal. We state them and
propose new or modified algorithms to handle
them.

• We propose a novel algorithm structure based on
three steps instead of the usual two steps (detec-
tion and extraction). This structure gives us addi-
tional freedom that can be exploited to improve
the overall quality of the transformation.

The rest of this paper is structured as follows: in sec-
tion 2, we give an overview of the main steps of our algo-
rithm. In sections 3 to 5, we explain the implementations
of the individual steps in details. In section 6, we present
the current state of a concrete implementation of our algo-
rithm as an Eclipse plugin, and we give preliminary re-
sults as well as future working directions. We then com-
pare our work with related previous research in section 7
and conclude in section 8.

2. Overview

This section presents the overall structure of our algo-
rithm and the motivations behind it. The detailed imple-
mentation is then explained in sections 3 to 5.

2.1. Structure of the Algorithm

Our algorithm is basically structured in three steps.
Note that this subdivision is not limited to the process of
forming a template method, but can also be applied to the
process of detecting and removing clones, which is very
similar. The steps are the following:

• Detection of similarities and differences
• Resolution of constraints
• Extraction of methods
The first step is obvious: a template method is a

method that captures every common statement between
two different methods. In order to form it, we have to
identify these common statements. A similar analysis is
necessary for clone detection, except that we are not
working with a pair of methods but with an entire pro-
gram.

Various algorithms have been investigated for this
analysis in the field of clone detection [4, 13, 16]. Our
solution is mainly based on previous work and is dis-
cussed in section 3. It competes with the best existing
approaches in term of efficiency and speed, at the expense
of some additional complexity in the algorithm.

The last step of the process (we leave the second step
for the end of this section) is to perform the methods ex-
tractions. It consists in extracting subsets of consecutive
statements into new methods. When detecting and remov-
ing clones, subsets of duplicated statements are extracted.
When forming a template method, subsets of different
statements are extracted. In both cases though, the process
is similar, and is not different than applying the “extract
method” refactoring multiple times. This transformation is
already deeply covered in the literature, and our imple-
mentation is based on existing research.

The second step of the process finally, the resolution of
the constraints, is the main novelty of this paper.

If we recall the initial problem we have to solve, it
seems at a first glance that only the first and third steps
are necessary. After all, we have to identify differing
statements between two methods in a first step, and then
we have to extract them into new methods. We therefore
have a process that looks like the composition of two
steps: an analysis followed by a transformation. Indeed,
the problem of detecting and removing clone, as its name
suggests it, is usually presented that way.

We now give motivations for the introduction of the
additional intermediate step and explain its purpose.

2.2. Motivations

The first reason why we choose to introduce an addi-
tional intermediate step is the following: the process of
extracting a method (used in the last step) is simply not
possible with arbitrary subsets of statements. More pre-
cisely, the “extract method” refactoring has various pre-
conditions [2, 4], and can only be performed if all of them
are fulfilled. Furthermore, previous research in the field of
clone detection shows that automatically detected differ-
ences or duplications break at least one of these precondi-
tions on nearly half of the cases [13].

Concretely, the purpose of the intermediate step we are
introducing is to solve this problem by checking for
ranges of statements that cannot be extracted, and to mod-
ify them in such a way the extraction becomes possible.
Not surprisingly, the actual modifications are driven by
the various preconditions of the “extract method” refac-
toring.

Existing tools for clone detection and removal have
used various alternate approaches to solve this problem.
The simplest one is to report the broken preconditions to
the user, who can then resolve them before the extraction
[3]. Other authors have investigated various tricks to ex-

tract “difficult” methods on the C language, to increase
the chances that the method can be extracted successfully
[12]. Finally, it is also possible to modify the first step in
such a way it only produces results which are suitable for
the extraction [16].

The introduction of a second step between the detec-
tion and the extraction gives us more flexibility: in the last
step, nothing forces us to extract exactly the fragments
that are detected in the first step, as long as the final result
remains correct. More precisely, the only hard constraint
on the final result is that only common statements can be
left in the template method. Else it cannot be pulled up
safely in the parent class.

Conversely, only different statements should be ex-
tracted but this is not a hard constraint. It does not prevent
the template method from being created and pulled up.

A second motivation for the introduction of the second
step is that we can usually transform the statements in
several different ways to allow the extractions. As a re-
sult, a full-featured and interactive tool can present multi-
ple alternatives to the user, leaving him the choice of the
one to apply.

Section 3 briefly describes the first step of our algo-
rithm, the detection of differences and duplicated state-
ments. Section 4 presents the second step, which consists
in modifying the detected fragments so that they can be
extracted safely. Section 5 deals with the last step, the
extraction of the methods.

3. Detection of Differences

In this section, we investigate the first step of our algo-
rithm in details. This is a purely analytical step, whose
purpose is to identify the fragments of code that are dupli-
cated and those that are different between two methods.
By a fragment of code, we mean an expression or a list of
consecutive statements.

We only focus on the detection of duplicated frag-
ments: the fragments that are different are then just the
remaining ones.

Our choice is to use a list-based approach that has been
successfully used for clone detection [4] with a few adap-
tations. This approach can be summarized as follow:

• Parse the code into an Abstract Syntax Tree (AST)
• Use a post-order traversal to get it as a token list
• Apply a fast detection algorithm on the resulting

list
The last step for clone detection is to use the LZ77 al-

gorithm [17] to detect duplicated code statements1. In our
case, we cannot use the same algorithm for the last step.
First because we have two different lists corresponding to

the bodies of the two methods, second because we can
only consider duplicated fragments that occur in the same
order in both methods.

Our proposal is to use a differentiation algorithm in-
stead of the LZ77 algorithm, such as the one used in the
Linux diff command [18].

translate

+

rotate

rotateAt

mult

center

normalize

amount

translate

center

5-1

center amount

translate

-

=

skewAt

mult

center

normalize

amount

translate

center

4-1

skew amount

amount

Figure 1 : ASTs of the two initial methods

Let us illustrate the process. Figure 1 shows the ASTs
of the two methods of Listing 1 presented in the introduc-
tion. After the post-order traversal, we get the two follow-
ing lists of tokens:

[center, -1, 5, +, mult, translate,
 amount, center, rotate, center,
 translate, amount, normalize]

[center, -1, 4, -, mult, translate,
 amount, amount, skew, =, center,
 translate, amount, normalize]

A differentiation algorithm immediately reveals that
the three following non-trivial sublists occur in both token
lists:

[center, -1]
[mult, translate, amount]
[center, translate, amount, normalize]

These sublists correspond to statements that are the
same in both methods. The statements that are different
are formed by the remaining tokens. These statements are
those that we will have to extract in new methods. In our
example, they correspond to the following sublists:

[5 +], [center, rotate]
[4 -], [amount, skew, =]

 These sublists do not necessarily correspond to subsets
of statements that can be extracted safely. In this example
for instance, they do not even correspond to single ex-

1 The LZ77 algorithm is mainly used in the field of data compression. It
is part of the implementation of various popular compression techniques
such as gzip.

pressions. We will deal with this problem in the next step
of the algorithm, described in the next section.

There is an important issue to remember at this stage:
when we are using a post-order traversal to get a list of
tokens, we are not converting the AST into a list; we are
rather creating a view of the AST as a list. In other words,
each token of the list is still a node of the AST as well: it
not only knows its position within the list, but also its
parent and child nodes within the AST. This is an impor-
tant fact because we will need the original tree structure in
the next steps of the algorithm. The list representation is
only constructed in order to apply a fast differentiation
algorithm, but we do not loose any structural information
from the AST in this process.

A differentiation algorithm has an O(n2) worst-case
complexity. But good implementations typically have a
nearly linear complexity on average [18]. AST-based
approaches have been investigated for clone detection and
typically give an O(n2) average complexity [16]. Thus,
our list based approach is expected to give slightly faster
results than an approach directly based on the AST.

4. Application of Constraints

In this section, we describe the main part of our algo-
rithm, the second step. Its purpose is to transform the
similarities and differences detected in the previous step,
so that all the differences can be safely extracted into new
methods in the next step.

The implementation consists in applying a list of con-
straints that are mostly independent from each other. The
purpose of the first constraint we present is to resolve a
side effect of using a list-view of the AST for the differen-
tiation. The purpose of the other constraints is to resolve
preconditions of the “extract method” refactoring.

4.1. Completing Expressions

In the first step that was described in section 3, we
used a token list to look for differences and similarities
between two methods. Because a list has much less struc-
tural information than an AST, we ended up in our exam-
ple with sublists of statements that do not correspond to
single expressions or to sequences of consecutive full
statements:

[5 +], [center, rotate]
[4 -], [amount, skew, =]

The purpose of the first constraint is to extend these
sublists so that each of them corresponds either to a full
expression, or to a list of consecutive full statements.
Indeed, these are the only kinds of fragments we can
safely extract into new methods.

The implementation requires the initial AST structure
and basically works as follows for a given sublist:

• Search the first common ancestor (in the tree
structure) of all nodes of the sublist.

• Extend the sublist with all missing descendents of
the common ancestor.

The effective result after this process is that a sublist
always contains all the nodes of a particular complete
subtree of the AST. The common ancestor is the root of
that subtree.

Any complete subtree, by the definition of the AST,
corresponds to a full expression. The extraction is there-
fore possible after this process (apart from any other bro-
ken preconditions of method extraction).

Because the token list was generated using a post-order
traversal, all the nodes of a given complete subtree are
consecutive in the token list and effectively correspond to
a sublist (and not to an arbitrary subset).

There is only one special case to deal with: when the
common ancestor is a block node. A block node corre-
sponds to a list of statements within braces. Such a node
is used for instance to model the body of a loop. If the
common ancestor is a block node, it is not necessary to
include all its descendents. Only the descendents of its
children need to be included, for which at least one de-
scendent already belongs to the sublist. A block is indeed
the only node that does not model an expression but a
sequence of statements.

By applying this constraint on our example, we get the
following new sublists:

[-1, 5, +], [amount, center, rotate]
[-1, 4, -], [amount, amount, skew, =]

Observe that every sublist now corresponds to a com-
plete subtree of the ASTs illustrated in Figure 1. These
sublists of statements can hence be extracted safely. The
process of extracting these expressions will be discussed
further in section 5.

This example is a good illustration of the freedom that
we exploited: because we are not forced to extract exactly
the detected fragments, we chose to extend them to make
the extraction possible. The drawback is that we capture
slightly less common expressions in the template meth-
ods: both the “-1” and “amount” expressions are still
duplicated in the extracted methods. They were added
while completing the expressions to extract.

These two expressions are very small in this particular
example. In practice we may have much bigger expres-
sions that are duplicated. But the advantage is clearly
worth the drawback: without the step detailed in this sec-
tion, we could not even extract any method and the whole
transformation would be impossible.

4.2. Multiple Outgoing Data Flows

We now discuss another transformation of the detected
sublists of different statements. Its purpose is to resolve a
precondition of method extraction.

When we extract consecutive statements or an expres-
sion into a new method, we have to pass all local vari-
ables that are read as arguments to the method, and to
return all local variables that are written and read after-
wards as results of the method. Unfortunately, the Java
language does not allow a method to return more than one
value.

There are various ways to overcome this problem. One
possibility could be to return an array, or a class contain-
ing all the results [15]. Another solution could be to pass
the values by reference; this is not directly possible in
Java, but this can be simulated easily by encapsulating the
values into “container” objects. A more “brute force”
solution is to convert local variables to instance variables
so that they are visible by both methods. This solution
produces methods that are neither re-entrant nor thread-
safe, but can be relevant in some cases, especially when
combined with the “create method object” refactoring [9].
A last possibility could be to enlarge the fragment to ex-
tract until it eventually corresponds to statements that are
writing no more than one variable [4].

Our algorithm implements several of these approaches
and presents the corresponding results to the user, who
can select the best choice. Additionally we implemented
an additional and novel approach that we want to describe
here. It is based on previous work on clone removal [4],
but has been adapted to fit the problem of forming a tem-
plate method.

Consider the following statements, and assume that the
first five lines (all lines except the last one) have been
detected as a fragment to extract into a new method by the
process discussed in section 3:

min = x - y / 2; // extract from here …
y = y * 2;
max = x + y / 2;
middle = (min + max) / 2;
max = max + 1 ; // … to here
doStuff(min, middle, max, x, y);

Listing 2

Four variables are written in the fragment to extract
and are read afterwards: min, y, max and middle. As
previously suggested, extending the fragment with the last
line could solve the problem if the variables are never
read again afterwards.

The alternate approach we propose is to split the frag-
ment into multiple smaller fragments, so that each of them
writes only one variable. We can then safely extract each

fragment separately. When applied on Listing 2, this
yields to the following result:

min = getMin(x, y);
y = scale(y);
max = getMax1(x, y);
middle = getMiddle(min, max);
max = getMax2(max);
doStuff(min, middle, max, x, y);

Listing 3

This scheme has been shown to work well for clone
removal [4]. But things are surprisingly much more com-
plicated when forming a template method. The reason is
that in clone removal, we are interested in extracting du-
plicated code statements, that is, statements that are the
same. When we form a template method, we are inter-
ested in extracting pairs of consecutive code statements
that are different.

Recall that we are starting from a pair of methods. The
initial code snippet shown in Listing 2 belongs to one of
the two methods. But we also have to deal with the corre-
sponding snippet in the other method at the same time. As
a consequence of the process detailed in section 3, its
fragment to extract is necessarily different. Imagine that it
looks as follows:

min = x + 2; // extract from here …
middle = x * y;
max = min + middle;
min = min + 1;
y = x + min; // … to here
doStuff(min, middle, max, x, y);

Listing 4

We are in trouble, because the two snippets (Listing 2
and Listing 4) are not writing the same variables in the
same order. Using the same scheme as for clone detection
on each snippet, we may get different extracted methods
with different arguments and results. Because the tem-
plate method has to call these methods in a polymorphic
way after the whole transformation, we cannot allow them
to have different signatures.

We now give an extension of the discussed scheme
that works even for two completely different code frag-
ments. The main idea is to identify all the write accesses
to variables in both code snippets. We model them using
two write-accesses lists, containing the variables that are
the targets of the assignments. With our previous example
we get the two following write-accesses lists:

[min, y, max, middle, max]
[min, middle, max, min, y]

The first list corresponds to the write accesses in
Listing 2 and the second list to the write accesses in
Listing 4.

We can then proceed with one variable after the other.
Intuitively, because the two snippets are first writing the
min variable, a pair of methods can be extracted for it
without any problems.

Then, one snippet assigns y and the other assigns mid-
dle. A possibility is to extract two pairs of methods: the
first pair of methods computes the value that is assigned
to y and the second pair of methods computes the value
that is assigned to middle. Because only the first snippet
actually modifies y, only the implementation of the corre-
sponding method in the first class is non-trivial. The cor-
responding method in the second class just returns the y
argument unmodified. For the same reason, the second
method (computing the value of the middle variable) only
has a non-trivial implementation in the second class: only
the second snippet actually modifies the middle variable.
Nevertheless, the template method needs to call both
methods to ensure that both variables are modified as
necessary.

After the y and middle variables have been handled,
we again encounter the same variable, max, assigned by
both snippets, like for the initial assignment to min.

We can continue that way up to the end of the lists. We
would get only two “matched” variable assignments in
this example: min (1st one) and max (3rd one).

 A better approach though, is to first “align” the tokens
of the two write-accesses lists in order to maximize the
number of matched variable assignments. At the same
time this minimizes the number of extracted trivial meth-
ods that just return one of their arguments unmodified.

With a proper implementation, we can get three
matched variable assignments (shown here in bold) in-
stead of two in our example:

[min, y, max, middle, max]
[min, middle, max, min, y]

The resulting template method could then look like the
following after all the necessary methods have been ex-
tracted and given meaningful names:

min = getMin1(x, y);
y = getY1(y);
max = getMax1(x, y, max);
middle = getMiddle(min, max, x, y);
max = getMax2(max, min, middle);
min = getMin2(min);
y = getY2(x, min, y);

Listing 5

This is a complex, but correct result, although several
extracted methods still have a trivial implementation in
either of the two classes. This is the case for getY1 and
getMax1 in the second class, and getMin2 and getY2 in
the first class.

We will discuss some subtleties of method extraction
more in details in section 5.

How to align the variable assignments so that the num-
ber of matches is maximized? Basically, this is an in-
stance of the “Longest Common Subsequence” (LCM)
problem with two lists. Hence, we can (again) use a dif-
ferentiation algorithm, as it precisely solves this problem.
The only difference with section 3 is that here we are only
interested in the individual pairs of matched tokens, and
not in the sequences of consecutive pairs of matched to-
kens. This difference is minor though and does not imply
any complication in the implementation.

We still want to point out a potential problem though.
A differentiation algorithm, by definition, is an algorithm
that solves the “Longest Common Subsequence” problem
(and optionally groups the consecutive matched pairs).
This problem can be solved in O(n2) complexity using
dynamic programming [18]. Unfortunately, some opti-
mized implementations of the algorithm are using heuris-
tics that may yield to undesired behaviours.

As an example of such a heuristic, we found an im-
plementation based on fast algorithms coming from the
field of data compression. While it shows improved per-
formances on various kinds of inputs, it also exhibits a
property that is not part of the initial problem: it does not
only maximize the number of matched tokens, but also
the average length of the sequences of consecutive pairs
of matched tokens.

This property is not desirable when aligning the two
write-accesses lists discussed in this section, because the
fact these tokens are consecutive or not is meaningless.
On the other hand, this property might be relevant when
differentiating statements as we did in section 3: maxi-
mizing the length of consecutive matched statements
maximizes the average size of the methods to extract, and
thus potentially minimizes the number of methods to
extract.

We now go back to the final result: the produced tem-
plate method. Another question one may ask himself is
whether the template method is better than the original
code. For instance, after the transformation, both classes
may contain various trivial methods that just return an
argument unmodified. Furthermore, because the extracted
methods are requiring different arguments in each class,
we have to supply their union so that two corresponding
methods have the same signature. As a result, every ex-
tracted method potentially has arguments that are not
actually used, but are just here to match the signature of
the corresponding method in the other class.

In this particular example, our new approach does not
give an optimal result. A single method that returns an
object or an array containing all the modified values, as
suggested in the beginning of this section, would probably
be better. But remind that our implementation provides
many alternatives to the user, letting to her the choice of
the one to apply.

For each alternative, we found various cases in which
it produced the best result, which confirms the relevance
of introducing our new approach in addition to the exist-
ing ones.

4.3. Control Flow Breaks

In the previous section, we have dealt with one of the
preconditions of the “extract method” refactoring: the fact
that a Java method cannot return more than one value. In
this section, we investigate another precondition: the
extracted method cannot contain a “flow break” [2, 5]. A
flow break is a statement that transfers the execution to a
point that is no longer reachable when the fragment is
extracted in a new method. There are two such state-
ments:

• A return statement. If it were extracted in a new
method, it would have to be replaced by a state-
ment that escapes two methods, which is not pos-
sible.

• A break statement (extracted without its enclosing
block). If it were extracted in a new method, it
would have to escape the method and the enclos-
ing block in the calling method.

Thrown exceptions on the other hand are not a prob-
lem. If the corresponding catch block is not in the ex-
tracted method, it suffices to declare the exception type as
being thrown by the extracted method. Unlike a return
statement that can only escape a single method, an excep-
tion is propagated down the stack until a method catches
it. It can thus escape many methods at once.

Our algorithm solves these problems related to flow
breaks in a way that is similar to previous research on the
C language [12]. The idea is the following: the extracted
method has to return an additional “status” value. This
value tells the calling method whether it has to issue a
break or return statement that cannot be performed di-
rectly be the extracted method itself.

Concretely, a break or return statement in the ex-
tracted method is replaced by a return statement with the
“status” value. In the calling method, this status value is
checked just after the invocation, and the corresponding
action is taken: issuing a break statement, issuing a re-
turn statement, or just doing nothing (and continuing the
execution flow normally).

The following example illustrates this process. Assume
we want to extract the body of the following while loop:

while (test()) {
 if (x < 0) // extract from here …
 break;
 else if (x > 0)
 return;
 moreStuff(); // … to here
}
evenMoreStuff();

The extracted method returns the status value as a
member of an enumeration named FlowType in this ex-
ample:

FlowType extracted(int x) {
 if (x < 0)
 return FlowType.BREAK;
 else if (x > 0)
 return FlowType.RETURN;
 moreStuff();
 return FlowType.NORMAL;
}

The original method, after the extraction, has to check
for the returned value and to issue the “real” break or
return statement as appropriate:

while (test()) {
 FlowType status = extracted(x);
 if (status == FlowType.BREAK)
 break;
 else if (status == FlowType.RETURN)
 return;
}
evenMoreStuff();

In addition to this scheme that was previously pro-
posed for the C language [12], we have to combine it with
the constraint discussed in section 4.2. Indeed, by adding
an additional return value (the status) we can easily end
up with a method returning more than one value. In prac-
tice, our algorithm first handles flow breaks as discussed
in this section, and then handles multiple outgoing flows
as discussed in section 4.2. Any additional return value
generated to resolve flow breaks is then transparently
handled when resolving multiple outgoing flows.

4.4. Block Boundary Crossing

As a last precondition of the method extraction proc-
ess, we cannot extract consecutive statements if they cross
the boundary (beginning or end) of a block but do not
include the entire block itself. By block, we mean the
body of a control statement such as a loop or a condi-
tional.

This precondition is easily resolved, but it can seri-
ously degrade the quality of the overall result. Our algo-
rithm differentiates two cases and takes the following
actions.

If the block corresponds to the same control statement
in both fragments (such as two while statements), the two
fragments are split in two parts: one part inside the block
and the other part outside of the block. Each part can then
be extracted separately in its own method. The control
statement itself remains in the template method. If the
initial fragments cross control expressions (for example
the two while’s conditions in the case of two while
loops), we may also need to extract the pair of control

expressions themselves in another pair of methods if they
do not match.

If the block does not correspond to the same control
statement in both fragments, we cannot do any magic. The
solution we propose is simply to extend the two fragments
in such a way they both cover the entire control statement.
We may end up loosing a lot of duplicated statements
from the template method. But again, we are at least able
to form it.

The same technique has to be used if only one of the
two fragments actually contains a control statement.

When we extend a pair of fragments to make them
cover an entire control statement, we are adding state-
ments that were not part of them, that is, statements that
are the same in both methods. Thus, both fragments can
be extended in the same way without ambiguity. In case
we reach another pair of fragments of different statements
during the extension, the new pair of fragments is simply
merged with the one being extended. Then the extension
continues (if necessary) with the new pair.

Finally, there are additional subtleties that must be
handled for various specific constructs of the language.
As an example, consider the three control expressions of a
for loop. The second and third control expressions can
usually be extracted without any problem in case they
differ. The first control expression on the other hand can-
not be extracted easily if it contains the declaration of a
different variable in each of the two fragments. Our im-
plementation just considers that the two loops are not the
same in this case, and extends the two fragments to en-
tirely cover them. Other solutions could be possible but
are beyond the scope of this paper.

4.5. Further Reducing Duplicated Code

We have presented various ways of modifying the
fragments to extract in sections 4.1 to 4.4. These modifi-
cations all have the same common goal: making the ex-
traction of the fragments possible. They also have a com-
mon drawback though: duplicated statements are included
in the extracted methods in some cases.

In some specific situations, the amount of duplicated
statements that are added to the extracted methods can be
quite large.

We believe this is not necessary a problem in practice:
after the template method has been formed, the remaining
duplicated statements can be extracted using clone detec-
tion and removal techniques if necessary. More generally,
by the definition of a refactoring, we can also expect that
the user will usually only choose to form a template
method when this actually improves the code and signifi-
cantly reduces the duplicated code. As such, worse-case
situations are expected to be rare in practice.

4.6. Other Issues

Classes, methods, fields and their relations form a sin-
gle graph that is relatively easy to model in an elegant
way [6]. On the other hand, dealing with statements as we
do is a difficult problem in general. There are a lot of
different statements in a language such as Java. Even if
some statements are very similar and can be handled in
the same way, the number of categories that must be han-
dled differently remains quite large. We will thus not dig
into all the details and subtleties that our algorithm has to
handle for the numerous special constructs that are, most
of the time, very specific to the Java language.

Nevertheless, we would like to point out that we have
only considered code statements from the syntactic per-
spective yet. Our algorithm could be further improved by
exploiting the semantics of the statements.

For instance, the differentiation process described in
section 3 only detects duplicated statements if they use
local variables with the same names. In practice, we
would like to also detect duplicated statements in which
some variables have been renamed.

There are various other semantics that could be used to
improve our algorithm. Most of them have already been
covered in the field of clone detection. For example some
operators are commutative, and their operands can be
swapped safely [16]. Some statements are independent
from each other and their execution order can be altered
[11]. Finally, conditionals and loops give room for vari-
ous semantics preserving transformations such as promo-
tion or predicate duplication [12]. All these transforma-
tions require complex analyses, but they can potentially
increase the quality of the result.

On the other hand, we do not believe that they are of
great value for our problem. Recall that forming a tem-
plate method is a refactoring, that is, a process that is
mainly controlled by the user. This differs from clone
detection, whose purpose is (usually) to automatically
recover some structure from huge legacy code.

Nevertheless, we want to point out that the high-level
structure of the second step of our algorithm can be sum-
marized as follows:

• Apply constraint 1
• Apply constraint 2
• Apply constraint 3
• Etc.
We have presented the most important constraints in

sections 4.1 to 4.4. Each constraint has the AST, and a list
of duplicated and different code fragments as input. The
simplicity of this design makes it very easy for us to add
additional constraints if necessary, or to adapt our algo-
rithm for other programming languages.

5. Method Extractions

In this section, we briefly describe the last step of our
algorithm, extracting the detected and transformed code
fragments into new methods. Because method extraction
is already heavily covered in the literature [2, 3, 12], we
restrict ourselves to the issues that are specific to our
problem.

Without going into the details of method extraction,
one of the most difficult problems in the process is to
determine the arguments and results of the extracted
methods. Our approach is similar to existing ones, but we
still have to deal with a notable difference: we have to
extract methods by pairs, and the two methods of a pair
must have the same signature. The reason is that both
methods must be implementations of the same abstract
method that is invocated by the template method.

There are fortunately no major issues in solving this
new problem: it suffices to consider the union of the re-
quired arguments and the union of the required results as
the actual arguments and results of the two methods.

Obviously, the union of the results is not considered
just before we extract the methods, but rather at an earlier
stage, when we have to deal with multiple outgoing data
flows, as described in section 4.2.

6. Current State

The algorithm described in this paper has been imple-
mented as an Eclipse plugin. The implementation is heav-
ily based on the “jdt” (Java Development Tools) library
provided by Eclipse. This library already handles the
parsing of source code into an AST and the rewriting of
an AST into source code.

Our implementation can already process the examples
presented in this paper. It has been tested successfully on
various other cases coming from real projects. There are
some constructs specific to the Java language whose im-
plementations are still in progress though, such as the use
of method’s local and anonymous classes, which impose
some additional restrictions that are not yet handled. A
full user interface is still in development stage as well.

Because we are not aware of any previous implementa-
tion of the “form template method” refactoring, we can
not easily compare our work with previous research. But
preliminary tests showed that our implementation already
gives correct results on a reasonable subset of the Java
language.

Tested on random pairs of methods, the proposed tem-
plate methods were usually correct but rarely satisfactory.
This is not a problem because the user will usually only
choose pairs of methods for which the refactoring is a
relevant improvement of the program structure. Indeed,
when tested on selected pairs of similar methods, the
proposed results were usually close to our expectations.

The detection part described in section 3 (with the ad-
dition of the constraint described in section 4.1) could
also be used for clone detection. Preliminary tests showed
that our approach was competitive with other approaches,
with different qualities. For instance, we did not reach the
quality of previous approaches using various semantics
information. On the other hand, unlike some of the best
approaches, ours did never produce false positives, which
greatly simplifies the extraction process. Our approach
also gives better results than string-based ones.

The novel scheme presented in section 4.2 is not better
than the existing schemes used for method extraction on
average. Nevertheless we found various individual cases
in which it yields to the best results. This is usually
achieved when used on pairs of methods that perform
distinct and unrelated tasks one after the other: if each
task manipulates a different variable, they are almost
naturally extracted in different methods pairs. We get the
worse results with methods that are doing mixed compu-
tations on a set of two or more variables that are closely
related, such as three coordinates. In such a case, extract-
ing a single method that returns an array is usually the
best scheme. These results validate the pertinence of our
choice to implement multiple schemes and to present all
alternatives to the user.

Finally we even found cases in which our implementa-
tion of the method extraction part used alone performed
better than the corresponding implementations of the
Eclipse, NetBeans and Visual Studio development envi-
ronments. These results are detailed in another paper [1].

7. Related Work

To our best knowledge, the “form template method”
refactoring has not been implemented yet in existing de-
velopment environments. It is a well defined transforma-
tion though [9, 10, 14].

A lot of research exists regarding transformations on
the high-level structure of a program such as renaming,
moving or wrapping fields, classes and methods [3, 6, 7].
Obviously, we need to deal with these aspects when we
create a new method and give it a name, but these are
beyond the scope of this paper.

Method extraction is an important part of the process
of forming a template method. Various researches have
been done in this domain [2, 12, 15, 16], and some of
them have investigated the Java language. As previously
mentioned, method extraction, when considered alone,
takes the subset of statements to extract as an immutable
input of the algorithm. In our case, we have some freedom
in changing the subsets of statements before we extract
them in order to improve the overall result. We are not
aware of previous work that takes profit of this freedom.
This part of the transformation (discussed in section 4) is
indeed the main contribution of this paper.

When discussing outgoing data flows, we introduced
the notion of variables that are written in a code fragment
and read afterwards. This concept is far from trivial to
implement correctly. We did not go into the details be-
cause our solution is entirely based on existing ap-
proaches, but the problem is complex and is discussed in
various other papers [1, 2, 5].

Clone detection and removal is a problem very similar
to the process of forming a template method. In both
cases, it is necessary to detect duplicated code statements.
The main difference is that clone removal consists in
extracting the duplicated code statements in new methods,
while forming a template method consists in leaving the
duplicated code statements, and extracting the differences.
Various techniques have been investigated to detect
clones automatically [8, 13], but only a few authors have
investigated the problem of clone extraction [16]. In par-
ticular, none of them introduces an additional step explic-
itly between the detection and the extraction to improve
the results.

We suggested various future improvements of our al-
gorithm using semantics in section 4.6. Approaches han-
dling specific cases are discussed in the literature [11, 12,
16], but no general solution has been proposed yet.

8. Conclusion

In this paper we presented a new algorithm that per-
forms a complex refactoring: forming a template method.
We showed that the process is close to clone detection
and method extraction, but involves some additional diffi-
culties.

We proposed various solutions to the problem and
showed that some aspects of our algorithm could also be
used to enhance existing tools dealing with clone detec-
tion and removal.

We proposed a novel approach by introducing an addi-
tional step between the detection of differences and their
extractions. This step allows the transformation to be
performed even on difficult situations in which it would
fail otherwise. We also introduced a new technique to
resolve the problem of multiple outgoing data flows (re-
turning more than one result) when extracting a method.

Furthermore we presented a structured implementation
in which the steps are cleanly separated from each other,
leaving a solid basis for further improvements. We vali-
dated and tested our theory by implementing the trans-
formation as an Eclipse plugin and applying it on concrete
code samples.

References

[1] Nicolas Juillerat, Béat Hirsbrunner: Improving Method
Extraction, 1st Workshop on Refactoring Tools, TU Berlin
Technical Report, ISSN 1436-9915, pp. 48 – 49, 2007.

[2] Mathieu Verbaere, Ran Ettinger and Oege de Moor:
JunGL: a Scripting Language for Refactoring, 28th Interna-
tional Conference on Software Engineering, pp. 172 – 181,
2006.

[3] Leif Frenzel: The Language Toolkit: An API for Automated
Refactoring in Eclipse-based IDEs, Eclipse Magazin, vol.
5, 2006.

[4] Nicolas Juillerat, Béat Hirsbrunner: An Algorithm for De-
tecting and Removing Clones in Java Code, Proc. of the 3rd
Workshop on Software Evolution through Transformations,
pp. 63 – 74, 2006.

[5] Nicolas Juillerat, Béat Hirsbrunner: FOOD: An Intermedi-
ate Model for Automated Refactoring, 5th International
Conference on Software Methodologies, Tools and Tech-
niques, pp. 452 – 461, 2006.

[6] Tom Mens: On the Use of Graph Transformations for
Model Refactoring, International Summer School on Gen-
erative and Transformational Techniques in Software Engi-
neering, pp. 67 – 98, 2005.

[7] Günter Kniesel: ConTraCT - A Refactoring Editor based on
Composable Conditional Program Transformations, Inter-
national Summer School on Generative and Transforma-
tional Techniques in Software Engineering, pp. 79 – 93,
2005.

[8] Tom Copeland: PMD Applied, Centennial Books Online,
2005.

[9] Joshua Kerievsky, Refactoring to Patterns, Addison-
Wesley, 2004.

[10] Tom Mens, Tom Tourwé: A Survey of Software Refactor-
ing, IEEE Transactions on Software Engineering, vol. 30,
no. 2, pp. 126 – 139, 2004.

[11] David Koes, Mihai Budiu, Girish Venkataramani: Pro-
grammer Specified Pointer Independence, Proceedings of
the 2004 Workshop on Memory System Performance, pp.
51 – 59, 2004.

[12] Raghavan Komondoor, Susan Horwitz: Effective, Auto-
matic Procedure Extraction, 11th IEEE International Work-
shop on Program Comprehension, pp. 33 – 42, 2003.

[13] Elizabeth Burd, John Bailey: Evaluating Clone Detection
Tools for Use during Preventative Maintenance, Proceed-
ings of the 2nd International Workshop on Source Code
Analysis and Manipulation, pp. 36 – 43, 2002.

[14] Martin Fowler: Refactoring: Improving the Design of Exist-
ing Code, Addison-Wesley, 2002.

[15] Magdalena Balazinska et al.: Partial Redesign of Java
Software Systems Based on Clone Analysis, Proceedings of
the 6th Working Conference on Reverse Engineering, pp.
326 – 336, 1999.

[16] Ira D. Baxter et al.: Clone Detection Using Abstract Syntax
Trees, IEEE Proceedings of the International Conference on
Software Maintenance, pp. 368 – 377, 1998.

[17] Mark Nelson, Jean-Loup Gailly: The Data Compression
Book, M&T Books, 2nd edition, 1995.

[18] J. W. Hunt, M. Douglas McIlroy: An Algorithm for Differ-
ential File Comparison, Bell Laboratories Computing Sci-
ence Technical Report 41 (available on the home page of
the 2nd author), 1976.

	1. Introduction
	2. Overview
	2.1. Structure of the Algorithm
	2.2. Motivations

	3. Detection of Differences
	4. Application of Constraints
	4.1. Completing Expressions
	4.2. Multiple Outgoing Data Flows
	4.3. Control Flow Breaks
	4.4. Block Boundary Crossing
	4.5. Further Reducing Duplicated Code
	4.6. Other Issues

	5. Method Extractions
	6. Current State
	7. Related Work
	8. Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

