
Barrier Slicing for Remote Barrier Slicing for Remote 

Software TrustingSoftware Trusting

Ceccato Mariano1, Mila Dalla Preda2, 

Jasvir Nagra2,

Christian Collberg3, Paolo Tonella1

1Fondazione Bruno Kessler-IRST, Trento, Italy
2University of Trento, Italy 

3University of Arizona, USA



Remote software trustingRemote software trusting

• Remote software authentication: ensuring a trusted machine (server) that 
an un-trusted host (client) is running a “healthy” version of a program;

• The server is willing to deliver a given services only to clients that prove to 
be “healthy”;

– The program is unadulterated.

– It is executed on top of unadulterated HW/SW.

– The execution process is not manipulated externally.

30/9/2007 Barrier Slicing for Remote 
Software Trusting

2

Un-trusted client
Un-trusted client

Un-trusted client

Un-trusted client

Un-trusted client Trusted server



ApproachApproach

• Remove a portion of the program to protect and 

run it on the server.

– Trade off between security and performances

30/9/2007 Barrier Slicing for Remote 
Software Trusting

3

Un-trusted server Trusted server

Network
Program P



Program sliceProgram slice

• Set of variables that 
we are interested in 
protecting.

• We remove those 
variable from the 

1 time2 = System.currentTimeMillis();
2 double delta = speed * (time2 – time); 
3 x = x + delta * cos(direction);
4 y = y + delta * sin(direction);
5 Server.sendPosition(x,y);
6 if (track.isInBox(x, y)){
7 gas = maxGas;
8 lastFuel = time2;
9 }

30/9/2007 Barrier Slicing for Remote 
Software Trusting

4

variable from the 
client.

• The (executable) slice 
is replicated into the 
server where it can be 
executed safely.

9 }
10 else {
11 gas = maxGas - (int) (time2-lastFuel);
12 if (gas < 0) {
13 gas = 0;
14 if (speed > maxSpeed /10) 
15 speed = maxSpeed /10;
16 else if (speed < minSpeed/10) 
17 speed = minSpeed/10;

}
}

18 time = time2;



Safe variables: Safe variables: 

barrier slicebarrier slice

• Subset of variables that 

can not modified by the 

user, otherwise either: 

– the client would receive a 
not-usable service, or

1 time2 = System.currentTimeMillis();
2 double delta = speed * (time2 – time); 
3 x = x + delta * cos(direction);
4 y = y + delta * sin(direction);
5 Server.sendPosition(x,y);
6 if (track.isInBox(x, y)){
7 gas = maxGas;
8 lastFuel = time2;
9 }

safe

30/9/2007 Barrier Slicing for Remote 
Software Trusting

5

– the server would notice it 
(using assertions)

• They can be used as 

barriers and block the 

dependency propagation 

when slicing (Krinke, 

scam 2003) 

9 }
10 else {
11 gas = maxGas - (int) (time2-lastFuel);
12 if (gas < 0) {
13 gas = 0;
14 if (speed > maxSpeed /10) 
15 speed = maxSpeed /10;
16 else if (speed < minSpeed/10) 
17 speed = minSpeed/10;

}
}

18 time = time2;

un-safe



Program transformationProgram transformation

Un-trusted host:

• X ∈ un-safe

• X uses are removed from the 
program;

• They are replaced by a query to get 
the actual value over the network;

• X defs are replaced by 
synchronization statements.

• Some optimizations…

Trusted host:

• A barrier-slice is run for each served 
host;

• Client validity is continuously verified 
(assertions);

• X values are provided as required;

• Synchronization with the un-trusted 
hosts.

30/9/2007 Barrier Slicing for Remote 
Software Trusting

6

• Some optimizations…

Trusted hostUn-trusted host

Network



Example: CarRaceExample: CarRace

BOX

Position

Number of Laps

Speed

Fuel

Original Barrier 

30/9/2007 Barrier Slicing for Remote 
Software Trusting

7

Original 

client
Slice

Barrier 

slice

858 185 120 (-65)

22% 14% (-35%)

Regular messages Trust messaged Increase

Sent 1174 5910 5.03

Received 1172 5910 5.04



Ongoing worksOngoing works

• Integrating the monitor with the slice 
approach to improve performances;

• Apply the barrier slicing to bigger test 
cases to perform overhead 

30/9/2007 Barrier Slicing for Remote 
Software Trusting

8

cases to perform overhead 
measurements;

• Integrate the approach with secure 
hardware;

• Automatic identification of the secure and 
un-secure variables.


