
DATES: Design Analysis Tool for Enterprise Systems

Cristina Marinescu
LOOSE Research Group

“Politehnica” University of Timişoara, Romania
cristina.marinescu@cs.upt.ro

Abstract

In the current demonstration we present a new tool which
increases the level of understanding and the accuracy of de-
sign quality assessment within enterprise systems. This is
performed by providing its users with information specific
to this type of systems (e.g., accessed tables from a class).
In order to validate its usefulness, we perform some exper-
iments on a suite of enterprise systems whose results are
briefly presented in the last part of the demo.

1. Introduction

Understanding and assessing the design quality of enter-
prise software systems using tools that consider an enter-
prise system as a regular 1 object-oriented one are in dan-
ger of getting incomplete and inaccurate results. The two
limitations reside in the fact that the aforementioned tools:

• rely on a structural view of the source code – this
led to an impossibility of finding, for example, object-
oriented design entities which access relational de-
sign entities (e.g., which classes are affected when we
change the structure of a particular table?).

• rely exclusively on principles, heuristics and best prac-
tices of object-oriented design, being impossible: (1)
to find the design entities that break specific enterprise
systems design rules and patterns like the ones defined
in [4, 9], (2) to determine which object-oriented design
entities are/are not affected by conflicting bad smells
(e.g., a Data Class bad smell [3] within an enterprise
system may not be a design bad smell).

In the current demonstration we present a new tool called
DATES whose role is to increase the level of understanding
and the accuracy of design quality assessment within enter-
prise systems.

1 an object-oriented system which does not involve persistency (cur-
rently, provided by a relational database).

Figure 1. DATES - a snapshot.

2. DATES – an overview

In this section we show that DATES removes the men-
tioned limitations existing tools for reengineering regular
object-oriented systems (e.g., MOOSE[2], iPlasma [7]) are
confronted with when applied on enterprise systems. Next,
for each described limitation we dedicate a section.

Finding accesses from object-oriented entities to rela-
tional entities. Due to the fact that DATES uses an en-
hanced model of the analyzed source code (presented in [6])
which includes design entities from the object-oriented part,
design entities from the involved relational database as well
as the interactions among them, it is possible to find out:

• the unused tables from the involved relational
database.

• the tables accessed by classes and methods from the
data source layer (the upper right part of Figure 1).

Finding entities that break specific enterprise systems
design rules. As stated in [4], one steady rule an enterprise
system should follow is that its domain and data source lay-
ers should never depend on the presentation layer. DATES
allows us to detect entities which have a double identity (be-



long to more than one layer), according to a lightweight ap-
proach of layers’identification presented in [5].

In [4] are also presented specific design patterns regard-
ing the communication between the object-oriented entities
and the relational entities (e.g., Table Data Gateway, Active
Record). DATES allows us to identify classes whose struc-
ture respect/do not respect the aforementioned patterns ac-
cording to the approach presented also in [5].

Finding entities that are/are not affected by conflicting
bad smells. One of the well-known design flaws is the
Data Class [3] design flaw. But within an enterprise sys-
tem, Data Classes used for carrying information between
clients (the domain layer) and server (the persistency layer)
in order to reduce the number of method calls are not con-
sidered harmful (these classes are called Data Transfer Ob-
jects [4] (DTO)). DATES does not report DTO classes as
regular Data Classes that should be refactored.

Having some Data Transfer Objects in an enterprise sys-
tem probably involve the existence of some methods af-
fected by the Feature Envy [3] design flaw. DATES, ac-
cording to the approach from [5], allows us to determine
which methods apparently affected by the Feature Envy de-
sign flaw should be refactored and which not (the ones be-
ing envy of data belonging to DTO classes).

3. DATES at work

DATES can be used for assessing enterprise systems
written in Java where the persistency is provided by SQL re-
lational databases, in particular MySQL and Microsoft Ac-
cess. We integrate DATES within the iPlasma [7] front-end
called insider in order to be able to use existing quality as-
sessment techniques regarding the object-oriented part of an
enterprise system (e.g., metrics, detection strategies [8]).

When DATES is loaded into the insider front-end it en-
hances the model of the analyzed system with information
regarding the relational part of the system, as well as with
information regarding the interactions between the two in-
volved paradigms. It also overrides the existing implemen-
tations of static analyses (for regular object-oriented sys-
tems) for finding entities affected by Data Class and Fea-
ture Envy design flaws with the ones suitable for enterprise
systems presented in [5].

We analyzed with DATES several enterprise software
systems, among which an open-source enterprise system
having 11.2 MB, 175424 LOC, 1527 classes and 217 ta-
bles. The model of this enterprise system is extracted from
the source code and database schema, using an Intel Core
2 Duo processor, in less than 2 minutes. The obtained re-
sults reveal, on the three fronts, the following:

• among the accesses from object-oriented entities to re-
lational entities there are several false negatives caused

by the existence of some accesses to tables which do
not exist in the involved database.

• the systems contain classes which belong into more
than one layer.

• an important number of classes initially affected by the
Data Class design flaw are, in fact, Data Transfer Ob-
jects. DATES, by taking into account the difference be-
tween Data Classes and Data Transfer Objects, reports
up to 81% of the methods affected by the Feature Envy
design flaw as being non-harmful (i.e., being envy of
data belonging to DTO classes).

4. Related Work

There are already tools on the market that amongst
other analyses are capable of analyzing the relation-
ships between object-oriented and database design en-
tities (e.g., the CAST AI Platform [1]). In this con-
text, we want to emphasize that DATES allows us to
find valuable information related to enterprise systems
which are not provided by other similar tools and, be-
ing a research infrastructure, its users are able to imple-
ment using a plugin mechanism further analyses that
allows a better comprehension of enterprise software
systems.

References

[1] CAST AI Platform. http://www.castsoftware.com, 2007.
[2] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an extensible

language-independent environment for reengineering object-
oriented systems. In Proc. International Symposium on Con-
structing Software Engineering Tools, 2000.

[3] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[4] M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2003.

[5] C. Marinescu. Identification of design roles for the assessment
of design quality in enterprise applications. In Proc. IEEE In-
ternational Conference on Program Comprehension, 2006.

[6] C. Marinescu and I. Jurca. A meta-model for enterprise ap-
plications. In Proc. International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC).
IEEE Computer Society Press, 2006.

[7] C. Marinescu, R. Marinescu, P.F. Mihancea, D. Raţiu, and
R. Wettel. iPlasma: An integrated platform for quality as-
sessment of object-oriented design. In Proc. IEEE Interna-
tional Conference on Software Maintenance (Industrial and
Tool Volume), 2005.

[8] R. Marinescu. Detection strategies: Metrics-based rules for
detecting design flaws. In Proc. IEEE International Confer-
ence on Software Maintenance, 2004.

[9] C. Nock. Data Access Patterns: Database Interactions in
Object-Oriented Applications. Addison-Wesley, 2003.


