
Towards Path-sensitive Points-to Analysis

Tobias Gutzmann, Jonas Lundberg, and Welf Löwe

Växjö University, Sweden

September 30, 2007

Tobias Gutzmann, Jonas Lundberg, and Welf Löwe Towards Path-sensitive Points-to Analysis



Motivation

Points-to analysis: (Static) dataflow analysis

Which objects can variable v possibly reference during program
execution?
Compute the points-to set pt(v) = set of abstract objects v may
reference
Abstraction: Map possible runtime objects → abstract objects

One variation point that affects precision and execution time is
Path-sensitivity:

Run analysis for different execution paths separately
Expensive (possibly very large number of possible paths)

Idea: Obtain additional dataflow information for different paths from
control flow statements

Tobias Gutzmann, Jonas Lundberg, and Welf Löwe Towards Path-sensitive Points-to Analysis



Our Approach

Based on control-flow conditions, introduce filter operations for different
branches

Java Example

// A, B types in no subtype-relation
// assume pt(v) = {o1 : A, o2 : B}
if (v instanceof A) {

// v unfiltered
// pt(v) = {o1 : A, o2 : B}
...

} else {
// v unfiltered
// pt(v) = {o1 : A, o2 : B}
...

}

Tobias Gutzmann, Jonas Lundberg, and Welf Löwe Towards Path-sensitive Points-to Analysis



Our Approach

Based on control-flow conditions, introduce filter operations for different
branches

Java Example

// A, B types in no subtype-relation
// assume pt(v) = {o1 : A, o2 : B}
if (v instanceof A) {

v = { o ∈ pt(v) | o instanceof A}
// pt(v) = {o1 : A, o2 : B}
...

} else {
v = { o ∈ pt(v) |¬(o instanceof A)}
// pt(v) = {o1 : A, o2 : B}
...

}

Tobias Gutzmann, Jonas Lundberg, and Welf Löwe Towards Path-sensitive Points-to Analysis



Our Approach

Based on control-flow conditions, introduce filter operations for different
branches

Java Example

// A, B types in no subtype-relation
// assume pt(v) = {o1 : A, o2 : B}
if (v instanceof A) {

v = { o ∈ pt(v) | o instanceof A}
// pt(v) = {o1 : A, o2 : B}
...

} else {
v = { o ∈ pt(v) |¬(o instanceof A)}
// pt(v) = {o1 : A, o2 : B}
...

}

Tobias Gutzmann, Jonas Lundberg, and Welf Löwe Towards Path-sensitive Points-to Analysis



Filter Operations for Java

Instance-Of Filter

Condition: v instanceof T

true branch: pt(v) = {o ∈ pt(v) | o instanceof T}
false branch: pt(v) = {o ∈ pt(v) | ¬(o instanceof T )}

Further Filter Operations

object equality

null-checks

x .equals(y)

x .getClass() == T .class

Note: If filter operations were executed during an actual program run,
they would never change the program state

Tobias Gutzmann, Jonas Lundberg, and Welf Löwe Towards Path-sensitive Points-to Analysis



Evaluation

Safe Casts: % of cast operations in a program that never fail
Dead Code: % of accesses not reached by any dataflow value
Safe Accesses: % of accesses never raising a NullPointerException
Time: Time factor tsens/tinsens

Safe Casts Dead Code Safe Accesses Time
Program Insens Sens Insens Sens Insens Sens
AntLR 43.1 49.0 19.3 19.5 84.1 85.3 1.12
JavaCC 10.4 33.9 2.5 2.7 68.6 70.9 1.06
Jython 64.6 77.6 28.3 29.5 90.1 93.0 0.91
. . .
Average 34.5 45.4 15.0 15.7 81.0 83.7 1.09

Safe Casts metric shows substantial improvements

Safe Accesses shows improvements on an already high level

A little more Dead Code is discovered

Computation time is affected, but not in a harmful way

Tobias Gutzmann, Jonas Lundberg, and Welf Löwe Towards Path-sensitive Points-to Analysis



Conclusion

Introduce filter operations to achieve Path-sensitivity

We do not compute more paths than in a path-insensitive analysis

Analysis metrics show improvements

On average, only a slight performance slowdown is observed

We target Java; however, the concept can also be adapted to other
programming languages

Tobias Gutzmann, Jonas Lundberg, and Welf Löwe Towards Path-sensitive Points-to Analysis


