
Towards Path-Sensitive Points-to Analysis
Tobias Gutzmann, Jonas Lundberg and Welf Löwe

Software Technology Group
Växjö University
Växjö, Sweden

Email: {Tobias.Gutzmann,Jonas.Lundberg,Welf.Lowe}@vxu.se

Abstract— Points-to analysis is a static program analysis aim-
ing at analyzing the reference structure of dynamically allocated
objects at compile-time. It constitutes the basis for many analyses
and optimizations in software engineering and compiler construc-
tion. Sparse program representations, such as Whole Program
Points-to Graph (WPP2G) and Points-to SSA (P2SSA), represent
only dataflow that is directly relevant for points-to analysis. They
have proved to be practical in terms of analysis precision and
efficiency. However, intra-procedural control flow information
is removed from these representations, which sacrifices analysis
precision to improve analysis performance.

We show an approach for keeping control flow related infor-
mation even in sparse program representations by representing
control flow effects as operations on the data transferred, i.e., as
dataflow information. These operations affect distinct paths of
the program differently, thus yielding a certain degree of path-
sensitivity. Our approach works with both WPP2G and P2SSA
representations.

We apply the approach to P2SSA-based and flow-sensitive
points-to analysis and evaluate a context-insensitive and a
context-sensitive variant. We assess our approach using abstract
precision metrics. Moreover, we investigate the precision im-
provements and performance penalties when used as an input
to three source-code-level analyses: dead code, cast safety, and
null pointer analysis.

I. INTRODUCTION

Points-to analysis is a static program analysis that extracts
reference information from a given input program, e.g., possi-
ble targets of a call and possible objects referenced by a field.
It computes for each variable and field v the set of possibly
referenced objects, the points-to set pt(v).

Points-to analysis is the basis of many other analyses in
compiler construction and software engineering. Many of these
”client analyses” of points-to analysis are used in program
optimization and, hence, have no effects on the source code.
However, quite a few of them have direct relevance for
program designers since they

• compute precise views on the source code that help
designers in program comprehension and debugging, e.g.,
call graph construction and program slicing,

• prove correctness of certain properties statically, e.g., cast
safety and that objects accessed cannot be null,

• lead to source code transformations, e.g., dead code
elimination.

Points-to analysis is the approximation of a problem that
is, in general, undecidable. Since a program may create
countable many runtime objects and may have unknown input,
exact points-to information cannot be computed in general.

Approximations vary in precision and scalability. Since points-
to analysis is not a value in itself, it is important to carefully
select the variant fitting best a certain client analysis. It should
provide sufficient precision at acceptable performance in the
context of the client analysis. It has been observed before
that very precise points-to analysis may have little effect on
a given client analysis, e.g., in the context of call graph
construction [1].

Points-to analyses differ, among others, in

• flow-sensitivity: Does the analysis consider the order in
which statements are executed?

• context-sensitivity: Does the analysis distinguish different
call contexts of methods?

• name schema: How are the countable many runtime ob-
jects represented in the analysis, i.e., mapped to abstract
objects?

• program representation: How does the analysis abstract
from the semantics of programming constructs of a source
program?

Flow- and context sensitive variants are more precise and less
efficient than their insensitive counterparts, and so are name
schemata that distinguish many objects compared to those that
only distinguish few. For a more elaborated discussion and
classification of points-to analysis variants cf. [2]. In short,
the choice of flow-sensitivity, context-sensitivity, and name
schema provides a variant of points-to analysis with a certain
precision, where higher precision usually means more time
and memory are required to perform the analysis.

Points-to analyses that have proved to be efficient in prac-
tice usually operate on sparse program representations. They
abstract from all programming constructs that do not directly
affect points-to information. They do not include, e.g., opera-
tions related to basic types or control flow statements. Again,
compared with full program representations, e.g., intermediate
compiler languages, sparse representations trade precision for
performance.

A. Contributions

Sparse program representations used for points-to analysis
remove intra-procedural control flow information. We present
an approach that retains a certain degree of control flow
information. Our approach to path-sensitivity enriches a pro-
gram representation with additional dataflow operations. It
is orthogonal to other variants of points-to analysis [2] and

fundamentally differs from well-known approaches to path-
sensitivity, cf. Section V-A. Hence, it can be seen as a new
dimension for varying points-to analysis. In theory, path-
sensitivity leads to a non-decreasing precision. In practice,
precision of points-to analysis increases and has positive effect
on the precision of the source code related client analyses
assessed. In particular, we observe an average precision-
improvement by

• 31% (25%) in the context of our context-insensitive
(context-sensitive) cast-safety analysis,

• 5% (3,5%) in the context of our context-insensitive
(context-sensitive) dead code analysis,

• 3,3% (3,1%) in the context of our context-insensitive
(context-sensitive) null-pointer analysis.

Although performance results are preliminary, we did not
observe prohibitively large slow-downs of the analysis. In
the worst case, we observed a 32% (21%) slower context-
insensitive (context-sensitive) analysis. In the best case, we
even observed a speed-up by 12% (21%).

B. Paper Outline

The remainder of the paper is organized as follows. Sec-
tion II defines and discusses basic notions and concepts
of points-to analysis and sparse representations. Section III
introduces our approach to path-sensitive points-to analysis.
This section contains the main theoretical contribution of
the paper. Section IV assesses our approach in the context
of source code related client analyses. It contains the main
practical contribution of the present paper. Section V puts our
contributions into the context of prior work. Finally, Section VI
concludes the paper and shows directions of future work.

II. PROGRAM ANALYSIS

In this section, we discuss principles of program analysis,
including a short summary of common program representa-
tions.

A. Basics

A dataflow analysis needs to approximate its analysis re-
sults. For points-to analysis, such an approximation is either
optimistic or pessimistic, yielding either stronger or weaker
conclusions than the exact statement, respectively. For a
points-to analysis, this means either an under- or overesti-
mation of the obtained points-to sets. An analysis that only
uses pessimistic approximations is also called conservative.
A common approach to support conservative analysis is the
use of monotone dataflow frameworks [3], [4]. A common
way to achieve monotonous dataflow is to disallow strong
updates for transfer functions – that are the functions that give
single operations its analysis semantics – i.e., the previously
computed value of a variable is not overwritten but values are
added to a variable’s set of possible values when an assignment
occurs.

B. Name Schema

A program analysis needs to abstract from the values which
expressions may take during a real application run in some
way. Such an abstraction is called a name schema. When a
name n ∈ N is a classification of one or more runtime objects
o(n), then the following must hold:

∀n1, n2 ∈ N : n1 6= n2 ⇒ o(n1) ∩ o(n2) = ∅

Thus, an abstract object may denote an arbitrary number of
runtime objects, but each runtime object must be represented
by exactly one abstract object.

C. Flow Sensitivity

An analysis can be either flow sensitive or flow insensitive.
A flow sensitive analysis takes the order of operations into
consideration. This can be the case either on inter-procedural
or intra-procedural dataflow. Flow-sensitive analyses are more
precise than flow-insensitive analyses, however, they are also
more costly.

D. Context Sensitivity

An operation op on a syntactical location s in a program
might be reached through multiple predecessor statements,
therefore an analysis may distinguish distinct execution paths
in order to improve precision. This can be done either on an
intra-procedural level or on an inter-procedural level.

E. Program Representations

Program representations can capture either the full seman-
tics of a program, or they can focus on parts of a program
that are sufficient for a given task. The former include basic
block graphs used, e.g., by compilers [5].

An example of the latter are sparse Whole Program Points-
to Graphs (WPP2Gs), which are used by many scalable
Points-to analyses, e.g., [1], [6]–[13]. WPP2Gs contain three
different node types: abstract objects, reference variables, and
object fields. Edges represent assignments of abstract objects,
variables, and fields to (other) variables and fields.

For the rest of this section, we will focus on Points-to SSA,
the program representation which we use in the evaluation
section of this paper. We start with a short summary of
technologies that Points-to SSA is based on.

Static Single Assignment form – in short, SSA – is an
intermediate representation technique first developed by [14].
Every variable is assigned a value exactly once. For each
definition in original form, a new version of that variable
is created during SSA construction. To decide what version
of a variable is valid after meets in the control flow, φ-
nodes are introduced: φ-nodes are artificial operations that take
the possible versions of a variable as arguments and decide,
depending on control flow, which of these operands is the
currently valid definition. SSA form provides many benefits
for program analysis, for instance, use-def relations become
explicit.

Memory SSA [15]–[17] is a graph-based extension to the
traditional SSA. In Memory SSA, the traditional ordering

of operations within a basic block structure is replaced by
a directed graph structure. Local variables are resolved to
dataflow edges connecting operations (nodes), which has the
effect that def-use relations become explicit. Dependencies on
accessing the memory are modeled by memory edges, putting
memory on the same level as data, including the use of φ-
nodes at control flow confluence. These memory edges dictate
a correct order in which memory accesses must be executed
for a given program.

SSA and Memory SSA both capture the full semantics of
a program. We will now describe Points-to SSA [18], our
graph based program representation which we conduct our
experiments on in this paper.

Points-to SSA method graphs are an abstraction of Memory
SSA method graphs which are specially designed for points-to
analysis. We have removed all operations not directly related
to reference computations, e.g., operations related to primitive
types.

A feature of Points-to SSA is how memory operations are
handled. An operation that may change the memory defines
a new memory size value, and operations that may access
this updated memory use the new memory size value. Thus,
memory sizes are considered as data and memory size edges
have the same semantics – including the use of φ-nodes at join
points – as def-use edges for other types of data. The actual
memory state – e.g., the analysis values of object fields – is
maintained in a separate data structure.

A Points-to SSA method graph G = {N,E, Entry,Exit}
is now defined as a directed, ordered multi-graph where N is a
set of Points-to SSA nodes, E is a set of Points-to SSA edges,
Entry is a graph entry node satisfying |pred(Entry)| = 0,
and Exit is a graph exit node satisfying |succ(Exit)| = 0.

The reference related semantics of different language con-
structs (e.g., calls and field accesses) are described by a set
of operation nodes. Each node n has a number of in-ports
in(n) = [in1(n), . . . , ink(n)], and a number of out-ports
out(n) = [out1(n), . . . , outl(n)]. The in-ports represent input
values for the operation in question whereas the out-ports
represent the results produced by the operation. All ports have
a fixed type – i.e., memory size or points-to set – and a current
analysis value of that type.

An edge e = outi(src) → inj(tgt) connects an out-port
of a node src with an in-port of a node tgt. An edge may
only connect out- and in-ports of the same type. An out-port
outi(n) may be connected to one or more outgoing edges. An
in-port inj(n) is always connected to a single incoming edge.
The last property reflects our underlying SSA approach – each
value has one, and only one, definition.

Certain node types have attributes that refer to node specific
information. For example, each Read node is decorated with
a field identifier that identifies the field to be read from
memory. Finally, each type of node is associated with a unique
analysis semantics (or transfer function), which can be seen
as a mapping from in-ports to out-ports that may have a side-
effect on the memory. A detailed description of the underlying
analysis algorithms can be found in [18].

These information should give enough insight to follow the
examples given in this paper by comparing given source code
with the corresponding graphs, e.g., Figure 5.

III. APPROACH

x == x
1 2

x .foo()1...

false true

Fig. 1. Simple Control Flow Graph

Our approach, path-sensitivity, uses the fact that control
flow statements may make branching decisions based upon
input variables. While, at runtime, each such input variable has
exactly one value, a static analysis will, in general, compute a
set of possible runtime values. Thus, it is undecidable which
branch is taken. However, statements about the values of the
variables involved in deciding the branch can be made, cf. the
control flow graph in Figure 1: On the branch that is executed
when the equality comparison yields true, we can restrict
the targets of the call x1.foo() to pt(x1) ∩ pt(x2). Should
the compared values not be retrieved from local variables
or constants, some special treatment can be applied to flow
sensitive analysis. We will discuss this in Section III-C and,
for now, restrict input to branch decisions made on basis of
local variables and constants.

We will now present a general approach that can be applied
to many intermediate representations. Afterwards, we will dis-
cuss improved implementation techniques for flow-insensitive
and flow-sensitive points-to analyses.

We limit our approach to Java, as so does our points-to
analysis and different languages might have slightly different
semantics, e.g., for instanceof operations, but it should be pos-
sible to apply the approach to other programming languages
with few adaptations.

A. General Approach

Our approach works for many program representations that
are not in SSA form. SSA is usually constructed from another
program representation, and the changes can be taken along
to SSA based representations, so that this is not a functional
constraint.

x == x
1 2

false true

1 2x = x = x x1 2

...

...

x .foo()1

Fig. 2. Insertion of Basic Blocks

For each branch statement for which we can add filter
operations – which will be discussed below –, two basic
blocks are added. These blocks have the basic block containing
the branch statement in question as their only control flow
predecessor, and the original control flow successors as their
(only) control flow successors. Each of these basic blocks
contains redefinitions of the variables which are involved in
the branching condition. These redefinitions filter the variables
to values as discussed below. Figure 2 shows how the control
flow graph from Figure 1 will look after this transformation.
Note that the basic blocks need to be inserted only if the
successor basic block of the branch statement has multiple
control flow predecessors, i.e., the original edge is a critical
edge, as for some of the predecessors of that basic block
the filter operation may not be valid. Otherwise, the filter
operations can be inserted as first statements of the existing
basic blocks for simplicity. No action needs to be taken when a
branch joins another branch as the redefinitions of the variables
lose their scope.

In Table I, we list five possible filter operations that can be
applied to our approach and which we will briefly discuss.
Each row in the table lists one pattern which may be en-
countered in a program representation as input to a branching
statement, and for which we introduce filter operations in the
program, either on the true- or false-branch, respectively.

Note that for inequality and negation, the two branches are
simply to be exchanged. We therefore do not discuss these
cases any further.

We have already given reference equality – the first filter
operation listed – and its influence on the true-branch as
an introductory example. For the false-branch, however, we
cannot narrow the possible values of the involved variables,
as an abstract object may denote several concrete runtime
objects, cf. Section II-B; an exception is a comparison with
the null-constant, our second filter operation. Further abstract
objects known to denote a single runtime object could be
identified, e.g., objects known to be singletons. These could
also be treated like null-checks, but a discussion on how to
identify such objects is beyond the scope of this paper.

Another variation of this kind of filter is comparing the
runtime type of an object with a given type, which is the
third filter operation shown. Logically, this filtering has been
widely used: [15], for example, transform polymorphic calls
in their Memory SSA based program representation into a
number of monomorphic calls and insert type-based filters.
The code shown in Figure 3 and an outline of the dispatch
logic of the polymorphic method invocation of foo() illustrate
this process on source-code level.

The fourth proposed filter operation targets a method invo-
cation to Object.equals(). Here, x1.class∗ == Object.class
means that the polymorphic call resolution for an object a
targets the implementation of Object.equals(); i.e., the class
of a does not overwrite that method. This approach can be
extended to other methods, e.g., strings, where both objects
need at least to be strings in order to be equal.

Our fifth and last proposed filter is the instanceof operation.

c l a s s A {
void foo () { . . . }
void b a r (A a) { A. foo () ; }

}
c l a s s B ex tends A {

void foo () { }
}

Fig. 3. Polymorphic Call

s t a t i c d i s p a t c h f o o (A a) {
i f (a . g e t C l a s s () == B . c l a s s)

B . foo (a) ;
e l s e i f (a . g e t C l a s s () == A. c l a s s)

A. foo (a) ;
/ / . . .

}

Fig. 4. Dispatch Logic

The most common use of the instanceof operator is to check
an object for a given type and then to cast the object to that
type. With the filter operation preceding a cast, we gain two
other benefits besides the effect that the cast itself can be
regarded as never failing: First, a cast in Java will not fail
if the value of the casted expression is null; an instanceof -
operation will, however, return false in that very case, so that
a benefit in filtering is achieved. Second, on the false-branch,
values cannot be object instances of that type, thus we can
include a complementary filter there.

B. Implementation for Flow-Insensitive Analyses

The approach described above is correct for every analy-
sis. However, flow-insensitive analyses will not benefit since
variables which share the same declaration also share the
same value set. Therefore, a slightly different implementation
approach needs to be taken. Instead of assigning a variable
x its filtered value as described above, we declare a copy x′,
assign it the filtered value of x, and replace occurrences of x
with x′ where valid. To decide where x can be replaced by x′,
we use the dominator relation. A basic block b1 dominates a
basic block b2 if every path from the start node of a method
graph to b2 must go through b1.

With x the variable in question and B the newly created
basic block for x, every defining and using reference to this
variable x is replaced by x′ in all operations contained in any
basic block dominated by B. If such an x′ is assigned a value
at any point, these values need to be merged with x again.
Since this is required only in flow-insensitive analyses, it is
sufficient to introduce an assignment x = x′ anywhere in the
control flow graph. A generally valid approach not specifically
targeted at points-to analysis is to introduce a merge operation
x = x ∪ x′ as the last statement of each basic block that
is dominated by B but which has at least one control flow
successor that is not dominated by B any more, i.e., dominated
blocks that are predecessors of dominance frontiers of B.

With this algorithm, we perform a belated def-use analysis
for the filter operations. While it at first appears that we

TABLE I
FILTER OPERATIONS

Condition true branch false branch
x1 == x2 pt(x1) = pt(x2) = pt(x1) ∩ pt(x2) <none>
x == null pt(x) = pt(x) ∩ {null} pt(x) = pt(x)\{null}
x.getClass() == T.class pt(x) = {a ∈ pt(x) | a.getClass() == T.class} pt(x) = {a ∈ pt(x) | a.getClass() 6= T.class}
x1.equals(x2)

pt(x1) = {a ∈ pt(x1) | ¬(a.class∗ == Object.class) ∨
(∃b ∈ pt(x2) : a == b)} <none>

x instanceof T pt(x) = {a ∈ pt(x) | a instanceof T} pt(x) = {a ∈ pt(x) | ¬(a instanceof T)}

perform a small-scale SSA construction, and, thus, a cer-
tain degree of flow-sensitivity is introduced into the flow-
insensitive analysis, this is not the case, as a filtered variable
depends on its unfiltered counterpart and therefore its analysis
values may be altered by assignments that strictly appear
after the filter operation. Further, the analysis of the unfiltered
variable is influenced by the filtered variable.

C. Implementation for Memory SSA based Program Repre-
sentations

The universal approach discussed before requires the ma-
nipulation of the intermediate representation that is not yet in
SSA form, as well as adaptation of the SSA based program
representation. In the following, we discuss an alternative
implementation approach that makes do with adapting only
the SSA based program representation.

c l a s s A {
O b j e c t x , y ;
void foo (A a) {

O b j e c t m = x ;
i f (a . x != m) {
y = m;

}
}
}

Read
A.x

m

m

a v

a

m v

A.x

m a

vm

A.y

v

End

m

m

m a

Store

Read

Start

!=
v v

v v

Start

Read
A.x

m

m

a v

a

m v

A.x

m a

vm

A.y

v

End

m

m

m a

Store

Read

v v

!=

v v

Fig. 5. Transformation on Memory SSA Graphs

Instead of introducing additional nodes within Memory
SSA, the existing nodes – in our case, instanceof - and EQ-
nodes – take over the computations of the filtered points-to
sets, we thus modify the nodes’ transfer functions. Uses of
the operands in the according branches – computed again by
domination relation as described in the previous section – are
replaced by the filtered values computed by these operations.

Figure 5 shows an example of this transformation. Note that,
for simplicity, the basic block structure, which is required for

the computation of the dominator relations, as well operations
related to intra-procedural control flow are not included in the
graph. The left of the two graphs shows a regular Memory SSA
graph with the relevant equality operation retained. Now, the
equality operation is turned into a filter operation and, since it
clearly dominates the store operation to A.y, that operation’s
input value is replaced by the filtered value, as can be seen in
the right graph.

While this approach reduces the implementation effort,
it has a drawback. Due to flow sensitivity, we could gain
more precision than for the flow insensitive approach when
a variable has been filtered individually on two distinct paths
which then coalesce. Using the general approach, the two
filtered values would be merged by a φ-operation. The imple-
mentation technique presented here cannot achieve this, thus,
the unfiltered variable will be used on the merged path.

Depending on programming style, multiple read accesses to
the same field may occur in sequence. In Figure 6(a), we have
rewritten the previous example such that we do not create a
local variable to which we copy the contents of the field x.
Now, an additional Read node is inserted. The filter operation
is now performed for the first read operation in line 4, while
the assignment in line 5 will use the second read operation
which has not been filtered.

Performing an Available Expressions analysis and remov-
ing superfluous memory read accesses solves the problem;
however, we use the less complex algorithm described in
Figure 7. The algorithm works as follows: It searches the
memory dependencies of read accesses upwards and checks
if it discovers an equal (same field, same address) read
access. If so, the two read accesses are merged. It stops the
upward traversal if it encounters an operation that potentially
changes the memory with respect to the referenced field. Such
operations include write accesses to the same field, method
invocations, and memory-φ operations.

Besides improving the analysis precision of our presented
approach, this optimization has also a positive effect on
performance, as identical and therefore superfluous operations
are removed.

IV. EVALUATION

In this section, we describe four different setups of our
points-to analysis which we then compare by means of five
different metrics as well as performance measurements.

1 c l a s s A {
2 O b j e c t x , y ;
3 void foo (A a) {
4 i f (a . x != x) {
5 y = a . x ;
6 }
7 }
8 }

Start

Read
A.x

m

m

a v

a

m v

Read
A.x

m a

vm

!=

v v

v v

m a

Read
A.x

m v

Store
A.y

m va

End

m

m

line 4

line 5

Fig. 6. Sequential Read Accesses to Same Field

procedure REMOVEDUPLICATEREADS(graph)
for all n ∈ graph.nodes do

if n instanceof Read then
in = getMemoryInNode(n)
while doesNotChangeMemFor(n, in) do

if in instanceof Read
∧ accessSameField(n, in)
∧ useSameAddr(n, in) then

n.replaceWith(in)
break

else
in = in.getMemoryInNode(n)

end if
end while

end if
end for

end procedure

Fig. 7. Removing Redundant Read Operations

A. Metrics

We use two abstract metrics which have been proposed
before to assess the precision of a points-to analysis [19], as
well as three metrics at source code level. All our metrics
aim at application methods: An application method is one that
belongs to the core of the analyzed program, and is identified
by checking if the name of the package it belongs to starts
with a certain character string. This ensures that we anticipate
remeasuring the effects different analysis optimizations have
on the Java runtime library.

Our two abstract metrics are:

• OEdge: The Application Object Call Graph (AOCG) is
a fine-grained call graph. The graph consists of nodes
[o,m], where o are abstract objects and m methods, and
edges [oi,mp] → [oj ,mq] in between them. OEdge is
the number of edges, i.e., call relations, in an AOCG,
where at least the caller or callee is an application object
member.

• Heap: The number of abstract objects referenced by
object fields. That is, the sum of the set sizes for all

points-to values stored in all application object fields.
Stored null-values are not counted for this metric.

Our source level metrics are:
• Safe casts: A type cast is safe when it is guaranteed not

to fail at runtime, i.e., the input set of the cast operation
equals the output set. We measure the percentage of safe
casts that occur in application methods.

• Dead code: An access is a field read or write operation on
an application field, or a method invocation originating
from an application method. A dead access is one which
cannot be reached, i.e., its this-pointer has an empty
points-to set. We measure dead code in percentage of
dead accesses compared to total accesses. We determine
the total number of accesses by going through all ap-
plication methods which are in our intermediate program
representation, thus, accesses within unreachable methods
count in to the number total accesses.

• Safe accesses: A safe access is an access which is
guaranteed to not raise a null pointer exception at runtime.
We count in dead accesses to remove the effect that
a more precise analysis may actually show less safe
accesses due to safe accesses now being identified as
dead.

B. Setup

We use a reimplementation of the points-to analysis de-
scribed in [18] which is locally flow-sensitive and partly inter-
procedurally flow-sensitive. Our reimplementation is more
flexible in terms of graph construction, but the underlying
analysis has not yet been optimized for performance and
memory consumption. Currently, no exception handling and
stubs for only few native methods are supported. We have
implemented three of the filter operations we proposed in
Section III-A: Reference equality, null check, and instanceof.

We combine our baseline analysis and our analysis using the
filter operation each in combination with a context insensitive
and 1-Object-Sensitivity (1-Obj-Sens) [10], [13], thus having
four different setups. The optimization for redundant read-
operations, which we presented in Section III-C, is always
applied to ensure comparability in terms of performance.

All benchmarks were run on a Dell PowerEdge 1850,
6GB RAM, Dual Intel Xeon 3.2GHz computer, in a 32-bit
Java Virtual Machine, version 1.6.0-b105, with 2GB heap
space. The benchmark programs are all freely available. They
are either taken from the well-known DaCapo benchmark
suite1, or their version numbers are specified. Obfuscator
is a tool coming along with the Recoder metaprogramming
framework2.

C. Results

We now present the results of our measurements, beginning
with a discussion of the abstract metrics, followed by the
source level metrics. We then discuss performance issues.

1http://www.dacapobench.org
2http://recoder.sourceforge.net

TABLE II
ABSTRACT METRICS

ConIns ObjSens
PathIns PathSens PathIns PathSens

Program OEdges Heap OEdges % Heap % OEdges % Heap % OEdges % Heap %
AntLR 31129 16578 99.85 100.00 38.26 30.43 38.11 30.43
Chart 122973 903030 99.13 99.71 83.91 40.62 83.47 40.60
Emma 2.0 329835 594215 99.63 99.89 46.36 23.69 46.19 23.66
JavaCC 3.2 193629 12824 99.99 99.77 30.26 69.70 30.25 69.47
JavaC 1.3 317699 152660 100.00 100.00 70.27 41.48 70.27 41.48
Jython 2121374 308583 72.32 91.16 90.21 36.46 66.31 29.11
Obfuscator 0.73 223900 69529 99.63 100.18 73.16 76.35 72.52 76.01
PMD 117046 55455 97.95 99.51 71.24 58.67 69.40 58.17
SableCC 1078027 283697 100.00 100.00 35.32 35.32 34.06 34.06
average 96.50 98.91 59.89 45.86 56.73 44.78

1) Abstract Metrics: Table II shows the benchmark results
for our two abstract metrics, OEdges and Heap. ConIns
and ObjSens label the results for the context-insensitive and
context-sensitive setup, respectively, and PathIns and PathSens
the results of path-insensitive and path-sensitive setup.

Neither in the context-insensitive, nor in the context-
sensitive approach do the benchmarks show any major im-
provements when adding path-sensitivity. Jython makes a
formidable exception here, for which we shortly discuss the
reasons: Figure 8 shows an excerpt from the Jython source
code. The first two instanceof operations in line 1 and 3 on
the local variable im func do not affect the object creations
sites in lines 2 and 4, respectively, with respect to the abstract
metrics, as those instanceof operations merely guard the cast
expressions. However, both instanceof operations act as filters
for the object creation site in line 6, which greatly reduces the
input set of the second argument. This kind of code appears
at several locations in Jython, but not in the other benchmark
programs used, which explains the discrepancy.

One test case, Obfuscator, shows a very slight precision
decrease in our metric Heap. This can be explained as follows:
The analysis metric itself does not benefit from the filter
operations, but the stabilization process is affected. Since our
analysis is partly inter-procedurally flow-sensitive, variations
in the stabilization process, which cause this anomaly, occur.

2) Source Level Metrics: Table III shows the benchmark
results for our three source level metrics. The percentage of
safe casts increases by more than nine percentage points each
in the context-insensitive and the context-sensitive setup when
adding path-sensitivity, corresponding a gain of 25.5 to 31.6
percent. On average, 0.72 to 0.75 more percentage points (a
gain of 3.56 to 5.01 percent) of dead code are discovered,
and 2.56 to 2.71 more percentage points (a plus of 3.13 to
3.35 percent) of accesses can be considered safe, respectively.
While the large number of null-pointer checks commonly
found in programs would suggest a larger improvement in this
metric, the results of this metric are already on a very high
level. The mass of the remaining unsafe accesses likely stem
from array usage. We do not perform any strong updates on
arrays but always initialize a newly created array with null, as
required by [20].

ConIns 1-Obj-Sense
Program Orig PathIns PSens Orig PathIns PSens

(h.m:s) (h.m:s) % (h.m:s) (h.m:s) %
AntLR 0:03 0:30 112 0:09 1:17 117
Chart 53:55 114 9.12:27 121

Emma 2.0 2:45 32:44 119 1.36:59 1.43:39 109
JavaCC 3.2 0:04 1:35 106 1:28 42:19 102
JavaC 1.3 0:27 10:28 115 10:21 53:29 119

Jython 7:12 91 3.27:02 79
Obfusc. 0.73 0:15 5:44 88 1:27 22:38 79

PMD 0:59 100 8:08 101
SableCC 0:08 2:35 132 0:21 19:31 109
average 109 104

TABLE IV
EXECUTION TIMES

At no surprise comes the fact that the number of safe cast
operations greatly improves – on average, by 9.46 to 9.92
percentage points or by 25 to 31 percent – with our proposed
optimization.

The precision gain remains quite constant with the different
context sensitivities, which suggests that the filter nodes target
different room for improvement than other variation points
like, e.g., context-sensitivity.

3) Performance Considerations: As stated before, our im-
plementation has not been tuned for performance and memory
usage. Thus, the focus in the discussion lies on relative
performance. [19] shows that the analysis can be performed
efficiently.

For the construction process, we currently use a straight-
forward algorithm for computing dominance relations that
runs in O(n2) and is not further tuned for performance,
and our graph transformations run on a graph library that is
designed for flexibility, not speed. However, fast algorithms
for computing dominator relations are known [21], [22].
Inserting the filter operations into the control flow graphs and
transforming the SSA graphs, respectively, should be possible
with fast, optimized algorithms, as patterns that are to be
matched always consist of few nodes, and branch nodes are
necessary indicators for the presence of such patterns.

Table IV lists the analysis times for three analysis: Here,
Orig labels the execution times of the original implementation

1 i f (i m f u n c i n s t a n c e o f P y F u n c t i o n)
2 re turn new PyMethod (c o n t a i n e r , (P y F u n c t i o n) im func , i m c l a s s) ;
3 e l s e i f (i m f u n c i n s t a n c e o f P y R e f l e c t e d F u n c t i o n)
4 re turn new PyMethod (c o n t a i n e r , (P y R e f l e c t e d F u n c t i o n) im func , i m c l a s s) ;
5 e l s e
6 re turn new PyMethod (c o n t a i n e r , im func , i m c l a s s) ;

Fig. 8. Source Code Excerpt From PyMethod.java

TABLE III
SOURCE LEVEL METRICS

ConIns 1-Obj-Sens
PathIns % PathSens % PathIns % PathSens %

Program Casts Dead C. SafeAcc. Casts Dead C. SafeAcc. Casts Dead C. SafeAcc. Casts Dead C. SafeAcc.
AntLR 43.14 19.25 84.14 49.02 19.54 85.34 44.12 24.72 85.09 49.02 25.01 86.23
Chart 46.35 22.23 79.11 55.06 24.80 84.19 48.00 29.65 80.02 56.47 32.18 84.65
Emma 2.0 48.26 12.73 82.87 49.57 13.25 86.49 52.61 19.03 84.58 53.91 19.51 88.08
JavaCC 3.2 10.41 2.46 68.55 33.93 2.65 70.94 10.41 2.84 68.56 32.14 3.03 70.95
JavaC 1.3 3.58 1.63 67.82 7.67 1.71 69.11 6.13 6.87 68.49 10.22 6.93 69.75
Jython 64.63 28.27 90.82 77.57 29.54 93.03 66.61 37.09 91.17 69.45 38.22 93.28
Obfuscator 0.73 37.83 17.85 79.08 66.00 18.40 83.93 37.83 21.02 79.79 66.00 21.58 84.11
PMD 38.63 14.88 92.87 51.50 16.10 93.89 42.92 17.45 93.27 55.79 18.66 94.28
SableCC 17.88 15.44 83.75 18.60 15.50 86.44 24.66 23.36 84.34 25.38 23.42 87.02
average 34.52 14.97 81.00 45.44 15.72 83.71 37.03 20.23 81.70 46.49 20.95 84.26
gain 31.63 5.01 3.35 25.55 3.56 3.13

of Points-to SSA, which also supports exception handling, as
published in [19]. Some of the benchmark program – Chart
and Jython – were not tested in that paper, and PMD was tested
in a different version. Thus, we omit the execution times here.
The results serve as comparative numbers and show that the
analysis can be performed efficiently. PathIns and PSens are
the execution times for our reimplementation; the former is the
absolute amount of time required to run the baseline analysis,
while the latter shows the relative time factor when running
the analysis with the filter operations.

For the context-insensitive setup, the average slowdown is
9%, for the context-sensitive setup 4%. Two of the benchmark
programs, Jython and Obfuscator, are analyzed faster than
without the optimizations. For these two test cases, the number
of repetitions of analyzing methods – we do not list these
numbers explicitly, as they are not of major importance –
drastically reduces due to improved analysis precision3 [Welf:
list??] For these two benchmark programs, intra-procedural
overhead of our path-sensitive approach is outweighed by the
positive side-effects on the inter-procedural analysis.

However, the relative performance results are preliminary
as the analysis in its entirety is rather slow at its current
implementation state. Once the performance of our reimple-
mentation adjusts to that of our original implementation, these
results will have to be reevaluated.

V. RELATED WORK

In this section, we present current research related to points-
to analysis of object-oriented programs. For brevity, we focus

3An improved analysis result does not necessarily lead to such a lowered
number of analyzed methods; however, a thorough discussion of this topic
goes beyond the scope of this paper.

our efforts on works explicitly dealing with the analysis of
object-oriented programs. However, it should be noted that
most works targeting object-oriented programs have an “im-
perative counterpart” which often predates the object-oriented
work. People interested in more general reviews of the area
should take a look at [2], [6], [23], [24].

A. Path-Sensitivity
An analysis is path-sensitive if it makes use of the expres-

sions used in control statements to restrict the possible values
that might enter the different branches of the statement. In this
paper, we focus on Boolean expressions involving reference
variables and use that information to filter out “impossible”
abstract objects from different branches in iterative and se-
lective control statements. This approach reminds of the so-
called Gated SSA formalism [25], [26]. In Gated SSA, φ-
nodes are extended to γ-nodes which are annotated with the
corresponding branching conditions. These may then be used
to make statements about taken paths after control flow meets.
In contrast, our approach inserts statements at the beginning
of distinct paths.

If-Conversion, e.g., [27], [28], is a compiler optimization
aiming at reducing the number of conditional branches used
in many state-of-the-art compilers. Here, control flow is also
converted to dataflow by inlining the guard expressions of
if statements. Multiple paths can be merged into dataflow
operations, and the information is then used to select best
fitting – in terms of runtime efficiency – machine operations.
The approach of If-Conversion to convert control flow into
dataflow differs from our approach in that If-Conversion aims
at primitive data types.

Many approaches deal with the meet over all paths (MOP)
dataflow problem, e.g., [29]. Since the number of paths is,

in general, unbounded, approaches narrow down the set of
paths, e.g., by finding correlations between branch conditions
[30]. Xie et al. [31] use path-sensitive analysis in their array
access checker ARCHER. Their approach to path-sensitivity
selects a set of execution paths – both a super- and subset of
legal paths – and eliminate infeasible paths based on branching
conditions. A different approach limits the number of paths to
investigate by selecting interesting paths based on dynamic
analysis, e.g., [32]. Our approach differs from these in that it
does not rule out infeasible paths but limits the points-to sets
of variables on certain paths.

B. Flow-Sensitivity

We only know of three papers that report on flow-
sensitive approaches to points-to analysis for object-oriented
programs [33]–[35].

The major theoretical obstacle in a flow-sensitive analysis is
the question when it is safe to perform strong updates. These
are only permitted when we are sure about the ordering of the
reads and writes of a given variable/field.

Both [33] and [34] use weak updates for every assignment
involving fields and method parameters. The more recent of the
two works [34] reports increased precision at a reasonable cost.
A more ambitious approach is taken in [35]. They compute
inter-procedural def-use information, which is later used to
decide whether strong updates are safe or not. They report
high precision (but unacceptable cost).

Our dataflow analysis technique, first presented in [18],
is an abstract interpretation of the program. It simulates the
actual execution of a program: starting at one or more entry
methods, it analyzes the statements of a method in execution
order, interrupts this analysis when a call expression occurs
to follow the call, continues analyzing the potentially called
methods, and resumes with the calling method later when the
analysis of the called methods is completed. The resulting
analysis is flow-sensitive in the sense that a memory accessing
operation (a call or a field access) a1.x will never be affected
by another memory access a2.x that is executed after a1.x
in all runs of a program. This makes simulated execution
strictly more precise than the frequently used flow-insensitive
Whole Program Points-to Graph approach. This statement was
verified by experiments in [18].

C. Context-Sensitivity

In a context-sensitive analysis, a method is separately ana-
lyzed for each different call context [6], [36], [37]. Approaches
differ in the context definitions. The two traditional approaches
to defining contexts are referred to as the call string approach
and the functional approach [36]. The call string approach uses
the top sequence of the call stack at each call site to define
a context. In this so-called k-CFA family of algorithms, the
precision of an analysis is denoted by the length k of the
top sequence of the call stack [37]. The functional approach
uses some abstractions of the call site’s actual parameters to
distinguishing different contexts [6], [36]. Both the call string

and the functional approaches were evaluated, and put into a
common framework, by Grove et al. in [6].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we suggest a new way to achieve path-
sensitivity as a new orthogonal variation of points-to analysis.
A points-to analysis is called path-sensitive if it exploits
control flow information leading to an execution path when
analyzing the operations on that path. Our approach retains
control flow information by inserting path-specific filter oper-
ations in the dataflow. During analysis, these filter operations
can be treated as ordinary program entities of a program
representation: they are assigned a transfer function, which
is updated iteratively until a fixed point is reached. We have
identified five such filter operation types corresponding to
different types of branching conditions in the control flow.
In theory, a path-sensitive points-to analysis is more precise
than its path-insensitive counterpart.

Furthermore, we implemented our approach with two base-
line variants of points-to analysis: both based on a sparse
SSA representation of the programs, both flow-sensitive, and
context-insensitive and context-sensitive, respectively. Using
abstract precision metrics, we confirmed the expected increase
in precision of the path-sensitive variants in practice.

However, the precision of points-to analysis is not a value
in itself. It has to be measured in terms of improved precision
of a client analysis using this points-to information as its
input. We selected three source code analyses for assessment:
cast safety, dead code, and null-pointer analysis. We assessed
the precision of these client analyses when path-insensitive
and path-sensitive, respectively, points-to analysis is used as
the basis. In the case of cast safety analysis, improvements
are considerable, e.g., 31% on the average when applied
in the context-insensitive setting. For the other two client
analyses, improvements are not similarly impressive but still
noticeable: on average 5% and 3,5%, respectively, in the
context-insensitive setting. In the context-sensitive setting,
the improvements are in the same order of magnitude but
somewhat smaller.

Additional effort in analysis for achieving higher precision
usually reduces the analysis performance. On average, we only
measured a slow-down in performance of less than 10%; we
even observed a speed-up in 4 of our 18 scenarios.

However, performance is work in progress. In order to
find appropriate filters, we implemented a flexible analy-
sis framework and chose straightforward implementations of
intermediate analyses, e.g., for determining insertion points
of filters. All this leads to an unacceptably low absolute
performance of our implementations of both the baseline and
the path-sensitive analysis. Future work will have to bring this
performance up to an acceptable level. We have no doubt
that this is possible since our original implementation of
the baseline analysis (path-insensitive, flow-sensitive, context-
insensitive and -sensitive) executes in the range of a few
seconds [19]. However, the relative performance when adding

path-sensitivity might then change and, hence, needs to be
assessed again.

Future work also includes identifying and implementing
more types of filter operations.

Finally, the effects of path-sensitive points-to analysis
should also be evaluated for flow-insensitive points-to analysis
variants.

REFERENCES

[1] O. Lhoták and L. Hendren, “Context-sensitive points-to analysis: is
it worth it?” in International Conference on Compiler Construction
(CC’06), ser. LNCS, A. Mycroft and A. Zeller, Eds., vol. 3923. Vienna:
Springer, March 2006, pp. 47–64.

[2] B. G. Ryder, “Dimensions of precision in reference analysis of object-
oriented programing languages,” in International Conference on Com-
piler Construction (CC’03), 2003, pp. 126–137.

[3] T. Marlowe and B. Ryder, “Properties of data flow frameworks: A unified
model,” Acta Informatica, vol. 28, pp. 121–163, 1990.

[4] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Springer, 1999.

[5] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers - Principles,
Techniques and Tools. Addison-Wesley, 1986.

[6] D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call graph con-
struction in object-oriented languages,” in Procedings of the Conference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’97), 1997, pp. 108–124.

[7] M. Streckenbach and G. Snelting, “Points-to for Java: A general
framework and an empirical comparison,” Lehrstuhl für Softwaresys-
teme,Universität Passau, Germany, Tech. Rep., November 2000.

[8] D. Liang, M. Pennings, and M. Harrold, “Extending and evaluating
flow-insensitive and context-insensitive points-to analysis for Java,” in
Proceedings of the Workshop on Program Analysis for Software Tools
and Engineering (PASTE’01), June 2001, pp. 73–79.

[9] A. Rountev, A. Milanova, and B. G. Ryder, “Points-to analysis for Java
based on annotated constraints,” in Proceedings of the Conference on
Object-oriented Programmimg, Systems, Languages, and Applications
(OOPSLA’01), October 2001.

[10] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to and side-effect analyses for Java,” in Proceedings
of the International Symposium on Software Testing and Analysis
(ISSTA’02), July 2002.

[11] O. Lhoták and L. Hendren, “Scaling Java points-to analysis using
Spark,” in Proceedings of the International Conference on Compiler
Construction (CC’03), April 2003, pp. 153–169.

[12] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams,” in Proceedings of the
Conference on Programmimg Language Design and Implementation
(PLDI’04), June 2004.

[13] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object sen-
sitivity for points-to analysis for Java,” ACM Transactions on Software
Engineering and Methodology, vol. 14, no. 1, pp. 1–41, 2005.

[14] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“An efficient method of computing static single assignment form,” in
POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. New York, NY, USA: ACM
Press, 1989, pp. 25–35.

[15] M. Trapp, “Optimierung Objektorientierter Programme,” Ph.D. disserta-
tion, Universität Karlsruhe, December 1999.

[16] G. Lindenmaier, “libfirm – a library for compiler optimization research
implementing firm,” Fakultät für Informatik, Universität Karlsruhe,
Germany, Tech. Rep. 2002-5, Sep 2002.

[17] G. Lindenmaier, M. Beck, B. Boesler, and R. Geiß, “Firm, an intermedi-
ate language for compiler research,” Fakultät für Informatik, Universität
Karlsruhe, Germany, Tech. Rep. 2005-8, 3 2005.

[18] J. Lundberg and W. Löwe, “A scalable flow-sensitive points-to analysis,”
in Compiler Construction – Advances and Applications, Festschrift on
the occasion of the retirement of Prof. Dr. Dr. h.c. Gerhard Goos, Lecture
Notes in Computer Science (LNCS), to appear in 2007.

[19] J. Lundberg, M. Edvinsson, and W. Löwe, “Fast and precise points-to
analysis,” The School of Mathematics and Systems Engineering, Växjö
University, Växjö, Sweden, Tech. Rep., 2007.

[20] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language
Specification, Third Edition. Addison-Wesley, 2005.

[21] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators
in a flowgraph,” ACM Trans. Program. Lang. Syst., vol. 1, no. 1, pp.
121–141, 1979.

[22] K. Cooper, T. Harvey, and K. Kennedy, “A simple, fast dominance
algorithm,” 2001.

[23] M. Hind, “Pointer analysis: Haven’t we solved this problem yet,” in
Workshop on Program Analysis for Software Tools and Engineering
(PASTE’01), 2001, pp. 54–61.

[24] J. Palsberg, “Object-oriented type inference,” in Proceedings of the
Workshop on Program Analysis for Software Tools and Engineering
(PASTE’01), July 2001, pp. 20–27.

[25] B. Alpern, M. N. Wegman, and F. K. Zadeck, “Detecting equality of
variables in programs,” in Proceedings of Symposium on Principles of
Programming Languages (POPL’88). New York, NY, USA: ACM
Press, 1988, pp. 1–11.

[26] P. Havlak, “Construction of thinned gated single assignment form,” in
1993 Workshop on Languages and Compilers for Parallel Computing,
no. 768. Portland, Ore.: Berlin: Springer Verlag, 1993, pp. 477–499.

[27] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion
of control dependence to data dependence,” in POPL ’83: Proceedings
of the 10th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages. New York, NY, USA: ACM Press, 1983, pp.
177–189.

[28] C. Mallon, “If-Konversion auf SSA,” Studienarbeit, Universität Karls-
ruhe (TH), 2007.

[29] R. Bodı́k and S. Anik, “Path-sensitive value-flow analysis,” in POPL
’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. New York, NY, USA: ACM
Press, 1998, pp. 237–251.

[30] M. Das, S. Lerner, and M. Seigle, “ESP: Path-sensitive program
verification in polynomial time,” in PLDI ’02: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and
implementation. New York, NY, USA: ACM Press, 2002, pp. 57–68.

[31] Y. Xie, A. Chou, and D. Engler, “ARCHER: Using symbolic, path-
sensitive analysis to detect memory access errors,” in ESEC/FSE-11:
Proceedings of the 9th European software engineering conference held
jointly with 11th ACM SIGSOFT international symposium on Founda-
tions of software engineering. New York, NY, USA: ACM Press, 2003,
pp. 327–336.

[32] G. Ammons and J. R. Larus, “Improving data-flow analysis with
path profiles,” in PLDI ’98: Proceedings of the ACM SIGPLAN 1998
conference on Programming language design and implementation. New
York, NY, USA: ACM Press, 1998, pp. 72–84.

[33] A. Diwan, J. E. B. Moss, and K. S. McKinley, “Simple and effective
analysis of statically typed object-oriented programs,” in Procedings of
the Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’96), October 1996.

[34] J. Whaley and M. S. Lam, “An efficient inclusion-based points-to
analysis for strictly-typed languages,” in Proceedings of the Static
Analysis Symposium (SAS’02), 2002.

[35] R. Chatterjee, B. Ryder, and W. Landi, “Relevant context inference,” in
Symposium on Principles of Programming Languages (POPL’99), 1999,
pp. 133–146.

[36] M. Sharir and A. Pnueli, Two Approaches to Interprocedural Data Flow
Analysis, ser. In S. Muchnick and N. Jones, editors, Program Flow
Analysis: Theory and Applications. Prentice Hall, 1981.

[37] O. Shivers, “Control-flow analysis of higher-order languages,” Ph.D.
dissertation, Carnegie-Mellon University, 1991.

