
Barrier Slicing for Remote Software Trusting∗

Mariano Ceccato1, Mila Dalla Preda2, Jasvir Nagra2,
Christian Collberg3, Paolo Tonella1

1 Fondazione Bruno Kessler—IRST, Trento, Italy
2 University of Trento, Italy 3 University of Arizona, USA

Abstract

Remote trusting aims at verifying the “healthy” execu-
tion of a program running on an untrusted client that com-
municates with a trusted server via network connection. Af-
ter giving a formal definition of the remote trusting problem
and a test to determine whether an attack against a given
remote trusting scheme is successful or not, we propose a
protection against malicious modification of the client code,
based on the replication of a portion of the client on the
server. To minimize the size of the code that is replicated,
we propose to use barrier slicing. We show the feasibility
of our approach on a case study. Our results indicate that a
barrier slice is significantly smaller than the corresponding
backward slice while providing the same level of protection.

1 Introduction

The Remote trusting problem is a particular instance
of the software integrity problem. In software integrity,
the problem is to ensure that a given program is executed
unmodified—verifying in this way that the program has not
been tampered with. In remote trusting, the problem is to
ensure that a given program running on an untrusted host
(client) is executing according to the expectations of the
trusted host (server), but only when the two communicate
over the network (e.g., during service delivery).

The most significant issue in remote trusting is that the
trusting party (server) has no control over the untrusted
party (client). The server can not rely on the client hard-
ware configuration, for example, to predict the execution
time of the original program in order to detect an execution
delay that can be due to malicious modifications. The hard-
ware configuration can not be considered known because
the client user could lie about it. The client user can not be
considered a collaborative user, he/she could be interested

∗This work was supported by funds from the European Commission
(contract No 021186-2 for the RE-TRUST project)

in tampering with the client software to make the applica-
tion work differently than expected: the user of the client
application is not trusted, in that he/she could gain some
benefits by running a tampered application (e.g., paying a
reduced fee).

The attacker can take advantage of any dynamic and
static program analysis tool to reverse-engineer the applica-
tion. He/she can directly modify the application code or in-
stall simulation and debugging environments to tamper with
the execution. On the other hand, the server is willing to
communicate only with clients that have not been tampered
with. The server is expected to deliver a certain service only
to genuine clients; modified clients should be detected and
refused. Remote trusting can be applied to all those appli-
cations that need the network to work properly, for exam-
ple because they need a service delivered by a server (e.g.,
Internet games). Before deciding whether to deliver the re-
quested service or not, the server may want the application
requesting the service to prove that it has not been tampered
with by a malicious user.

In this paper we propose a solution to the remote trust-
ing problem, based on the observation that a portion of the
client can be easily verified to be sane through assertions. In
fact, some of the services delivered to the client are unus-
able if the client’s state does not match the server’s assump-
tions, expressed through assertions. However, in general
this mechanism does not provide protection for the whole
sub-state of the client that the server wants to rely on. We
propose to use program slicing to identify the remaining
portion of the client that can not be verified through asser-
tions, but that is still sensitive. The idea is to move this rel-
evant part of the application from the client to the server, so
it can be run untampered. A similar approach was used by
Zhang and Gupta in order to prevent software piracy [13].
Their idea was to turn a stand-alone application into a net-
work application by moving a relevant slice of the applica-
tion to the server. The criteria used to determine the frag-
ments of code that reside on the server and on the client en-
sure that it is difficult for an attacker to recover the original
application, preventing in this way illegal copying.

m=f(s)

k=g(m)

Server
S

Client
 C

State s of P

if E(m) = true

Figure 1. Overview of remote trusting.

In order to reduce the size of the computation to be
moved to the server, we take advantage of the client’s sub-
state secured through assertions. The values of the variables
secured in this way can act as barriers and computation of
the transitive closure of program dependencies can stop at
such barriers, since the server knows these values and is
sure that they can be trusted. After computing the barrier
slices, program transformations are applied to generate the
secured client and the corresponding server.

In Section 2 the remote trusting problem is formally de-
fined. After describing the existing solutions in Section 3,
our approach is presented: the usage of barrier slicing is
presented in Section 4 and program transformations are pre-
sented in Section 5. Our method is then applied to a case
study in Section 6, where the results are discussed. Conclu-
sions and future works close the paper in Section 7.

2 Problem definition

Remote trusting focuses on network applications, i.e.,
applications that need to access services provided by other
machines over the network. Thus, the remote trusting sce-
nario consists of a service provider (server) and a service
consumer (client), with the former running on the trusted
machine and the latter on the untrusted one. The server is
willing to deliver its services only to clients that are in a
valid state and can be trusted.

An example of network application falling in the scope
of remote trusting is the implementation of the TCP/IP stack
protocol. In this case, a client is in a valid state if it obeys the
policies enforced to avoid and rapidly solve network con-
gestion. Another suitable example is an on-line computer
game client. A healthy execution is one that does not result
in any unfair advantage for those users that run a hacked
version of the game.

2.1 Remote trusting scenario

The remote trusting scenario is shown in Figure 1. S is
the trusted host (server) and C is the untrusted host (client)

running a certain application P , whose integrity has to be
verified upon communication with S. The application P

requires a service delivered by S. To receive this service
a communication channel is established between C and S

and some messages are exchanged:

C[s]
m
−→ S and S

k
−→ C[s]

where s is the current state of application P running on C

and m is a message that requests some service from S. Once
S receives the request m it replies by sending the message
(service) k. In general we have that:

• Message m depends on the current state s of appli-
cation P , i.e., m = f(s), where f is a function that
converts a state into a message that can be understood
by the server S.

• Message k depends on the previous message m, i.e.,
k = g(m) = g(f(s)), where g is a function that given
a message sent by the client returns a message contain-
ing the service needed by the application.

So far, we have focused on a single communication act.
However, in a real scenario, a sequence of communication
acts is expected to occur. The assumptions and definitions
in this paper apply to each of them: we are implicitly quan-
tifying over each communication act in a sequence, even
when the sequence index does not appear explicitly.

2.2 Problem definition

The current state of the client application P during com-
munication with S is a valid state when it satisfies certain
validity properties expressed through an assertion A.

Definition 1 Application P is in a valid state s upon execu-
tion of the communication act C[s]

m
−→ S if A(s) = true,

where A is an assertion.

In order for S to trust the application P upon the execution
of a communication act, P has to exhibit a valid state. The
only way in which S can verify the validity of the applica-
tion P is by analyzing the message m that C has sent.

Definition 2 S trusts P upon execution of the communi-
cation act C[s]

m
−→ S if E(m) = true, where E is an

assertion.

Thus, the remote trusting problem consists of finding a pro-
tection scheme such that:

E(m) ⇔ A(s) (1)

upon execution of C[s]
m
−→ S and S

k
−→ C[s]. The server

trusts a client if and only if it is in a valid state. When

condition (1) is satisfied, the server is able to detect any
attack that compromises the validity of the application state
during communication. The protection mechanism is not
sound (attacker wins) whenever the server is trusting the
client, but the current state of the client is not valid. Namely
when there exists a communication act C[s]

m
−→ S such

that:
E(m) = true ∧ A(s) = false (2)

We can observe that a server can trivially avoid this situ-
ation by refusing to trust any client, i.e., E(m) = false

for every m. However, for a protection mechanism to be
useful, a server must trust application P running on the
client whenever it is in a valid state. In fact, a protection
scheme is not complete when there exists a communication
act C[s]

m
−→ S such that:

E(m) = false ∧ A(s) = true (3)

This is the reason for the double implication in condi-
tion (1).

2.3 Attack model

In our framework the attacker is anyone who may want
to alter the application’s state, either dynamically or stat-
ically, to gain personal advantage in a forbidden way. The
attacker has no restriction on the tools and techniques to use
to reverse-engineer and then to tamper with the application
(e.g., super-user privileges are assumed to be available to
the attacker). He/she can install any software on the client
machine (e.g., debuggers, emulators). The attacker can read
and write every memory location, processor registers and
files. Network traffic and operating system are fully visible
and changeable for the attacker. Moreover the attacker can
start the malicious activity at any time, not just when the
application is running.

Even if the attacker can do almost everything on the
client, he/she has no access/visibility on the server. The
attacker neither knows what software is running nor what is
the underlying hardware and operating system. The server
is considered completely trusted, so no tampering can hap-
pen on it and no external view on its internal details is visi-
ble to an external observer.

The possible attacks can be grouped into four classes:
1. Reverse-engineering and modification of the code of

P ;

2. Modification of the running environment of P , for ex-
ample through emulators or debuggers, and dynamic
change of (part of) the state of P , without actually
changing the code of P ;

3. Production of static copies of P and execution of mul-
tiple copies of P in parallel, some of which are possi-
bly modified;

4. Interception and replacement of network messages
upon any communication act.

In order to detect attacks in class 1 alone, the verification
of the static properties, such as code checksum, could be
enough. However, if we consider also class 2 and class 3,
this is not enough, because while running the tampered code
the attacker could keep a correct program copy and use it to
compute the correct checksum when required.

Also the verification of dynamic properties does not rep-
resent a strong protection. Attacks in classes 3 and 4 can
redirect any dynamic check to the correct execution of
a program clone, while actually running and making the
server serve the tampered copy.

3 Existing solutions

The problem of remote attestation of software has a
colorful history. The key idea of a “trusted computing
base”(TCB) can be traced to the Orange Book [6] and
Lampson [5]. Lampson defines the TCB as a “small amount
of software and hardware that security depends on”. In
this context, security was assured by the TCB because
the operating system and hardware were assumed to be
known, trusted and inviolable. More recently, trusted hard-
ware schemes for remote attestation have been proposed.
The Trusted Computing Group [7] and Microsoft’s Palla-
dium [1] have proposed several schemes based on a secured
co-processor. These devices use physical defenses against
tampering. The co-processor contains a private key, trusted
code must be signed and the signature verified by the secure
co-processor before code is executed. The increased cost
of manufacturing and prohibitive loss of processing power
to the cryptography required has largely limited the main-
stream adoption of these solutions.

Alternatives to custom trusted hardware are represented
by software-only solutions that rely on known hardware.
Swatt [9] and Pioneer [8] apply to embedded devices and
desktop computer. At run time, they compute a checksum
of the in-memory program image to verify that no malicious
modifications have occurred. They take advantage of an ac-
curate knowledge of the client hardware and memory layout
so as to be able to precisely predict how long the checksum
computation should take. It is assumed that any attack intro-
duces some indirection (e.g. redirecting memory checksum
to a correct copy of the current program while a tampered
copy is running). This indirection increases the execution
time and thus can be used to detect tampering.

In the remote trust scenario, it is unreasonable to assume
a collaborative user or detailed knowledge of the hardware.
A malicious user may be willing to tamper with the hard-
ware and software configuration or provide incorrect infor-
mation about it.

If checksum computation time can not be accurately pre-
dicted, the memory copy attack [11] can be implemented to
circumvent verifications. A copy of the original program
is kept by the malicious user. Authenticity verification re-
trieves the code to be checked in data mode, i.e., by means
of proper procedures (get code) that return the program’s
code as if it were a program’s datum. In any case, the ac-
cesses to the code in execution mode (i.e., control transfers
to a given code segment, such as method calls) are easily
distinguished from the accesses in data mode. Hence, the
attacker can easily redirect every access in execution mode
to the tampered code and every access in data mode to the
original code, paying just a small performance overhead.

Kennell and Jamieson [2] propose a scheme called Gen-
uinity, which addresses this shortcoming of checksum-
based protections by integrating the test for the “genuine-
ness” of the hardware of the remote machine with the test
for the integrity of the software that is being executed. Their
scheme addresses the redirection problem outlined above by
incorporating the side-effects of the instructions executed
during the checksum procedure itself into computed check-
sum. The authors suggest that the attackers only remain-
ing option, simulation, cannot be carried out sufficiently
quickly to remain undetected. Shankar et al. [10] propose
two substitution attacks against Genuinity, which exploit
the ability of an attacker to add code to an unused portion of
a code page without any additional irreversible side-effects.

Our solution is completely different from the previous
ones, in that it does not rely on any hardware or any precise
time computation, which is hard to achieve in the presence
of non-collaborative users. We propose to use barrier slic-
ing and program transformations to ensure that the critical
portion of the client computation that cannot be protected
through assertions is executed on the server.

4 Barrier slicing

A (backward) slice [12] on a given criterion (i.e., a vari-
able at a given statement) is a sub-program that is equiva-
lent to the original program with respect to the given crite-
rion (assuming termination). Intuitively, the slice contains
all the statements that affect the value of the variable in the
criterion.

A slice can be computed as the transitive backward clo-
sure of data and control dependencies, resulting in all the
statements on which the criterion depends directly or in-
directly. A barrier slice [3, 4] is a slice computed on a
code where some special statements are marked as barriers,
meaning that they involve computations that are considered
not to belong to the slice (e.g., because they are uninter-
esting or because the values of the involved variables are
known). Barrier slices can be computed by stopping the
computation of the transitive closure of the program depen-

dencies whenever a barrier is reached.
Given the program dependency graph (PDG): (N, E),

the (backward) slice with criteria C ⊆ N and with barrier
B ⊆ N can be computed as:

Slice](C, B) =

m ∈ N

∣

∣

∣

∣

∣

∣

p ∈ m −→∗ n ∧ n ∈ C ∧
p 〈n1...nl〉 :
∀1 ≤ i ≤ l : ni 6∈ B

where p ∈ m −→∗ n denotes a path in the graph from m to
n.

4.1 State partitioning

Given a program P let Var be the set of variables occur-
ring in P . A program state s is a map s : Var → Values

that associates a value with each variable in P . Given a
subset X ⊆ Var of variables, let s|X denote the restric-
tion of state s on X , i.e., s|X : X → Values where
∀x ∈ X : s|X (x) = s(x). In this case we say that s|X
is a substate of s.

Let us consider the service k delivered by the server S to
the client C during communication S

k
→ C[s]. The usabil-

ity of message k from application P running on the client
depends on a substate of s. Intuitively, when the service k is
received in an invalid substate, the application cannot con-
tinue its execution, in that something bad is going to happen
(e.g., the computation diverges or blocks).

Let Safe ⊆ Var be the subset of program variables that
determines the usability of message k, and let Unsafe =
Var r Safe . This means that s|Safe

: Safe → Values is
the substate of s responsible for the usability of message
k. Moreover, let us assume that the assertion A on state
s can be decomposed as follows: A(s) = ASafe (s|Safe

) ∧
AUnsafe (s|Unsafe

).

Definition 3 Let k be a message generated by a valid state
s, i.e., k = g(f(s)) with A(s) = true. k is usable by a
different state ŝ upon execution of the communication act
S

g(f(s))
−→ C[ŝ] if:

ASafe(ŝ|Safe
) = true

We have two possible cases (see Figure 2):

1. Unsafe = ∅. In this case the remote trusting problem
can be trivially solved by choosing m = s and E = A.
In fact, this ensures that whenever the current state ŝ

of the client C is not valid, i.e., A(ŝ) = false , even
if the attacker sends a valid state s to the server, i.e.,
A(s) = true, the service provided by the server cannot
be used by the application.

2. Unsafe 6= ∅. In this case the above solution cannot be
applied. In fact, an attacker could send a valid state s,

k

s’

C SClient Server Client

k

State s State s
A(s′) = trueA(s) = false A(s) = false A(s|Safe

, ŝ|Unsafe
) = true

s|Safe
, ŝ|Unsafe

ASafe(s|Safe
) = true

AUnsafe(s|Unsafe
) = false

k is not usable k is usable

Server

A(s) = ASafe(s|Safe
) = false

(a)Unsafe = ∅ (b) Unsafe 6= ∅

Figure 2. In (a) Unsafe = ∅ and the trivial solution can be applied. In (b) Unsafe 6= ∅ and an additional
mechanism is required for the server to the values of variables in Unsafe on the client.

i.e., A(s) = true, to the server while the current state
is ŝ = (s|Safe

, ŝ|Unsafe
) such that ASafe (s|Safe

) = true

while A(ŝ) = false . The service g(f(s)) is usable,
since ASafe(s|Safe

) = true, but the overall state ŝ is
invalid, making the protection m = s and E = A

fail. It is clear that in order to perform this attack the
attacker needs to reverse-engineer the application and
identify the two substates s|Safe

and s|Unsafe
upon each

communication act.

After the sensitive variables have been classified as Safe

and Unsafe, barrier slicing can be effectively used to de-
velop a protection scheme that works in case (2).

4.2 Barrier slicing to protect unsafe sub-
state

The core idea of our proposed solution is to move the
portion (slice) of application P that maintains the variables
in Unsafe to the server, in order to prevent the attacker from
tampering with them. To limit the portion of code that needs
to be moved we will use barrier slicing instead of regular
slicing. The proposed change implies some extra communi-
cation between the server and the client, because whenever
the client requires the value of a variable in Unsafe, the
server must provide it. In order to limit the communication
overhead, some of the instructions that are moved to the
server are maintained also on the client (these instructions
are actually duplicated).

Let us identify each communication act by a number
n ∈ N and correspondingly partition the variables into
Safen and Unsafen. sendn and receiven denote respec-
tively the send, i.e., C[s]

m
→ S, and receive, i.e., S

m
→ C[s],

during the n-th communication. On the server side, the
statement sendn provides reliable values (i.e., defines) for
all variables in Safen that can be obtained from mn. In
PDG all those statements that consist in a communication

1 x = x * a;
2 a = a + x;

sendh(mh = x);
receiveh(kh);
Safeh

= {x}, Unsafeh
= {a}

3 a = x + a;
4 x = x + 1;
5 while (c) {
6 a = a + x;
7 x = x + a; }
8 x = x * a;
9 if (c)
10 then { a = 2 * x;
11 x = x + a;}
12 else { a = x * x;
13 x = x + 2*a; }
14 x = 2*a;

sendn(mn = x);
receiven(kn);
Safen

= {x}, Unsafen = {a}

Figure 3. Fragment of the client application
with two subsequent communication acts.

act are annotated with the corresponding number n. When
there exists a path in the annotated PDG that connects the h-
th send to the n-th send we say that the h-th communication
precedes the n-th one, denoted h � n.

Let us consider, for example, the fragment of the appli-
cation P running on the client C in Figure 3. The h-th com-
munication act precedes the n-th one. At the n-th communi-
cation act, we need to protect the backward slice of the defi-
nitions of variables in Unsafen that might reach sendn(mn)
(i.e., a at statements 10 and 12 in our example). While com-
puting the backward slice, we can halt when we encounter
a statement that defines a variable that belongs to Safeh,

with h � n, and that might reach sendh(mh), for example,
statement 1 in Figure 3. This means that we are computing
the barrier slice for the computation of the unsafe variables
with the barrier given by the statements that produce valid
values of variables communicated to the server during pre-
vious communication acts.

Thus, the barrier Bn for the n-th communication is given
by the set of statements that modify the values of variables
in Safeh such that the h-th communication precedes the n-
th communication, formally :

Bn
def
=

{

reach-def(x, sendh)
∣

∣x ∈ Safeh, h � n
}

where reach-def(x, n) denotes the set of nodes correspond-
ing to the definitions of variable x that might reach node
n. We further assume that sendh is a postdominator of
reach-def(x, sendh), i.e., whatever definition holds, it is
necessarily transmitted to the server.

In fact, Bn precisely corresponds to the set of statements
that are protected by the previous communication acts. With
reference to the example in Figure 3, the barrier contains
just statement 1.

The slicing criterion Cn for the n-th communication act
is given by:

Cn
def
=

{

reach-def(a, sendn)
∣

∣a ∈ Unsafen
}

The computation of every unsafe variable whose value
can reach the communication act must be moved to the
server. In our example, the computation of a at statements
10, 12.

5 Program transformation

Once the barrier slice has been computed, the client and
the server code can be transformed automatically in order to
implement the proposed protection mechanism. The trans-
formation steps are described with reference to the example
in Figure 4.

Let us transform the fragment of code in Figure 4(a).
If we consider the n-th communication, the barrier Bn is
given by instruction 1, while the criteria Cn is given by in-
structions 10 and 12. By computing the barrier slice, we
obtain:

Slice](Cn, Bn) = {12, 10, 9, 8, 7, 6, 5, 4, 3, 2}

5.1 Client side changes

The transformation of the client consists of removing
some of the statements in the barrier slice and introducing
some extra communication with the server, to retrieve the
needed values. The transformation is composed of the fol-
lowing steps:

• Every unsafe variable definition in the slice (Fig-
ure 4(a) statements 2, 3, 6, 10 and 12) is replaced by
the instruction sync() (Figure 4(b) statements C2,
C3, C6, C10 and C12). This message corresponds to
a synchronous blocking communication, which means
that the client has to wait for the answer from the
server. The server sends an ack only when its execu-
tion reaches the corresponding sync() (Figure 4(c)
statements S2, S8, S12, S17 and S19).

• Every use of variable a ∈ Unsafen on the client is
replaced by an ask("a") that requests the current
value of a from the server (Figure 4(a) statements 7, 8,
11, 13 and 14).

• The last change involves input values (i.e., user input,
file read), which must be forwarded to the server as
soon as they are collected by the client application.

5.2 Server side changes

The transformation on the server side aims at: (1) mak-
ing the server able to run the slice computing the Un-
safe variables; (2) keeping it synchronized with the remote
client; and, (3) verifying the validity of the Safe variables.
It is composed of these steps:

• The very first change to apply is to copy the barrier
slice Slice](Cn, Bn) to the server. The server has to
boot strap the slice as the original client does (e.g., data
structures must be initialized). One slice is run for each
served client.

• The slice is fed with any input coming from the client.

• As soon as the server receives a message m from the
client, the validity of the client’s state is verified (state-
ments S4-S6, S21-S23), after extracting the values
for the Safe variables (statements S3, S20).

• Whenever a sync() statement is reached, the current
values of the Unsafe variables are saved, after synchro-
nizing with the client.

• A server process (not shown in Figure 4) replies to
each client’s ask() by sending the currently saved
value for the requested variable.

Figure 4(c) shows the code running on on the server af-
ter the transformation. Instruction 2 of the original appli-
cation contains a definition of variable a ∈ Unsafe. In the
client, this instruction is replaced by a sync() (instruction
C2), corresponding to the server’s sync() S2. Upon syn-
chronization, when the client’s execution is at C2 and the
server’s execution is at S2, the current value of the unsafe

1 x = x * a;
2 a = a + x;

sendh(mh);
receiveh(kh);

3 a = x + a;
4 x = x + 1;
5 while (c) {
6 a = a + x;
7 x = x + a; }
8 x = x * a;
9 if (c)
10 then { a = 2 * x;
11 x = x + a;}
12 else { a = x * x;
13 x = x + 2*a; }
14 x = 2*a;

sendn(mn);
receiven(kn);

C1 x = x * a;
C2 sync();

sendh(mh);
receiveh(kh);

C3 sync();
C4 x = x + 1;
C5 while (c) {
C6 sync();
C7 x = x + ask("a"); }
C8 x = x * ask("a");
C9 if (c)
C10 then { sync();
C11 x = x + ask("a");}
C12 else { sync();
C13 x = x + 2*ask("a"); }
C14 x = 2*ask("a");

sendn(mn);
receiven(kn);

S1 a = a + x;
S2 sync();

receiveh(mh);
S3 x = m ;
S4 if A(x, a) then

sendh(kh);
S5 else
S6 exit();
S7 a = x + a;
S8 sync();
S9 x = x + 1;
S10 while (c) {
S11 a = a + x;
S12 sync();
S13 x = x + a; }
S14 x = x * a;
S15 if (c)
S16 then { a = 2 * x;
S17 sync(); }
S18 else { a = x * x;
S19 sync(); }

receiven(mn);
S20 x = m ;
S21 if A(x, a) then

sendn(kn);
S22 else
S23 exit();

(a) (b) (c)

Figure 4. An example of the proposed protection scheme: (a) original client, (b) modified client and
(c) corresponding server.

variable a is saved on the server side. The server can then
proceed until the next sync() (instruction S8), and any
ask() issued by the client is replied by a parallel server
process sending the stored value of a (i.e., the value pro-
duced at S1). We can observe that instructions 11 and 13
are not duplicated on the server, since they do not belong to
the considered barrier slice.

If a complex data structure that involves pointers, such as
a linked list, is either only on the client (not involved in the
slice) or only on the server (completely sliced out) the cur-
rent solution works correctly. Otherwise, if the same point-
ers must be accessed both by the client and by the server, we
should cope with the fact that actual pointer values could
differ between the two hosts. We do not address directly
this problem, because we made the assumption (valid in
languages like Java) that all the pointers are not modified di-
rectly, but data structures are only accessed through proper
handler (e.g., insert, delete and search methods). Thus, even
if pointer values are different, structures should be consis-
tent between the two hosts.

5.3 Optimizations

5.3.1 Removing control statements

After removing the definitions of the Unsafe variable from
the client, some variables may became dead (no longer
used). Dead variables can be easily identified through static
analysis and removed from the client code. When the body
of a loop or a branch of a conditional statement end up con-
taining only sync() instructions, they can be deleted alto-
gether from the client code, and the sync() can be moved
afterwards both on the client and on the server.

Removing loop and conditional statements is potentially
important, in that it may result in a dramatic decrease of
the number of synchronization statements. In Figure 5(a)
a portion of computational code has been subjected to the
proposed transformation, where x1 is in Safe while a1 and
a2 are in Unsafe . In Figure 5(b) every use of unsafe vari-
ables is replaced by an ask(), and every definition of them
is replaced by a sync().

Some if statements can be removed immediately (lines
7-8 and 15-16). Two sync() calls replace them. After

1 if (x1){
2 if (a1 == 0){
3 a2 += 1;
4 if (a2 > 10)
5 a2 = 10;
6 else
7 if (a2 < -1)
8 a2 = -1;
9 }
10 else{
11 a2 += 1;
12 if (a2 > 100)
13 a2 = 100;
14 else
15 if (a2 < -10)
16 a2 = -10;
17 }
18 }

(a)

if (x1){
if (ask(”a1”) == 0){

sync();
if (ask(”a2”) > 10)

sync();
else

if (ask(”a2”) < -1)
sync();

}
else{

sync();
if (ask(”a2”) > 100)

sync();
else

if (ask(”a2”)<-10)
sync();

}
}

(b)
1 if (x1){
2 if (ask(”a1”) == 0){
3 sync();
9 }
10 else{
11 sync();
18 }

(c)

1 if (x1){
18 sync();}

(d)

18 sync()
(e)

Figure 5. An example of the proposed pro-
tection scheme with optimization, (a) original
code (b) transformed code, (c) (d) different
steps in the optimization and (e) final code.

that, two more if statements can be removed (4 and 12).
The resulting code is shown if Figure 5(c), with consecutive
sync() instructions replaced by single sync(). Now the
optimization can be re-applied and statements 2, 3, 9, 10,
11 can be removed and replaced by a single sync(). The
result is shown in Figure 5(d) where just the the top-level
if remains with just one sync() instruction inside. This if
statement can be also removed and the sync() instruction
is the only one that remains (Figure 5(e)).

Whenever a control statement is removed and replaced
by a sync() on the client, the same operation must be
replicated on the server’s code, so as to ensure proper syn-
chronization between the two. For example, when state-
ments 7-8 are removed and replaced by a sync(), the cor-
responding if statement must be located on the server’s code
and the contained sync() must be moved immediately after
it. If no other statement is inside the if, it is possible to re-
move it also from the server, but in general this may be not
the case.

5.3.2 Pre-caching

The proposed solution may degrade the application’s per-
formance, due to the need for additional synchronizations.
One way to limit this performance loss is to store the succes-
sive updates of the variables in Unsafe on the server, mak-
ing all the synchronization messages unnecessary. When
the client needs the value of an Unsafe variable, it will ask
the server for the i-th update of the variable. In particular:

• For every variable a ∈ Unsafen we define a counter
counta which is initialized to 0 both on the client
and on the server.

• Every definition of variable a ∈ Unsafen is replaced
by counta++ on the client, while on the server
every definition of variable a ∈ Unsafen is fol-
lowed by an increment of the counter (counta++)
and by a store of the updated value of variable a
(store("a",counta, a)).

• Every use of variable a ∈ Unsafen on the client is re-
placed by an ask("a", counta) that requires the
current value of a from the server.

The result of applying this transformation to the previous
example is shown in Figure 6.

Potentially, the variable counta could still be tampered
with but, in practice, an attacker can not gain any advan-
tage through that. Wrong values of counta will always be
mapped to valid states maintained by the server.

The two optimizations are mutually exclusive, the first
saves memory on the server, but it requires to exchange
more messages, whereas the second one requires less com-
munication but it consumes more server memory. It is up to
the developer to analyze the context and chose which one to
apply, considering also that the second optimization is not
appropriate when the slice involves big data structures that
would be kept in multiple copies.

6 Experimental results

The proposed protection mechanism has been applied to
a case study application. We report the results and discuss
them in this section.

6.1 Case Study

CarRace is a network game, the client of which consists
of around 900 lines of Java code. The application allows
players to connect to a central game server and race cars
against each other. During the race, each player periodically
sends data about the car position and direction to server,
which then broadcasts the data to the other clients allowing

sendh(mh);
receiveh(kh);
a = x + a;
x = x + 1;
while (c) {

a = a + x;
x = x + a; }

x = x * a;
if (c)
then { a = 2 * x;

x = x + a;}
else { a = x * x;

x = x + 2*a; }
x = 2*a;
sendn(mn);
receiven(kn);

sendi−1(mi−1);
receivei−1(ki−1);
counta = 0;
counta++;
x = x + 1;
while (c) {

counta++;
x = x + ask("a", counta); }

x = x * ask("a", counta);
if (c)
then { counta++;

x = x + ask("a", counta); }
else { counta++;

x = x + 2*ask("a", counta); }
x = 2* ask("a", counta);
sendi(mi);
receivei(ki);

receivei−1(mi−1)
sendi−1(ki−1);
counta = 0;
a = x + a;
counta++;
store("a", counta, a);
x = x + 1;
while (c) {

a = a + x;
counta++;
store("a", counta, a);
x = x + a; }

x = x * a;
if (c)
then { a = 2 * x;

counta++;
store("a", counta, a); }

else { a = x * x;
counta++;
store("a", counta ,a); }

receivei(mi);
sendi(ki);

(a) (b) (c)

Figure 6. An example of the proposed protection scheme with counter, (a) original and (b) modified
client, (c) corresponding server.

them to render the game on their screen. The fuel is con-
stantly consumed, and a player must periodically stop the
car and spend time refueling.

There are many ways a malicious user can tamper with
this application in order to gain an unfair advantage over his
competitors. For example, he can increase speed over the
permitted threshold, change the number of performed laps
or avoid refueling by manipulating the fuel level. Unfortu-
nately not all the variables that must be protected against
attack are in Safe. The attacker cannot tamper with the
position (variables x and y), because the displayed partici-
pants’ positions are those broadcast by the server, not those
available locally. The server can check the conformance
of the position updates with the game rules (e.g., maximum
speed). The other sensitive variables of the game (e.g., gas)
are Unsafe and must be protected by some extra mecha-
nism, such as barrier slicing.

6.2 Slice size

Both backward slicing and backward barrier slicing were
computed on the case study code, using the only send()
in the program both as the criterion and as the barrier, as
described in Section 4. Table 1 reports the size of the slices
compared to the original program. The last column com-
pares the size of the barrier slice with the regular slice.

Original client Slice Barrier slice
LoC 858 185 120 (-65)

22% 14% (-35%)

Table 1. Size of the backward slice and barrier
slice compared to the original client.

The code that must be replicated on the server to pro-
tect Unsafe is small, both using regular and barrier slicing
(respectively 22% and 14% of the total). However, the bar-
rier slice (120 lines) is considerable smaller than the regular
slice (185 lines).

Manual inspection of the code reveals that non-sensitive
code consists mainly of functionalities that build the graph-
ical user interface, handle graphical events, communicate
over the network, handle the game message protocol and
manage the data for the opponent cars. This explains the
remarkable size reduction achieved through barrier slicing.

6.3 Performance

The proposed code transformation has been applied to
the case study in two variants, the plain solution and the op-
timized solution. A full race was played and performance

Standard
Regular messages Trust messages Increase

Sent 1142 6796 5.95
Received 1144 6796 5.94

Optimized
Regular messages Trust messages Increase

Sent 1174 5910 5.03
Received 1172 5910 5.04

Table 2. Performance in terms of exchanged
messages in the protected application.

was evaluated using the two versions. The user noticed just
a very small delay between the commands and the car re-
sponse in the non-optimized run. In the second, optimized
run (see Subsection 5.3.1), no noticeable difference was ob-
served, compared to the original game.

We also measured the communication overhead involved
in the synchronization of the client with the barrier slice
executed on the server. Table 2 shows the number of mes-
sages exchanged. Regular messages required by the original
code are in the second column, whereas the third column
reports the number of trust messages that are required by
the protection mechanism (sync, ask and input-forward
messages). The last column shows the increase, which is
around 6 in the non-optimized version, and drops down to
around 5 in the optimized one. The size of the two kinds
of messages are similar (regular and trust messages are re-
spectively about 150 bytes and 100 bytes long).

Although the amount of exchanged trust messages is re-
markable in both versions, this did not result in a perceived
performance degradation. One possible explanation is that
this application was developed as a multi-thread applica-
tion, so that some threads may continue to run while others
are blocked, waiting to synchronize with the server.

7 Conclusion and Future Work

In this paper, we addressed the problem of remote trust-
ing, i.e., verifying the healthy execution of a given applica-
tion on a remote client before delivering a service to it. Our
proposed solution relies on barrier slicing to identify which
portions of the client code should be moved to the server in
order to protect otherwise unsafe variables.

A preliminary study of the feasibility of this solution was
based on CarRace, a network game written in Java. The
barrier slice moved to the server was small with respect to
the entire application (14%) and substantially smaller than a
regular backward slice (35% less statements). The commu-
nication overhead increased by a factor of 5 or 6 (depending
on the level of optimization), but the perceived performance

did not degrade.
In future, we will consider larger case studies, to evalu-

ate how the approach scales. In contrast to the current ap-
proach, we will also investigate automatic identification of
Safe and Unsafe variables and the possibility of combining
our approach with code obfuscation. Moreover, we intend
to consider a trust scenario where multiple clients interact
directly with one another (in a peer-to-peer way) and with
the server, taking advantage of the information gathered by
the clients on the peers connected to them.

References

[1] A. Carroll, M. Juarez, J. Polk, and T. Leininger. Microsoft
“Palladium”: A Business Overview. Microsoft Content Se-
curity Business Unit, August, 2002.

[2] R. Kennell and L. H. Jamieson. Establishing the genuinity of
remote computer systems. In Proceedings of 12th USENIX
Security Symposium, 2003.

[3] J. Krinke. Barrier slicing and chopping. In Proceedings
Third IEEE International Workshop on Source Code Analy-
sis and Manipulation, pages 81–87, 2003.

[4] J. Krinke. Slicing, chopping, and path conditions with bar-
riers. Software Quality Journal, 12(4):339–360, dec 2004.

[5] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in distributed systems: theory and practice.
ACM Trans. Comput. Syst., 10(4):265–310, 1992.

[6] D. of Defense. Trusted computer security evaluation criteria.
Washington D.C., December 1985. DOD 5200.28-STD.

[7] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design
and Implementation of a TCG-based Integrity Measurement
Architecture. pages 223–238, 2004.

[8] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. K. Khosla. Pioneer: verifying code integrity and enforc-
ing untampered code execution on legacy systems. In Pro-
ceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP), Brighton, UK, October 23-2-6, pages 1–
16, 2005.

[9] A. Seshadri, A. Perrig, L. van Doorn, and P. K. Khosla.
Swatt: Software-based attestation for embedded devices. In
IEEE Symposium on Security and Privacy, pages 272–283,
2004.

[10] M. C. Umesh Shankar and J. D. Tygar. Side effects are
not sufficient to authenticate software. Technical Report
UCB/CSD-04-1363, EECS Department, University of Cali-
fornia, Berkeley, 2004.

[11] P. van Oorschot, A. Somayaji, and G. Wurster. Hardware-
assisted circumvention of self-hashing software tamper re-
sistance. IEEE Transactions on Dependable and Secure
Computing, 2(2):82–92, April-June 2005.

[12] M. D. Weiser. Program Slices: Formal, Psychological, and
Practical Investigations of an Automatic Program Abstrac-
tion Method. PhD dissertation, The University of Michigan,
Ann Arbor, 1979.

[13] X. Zhang and R. Gupta. Hiding program slices for software
security. In CGO ’03: Proceedings of the international sym-
posium on Code generation and optimization, pages 325–
336, Washington, DC, USA, 2003. IEEE Computer Society.

