Towards Path-sensitive Points-to Analysis

Tobias Gutzmann, Jonas Lundberg, and Welf Lowe
Viaxj6 University, Sweden

September 30, 2007

Tobias Gutzmann, Jonas Lundberg, and Welf Lowe Towards Path-sensitive Points-to Analysis

@ Points-to analysis: (Static) dataflow analysis
o Which objects can variable v possibly reference during program
execution?
o Compute the points-to set pt(v) = set of abstract objects v may
reference
o Abstraction: Map possible runtime objects — abstract objects
@ One variation point that affects precision and execution time is
Path-sensitivity:
o Run analysis for different execution paths separately
o Expensive (possibly very large number of possible paths)

@ Idea: Obtain additional dataflow information for different paths from
control flow statements

Tobias Gutzmann, Jonas Lundberg, and Welf Lowe Towards Path-sensitive Points-to Analysis

Our Approach

Based on control-flow conditions, introduce filter operations for different
branches

Java Example

// A, B types in no subtype-relation
// assume pt(v) = {o; : A, 0, : B}
if (v instanceof A) {

// v unfiltered

// pt(v) ={o1: A, 0p: B}

} els-é-{
// v unfiltered
// pt(v) ={o1: A, op: B}

Tobias Gutzmann, Jonas Lundberg, and Welf Lowe Towards Path-sensitive Points-to Analysis

Our Approach

Based on control-flow conditions, introduce filter operations for different
branches

Java Example

// A, B types in no subtype-relation

// assume pt(v) = {o; : A, 0, : B}

if (v instanceof A) {
v={o0 € pt(v) | o instanceof A}
// pt(v) ={o1: A, 0p: B}

} else {
v={o0 € pt(v) |-~(o instanceof A)}
// pt(v) ={o1: A, op: B}

Tobias Gutzmann, Jonas Lundberg, and Welf Lowe Towards Path-sensitive Points-to Analysis

Our Approach

Based on control-flow conditions, introduce filter operations for different
branches

Java Example

// A, B types in no subtype-relation

// assume pt(v) = {o; : A, 0, : B}

if (v instanceof A) {
v={o0 € pt(v) | o instanceof A}
/] pt(v) = {or : A, or+B)

} else {
v={o0 € pt(v) |-~(o instanceof A)}
/] pt(v) = {er=A, 0o : B}

Tobias Gutzmann, Jonas Lundberg, and Welf Lowe Towards Path-sensitive Points-to Analysis

Filter Operations for Java
Instance-Of Filter

@ Condition: v instanceof T

@ true branch: pt(v) = {o € pt(v) | o instanceof T}
@ false branch: pt(v) = {o € pt(v) | =(o instanceof T)}

v

Further Filter Operations

@ object equality

@ null-checks
e x.equals(y)
o x.getClass() == T.class

A\

Note: If filter operations were executed during an actual program run,
they would never change the program state

A\

Tobias Gutzmann, Jonas Lundberg, and Welf Lowe Towards Path-sensitive Points-to Analysis

Evaluation

Safe Casts: % of cast operations in a program that never fail
Dead Code: % of accesses not reached by any dataflow value
Safe Accesses: % of accesses never raising a NullPointerException
Time: Time factor teens/tinsens

Safe Casts Dead Code Safe Accesses | Time
Program | Insens | Sens | Insens | Sens | Insens | Sens

AntLR 43.1 | 49.0 19.3 | 19.5 84.1 | 853 | 1.12
JavaCC 10.4 | 33.9 25 2.7 68.6 | 70.9 | 1.06
Jython 64.6 | 77.6 28.3 | 29.5 90.1 | 93.0 | 0.91

Average 345 | 454 15.0 | 15.7 81.0 | 83.7 | 1.09

@ Safe Casts metric shows substantial improvements
@ Safe Accesses shows improvements on an already high level
@ A little more Dead Code is discovered

e Computation time is affected, but not in a harmful way

Tobias Gutzmann, Jonas Lundberg, and Welf Lowe Towards Path-sensitive Points-to Analysis

Conclusion

Introduce filter operations to achieve Path-sensitivity
We do not compute more paths than in a path-insensitive analysis
Analysis metrics show improvements

On average, only a slight performance slowdown is observed

We target Java; however, the concept can also be adapted to other
programming languages

Tobias Gutzmann, Jonas Lundberg, and Welf Lowe Towards Path-sensitive Points-to Analysis

