
Extending Attribute Grammars with Collection Attributes –
Evaluation and Applications

Eva Magnusson
Dept. of Computer Science

Lund University
Lund, Sweden

Eva.Magnusson@cs.lth.se

Torbjörn Ekman
Computing Laboratory

Oxford University
Oxford, United Kingdom

torbjorn@comlab.ox.ac.uk

Görel Hedin
Dept. of Computer Science

Lund University
Lund, Sweden

Gorel.Hedin@cs.lth.se

Abstract

Collection attributes, as defined by Boyland, can be used
as a mechanism for concisely specifying cross-reference-
like properties such as callee sets, subclass sets, and sets
of variable uses. We have implemented collection attributes
in our declarative meta programming system JastAdd, and
used them for a variety of applications including devirtu-
alization analysis, metrics, and flow analysis. We propose
a series of evaluation algorithms for collection attributes,
and compare their performance and applicability. The key
design criteria for our algorithms are 1) that they work
well with demand evaluation, i.e., defined properties are
computed only if they are actually needed for a particu-
lar source code analysis problem and a particular source
program, and 2) that they work in the presence of circular
(fixed-point) definitions that are common for many source
code analysis problems, e.g., flow analysis. We show that
the best algorithms work well on large practical problems,
including the analysis of large Java programs.

1. Introduction

Attribute grammars have recently received renewed in-
terest due to the emergence of practical meta programming
tools such as JastAdd [1] and Silver [21] that can handle
analysis, transformation and compilation of complex pro-
gramming languages like Java. Main advantages of these
systems are that they make use of declarative specifica-
tions, allowing high-level concise specifications, and that
they support extensibility, for example, allowing advanced
analyses to be added modularly to a compiler. Good perfor-
mance can be achieved, as shown for our own tool, JastAdd,
with which we have built an extensible Java compiler that
can compile programs in the order of 100 k lines of code
and that runs within a factor of three of javac [6, 7].

The practicality of recent attribute-grammar based sys-
tems relies on the development of a variety of extensions
[3, 10, 11, 14, 20, 9, 17, 8, 19] to the original Knuth style
attribute grammars [16]. In this paper we investigate ap-
plications and implementation of collection attributes, as
defined by Boyland [3]. A collection attribute is the declar-
ative specification of a combination of properties of an un-
bounded number of abstract syntax tree nodes. Simple ex-
amples are the set of calls of a procedure, and the set of sub-
classes of a class. While such combined properties can be
computed by ordinary Knuth-style synthesized and inher-
ited attributes, the use of collection attributes makes their
specification much more simple and concise, and opens for
more efficient implementations.

Collection attributes are often whole-program properties,
i.e., they combine information from, potentially, the whole
program. A naive way to implement them is to simply
traverse the whole program, find all the contributing AST
nodes of the program, and that way compute the combined
value. This is potentially very expensive. In this paper
we propose a series of evaluation algorithms and compare
them, both with regards to applicability and to performance.
Our evaluation algorithms are all based on demand evalu-
ation, i.e., attributes are not evaluated until their value is
demanded by some other computation.

We have implemented collection attributes in our system
JastAdd and we give several examples of their use, includ-
ing devirtualization analysis and metrics for Java programs,
and flow analysis for grammars. Of particular interest is the
combination of collection attributes with circular attributes
[9, 17]. A circular attribute is an attribute that is defined,
potentially, in terms of itself, and is evaluated through fixed-
point iteration.

The rest of this paper is structured as follows. In section
2 we give background on the JastAdd system and discuss
a motivating example. Section 3 discusses the definition
of collection attributes and how they are used in JastAdd.

Section 4 gives a series of algorithms for evaluation of col-
lection attributes. Section 5 discusses application examples,
and Section 6 gives experimental results from the different
evaluation algorithms on these applications. Section 7 dis-
cusses related work, and Section 8 concludes the paper.

2. Motivation

2.1 The JastAdd system

The JastAdd system [12, 1] allows source code analy-
ses to be built in a concise way as extensions on top of other
analyses, typically on top of the name and type analyses that
are core parts of a compiler. The analyses are formulated as
attribute grammars (AGs) that include the basic AG mecha-
nisms of synthesized and inherited attributes [16], as well as
several extensions, including reference attributes [11] that
are of key importance to this paper.

A reference attribute of an abstract syntax tree (AST)
node is an attribute that refers to another node in the AST.
They are used to bind different parts of the AST together,
e.g., to bind a use of a variable to its declaration, a class to
its superclass, a call to its method declaration, an expression
to a type declaration denoting its type, etc. Using JastAdd,
such attributes are typically specified in name and type anal-
ysis modules, and a compiler is composed by combining
these with a code generation module.

For many source code analysis problems it is useful to
reuse the reference attributes computed by the name and
type analysis modules. In addition, there is often a need
for the reverse information, i.e., the cross references. For
example, for a metrics problem, we might be interested in
finding all the uses of a particular instance variable decla-
ration, all the calls of a method, or all the subclasses of a
class. Cross-reference problems are often whole program
in the sense that the cross references may be located in any
part of the program. For example, a public instance vari-
able declaration can, through qualified use, be used from
any other class in the program.

2.2 A motivating example

Later in this paper we will see how cross-reference sets
can be specified by means of collection attributes. But first,
as a motivation and for comparison, we will look at how
they can be specified using ordinary synthesized and inher-
ited attributes1.

As an example, consider cross references for name bind-
ings. The name analysis module has defined that each Use
node has an attribute decl which refers to the appropri-
ate Decl node. We now want to define that each Decl

1A synthesized attribute is defined by an equation in the same AST
node. An inherited attribute is defined by an equation in an ancestor node.

node has an attribute uses which is a set of cross refer-
ences, i.e., it contains references to all the Use nodes whose
decl refers to that particular Decl node. This can be
done by using attributes that in effect traverse the complete
AST and collect all the relevant Use nodes. The specifi-
cation is shown in Fig 1. The uses attribute accesses the
collectUses attribute of the root. The collectUses
attribute is defined for all AST nodes (in the superclass
ASTNode), and by default collects the uses of its children.
This in effect results in a traversal of the complete AST. For
Use nodes, the collectUses attribute in addition adds a
reference to that Use node, if appropriate, i.e., if its decl
refers to the Decl in question.

Figure 1. Finding all uses of a declaration.

syn HashSet collectUses(Decl d)
ASTNode

inh ASTNode root;
syn HashSet uses();

Decl
eq HashSet collectUses(Decl d);

Use

...collect
uses in all
children ...

HashSet s = new HashSet();
if (decl() == d)
 s.add(this);
s.addAll(super.collectUses(d));
return s;

return root().collectUses(this);

The JastAdd system evaluates attributes through demand
evaluation. This means that the value of an attribute is
not computed until its value is needed. This is important
for efficiency because there may be many attributes defined
whose values are not needed for a particular application.
For our example we can note that there is one instance of
the uses attribute for each declaration in the analyzed pro-
gram. It might be the case that we are interested in a uses
attribute instance only if some condition holds. For exam-
ple, if the declaration has a particular name.

In analyzing the specification of the uses attribute
above, we can notice some drawbacks. First and foremost,
the evaluation is inefficient if several instances of the at-
tribute are demanded since a complete tree traversal is per-
formed for every instance. Furthermore, the user has to ex-
plicitly express the tree traversal using auxiliary attributes
like collectUses. In the next section, we will see how
both these drawbacks can be overcome through the use of
collection attributes.

3. Collection Attributes

3.1. Definitions

The value of an ordinary synthesized attribute of an AST
node n is defined locally by an equation in node n. In con-

trast, the value of a collection attribute, as defined by Boy-
land [3], is defined through a number of partial definitions,
located in arbitrary nodes in the AST. More precisely, the
value is defined as a combination of an initial value and
zero or more applications of a combination operation. The
collection attribute declaration contains the initial value and
the combination operation. The partial definitions, in the
form of applications of the combination operation, can be
located in arbitrary AST nodes. Following the declarative
paradigm of AGs, the order of specification is irrelevant.
Therefore, the combination operation must be such that the
order of application does not affect the resulting value of the
collection attribute. Typical examples of collection attribute
types are sets, with the empty set as the initial value and add
element as the combination operation; booleans, with false
and or; and integers, with zero and +.

In order to facilitate description of evaluation algorithms
we introduce some additional terms. A node containing a
partial definition for some collection attribute c() is said
to be a contributor to its final value. Alternatively, we say
that the node contributes to the value of c(). The value of
the partial definition is said to be its contribution.

3.2. Motivating example revisited

Consider again the problem of finding all uses of a decla-
ration, as was described in Section 2. After introducing col-
lection attributes, we can replace the synthesized attribute
uses with a collection attribute as shown in Fig 2. It has
the initial value new HashSet() and the combination
operator add. The nodes of type Use are contributors of
Decl.uses and their respective contribution is this, i.e.,
a reference to the Use node. The reference attribute decl
(that was defined in the name analysis module) points out
the appropriate Decl node to contribute to.

Figure 2. Defining uses with a collection
ASTNode

coll HashSet uses()
 [new HashSet()] with add;

Decl
contributes this
to Decl.uses()
for decl();

Use

This definition is much more concise than the one using
ordinary attributes. We can also notice that the combination
operator add is an ordinary Java method that updates the
state of the HashSet object. This is fine, since the value of
uses will not be used until its final value is computed. In
contrast, the solution shown in Section 2 exposes all the par-
tial collections as attributes, and therefore needs to represent

them as separate objects. This difference will contribute to
better efficiency for the collection attribute solution.

3.3. JastAdd collection attribute syntax

The JastAdd syntax for declaring a collection attribute c
of type T in a node class N1 is:

coll T N1.c() ’[’ initial ’]’ with op;

The declaration of the attribute c is an intertype decla-
ration in that it allows the declaration to be expressed in a
module textually separate from class N1, similar to inter-
type declarations of methods and fields in, for example, As-
pectJ [15]. The expression initial is the initial value of
the collection attribute, before applying the contributions,
and thereby also the final value in the case of zero contri-
butions. The op should be a Java method for class T that
serves as the combination operator and updates the T object
by adding a contribution. The method op should be void
and have a single parameter of the same type as the contri-
butions2. Given a set of contributions E, the final value of c
is computed as follows (pseudo code):
T c = initial;
for all e ∈ E do
c.op(e);

end for
The uses example in Fig 2 illustrated a very simple ex-

ample of declaring contributions. In more complex cases
it can be desirable to express conditional contributions, and
contributions for a set of collection attributes, not just for
a single attribute. Below, the general syntax for declaring
contributions from a node N2 to collection attributes c in
N1 nodes is shown.

N2 contributes
contr1 [when cond1],
contr2 [when cond2],
...
contrN [when condN]
to N1.c()
for [each] ref();

The contributions contr1, contr2, etc., should be ex-
pressions that have the same type as the parameter of the
combination operator of c. The semantics of a specifica-
tion with when-clauses is that all contributions for which
the corresponding condition holds are valid. The expres-
sion ref should be a reference to an N1 object, or, if the
optional keyword each is used, ref should be a set of ref-
erences to N1 objects. In the latter case, the contribution is
added to the collection c of all those N1 objects.

2If collections of primitive types like int and boolean are desired, they
currently have to be implemented by wrapper classes.

Below, an example of using for each in a contribu-
tion is given. The class MethodDecl has a collection
attribute calls (defined elsewhere) which contains ref-
erences to all methods called inside its body. We now
want to define a cross-referencing collection, callers,
that should contain references to all methods that call the
MethodDecl. This is accomplished concisely by letting
the MethodDecl contribute itself to all the caller at-
tributes of each of the members in its calls attribute.

coll HashSet MethodDecl.callers() =
new HashSet() with add;

MethodDecl contributes this
to MethodDecl.callers()
for each calls();

4. Evaluation of Collection Attributes

4.1. Attribute evaluation in JastAdd

In JastAdd, a demand driven evaluation technique is
used. This means that an attribute instance is not com-
puted until its value is needed. If the value depends on
other attribute instances, these instances are demanded and
evaluated as well. The evaluator code for ordinary syn-
thesized and inherited attributes is realized by translating
their declarations and equations into Java methods, as de-
scribed in more detail in [12]. For efficiency reasons, a
caching technique is also available. Circular attributes are
always cached since the iterative technique used for their
evaluation requires values from a previous iteration to be
cached for convergence check. When the iterative process
is over, these cached values contain the final values of all at-
tributes involved in the cycle. Collection attributes are also
always cached since their computation involves traversing
the whole AST, and is thus inherently expensive.

In implementing collection attributes, we want to keep
with the demand-driven approach, so that the evaluation of
the attributes demanded in a particular application is not
slowed down by the existence of attributes that are not de-
manded.

4.2. Naive evaluation

A simple way to implement a collection attribute is to
represent the collection attribute by a method that traverses
the complete AST, finds the appropriate contributors, and
returns the final value, i.e., the combination of the contribu-
tions. We refer to this evaluation scheme as the naive eval-
uation algorithm. This algorithm has the advantage that it
is purely demand driven: if a single collection attribute in-
stance is demanded, there is no extra work involving the

evaluation of other instances. But if several instances are
demanded, the tree will be traversed over and over again,
leading to overall inefficiency.

4.3. One-phase joint evaluation

To obtain better overall efficiency, it is possible to com-
pute all instances of a given collection attribute when the
first instance is demanded. One traversal of the tree is suf-
ficient to find all contributing nodes to any instance of the
attribute and to perform the proper computations for com-
bining contributions. We call this technique one-phase joint
evaluation. This scheme deviates from the demand-driven
technique. If only a single attribute instance is actually de-
manded, it will be less efficient than the naive algorithm.
But if more instances are demanded, it will quickly become
much more efficient.

A shortcoming of the one-phase algorithm is that it is
less general than the naive one: If a condition or contribu-
tion for one collection attribute instance depends on another
instance of the attribute, the scheme fails. The dependency
will then trigger a new tree traversal, during which the same
dependency will be encountered, and the algorithm will
end up in a loop. The naive algorithm does not have this
problem: the dependency will simply trigger the evaluation
of the other collection attribute instance and then continue
with the evaluation of the first one. The naive technique will
fail only if the dependencies between the collection attribute
instances are in fact circular, i.e., if a collection attribute in-
stance depends (possibly indirectly) on itself.

4.4 Two-phase joint evaluation

In order to avoid the inefficiency of the naive technique
and to avoid the shortcomings of the one-phase technique,
we propose an alternative technique, two-phase joint eval-
uation. In the following we assume that N1 is a node class
declaring a collection attribute c.

Survey phase The first time any instance of the c attribute
is demanded, a traversal of the AST is triggered. Dur-
ing this traversal, contributors to all instances of c
are collected into contributor sets, one set for each
instance of c, and stored in an auxiliary attribute
c_contributors, in class N1. A flag is set to indi-
cate that this survey phase has been performed.

Combination phase To compute the value of an instance
of c, the flag is first checked to see if the survey phase
has already been run. If not, this phase is performed
first. Then the combination phase is run: the attribute
value is computed by iterating over the elements in the
corresponding c_contributors set, and combin-
ing the contributions using the combination operation.

The final value of the c instance is cached so that sub-
sequent demands for it can return the value directly.

For conditions attached to contributions we have two vari-
ants of the two-phase algorithm: to evaluate the conditions
during the survey phase, early condition evaluation, or to
postpone these computations until the combination phase,
late condition evaluation. If conditions are evaluated during
the survey phase, and there is more than one when-clause,
they will have to be checked again during the combination
phase.

Qualitative analysis of running time

Like the one-phase technique, the two-phase technique
avoids repeated traversals of the AST. It is more demand-
driven than the one-phase technique: the combination phase
is done on demand for individual collection attribute in-
stances. We can therefore expect that it is faster than the
one-phase technique if sufficiently few instances are actu-
ally demanded. We can also expect it to be slower than the
one-phase algorithm if sufficiently many instances are de-
manded, since the contribution sets are computed explicitly
and stored, something which is not needed in the one-phase
algorithm.

The late or early evaluation of conditions will affect
the size of the contributor sets computed during the survey
phase. In order to keep these sets small, it seems desirable
to use early condition evaluation. Small sets will also im-
prove the efficiency of the combination phase when method
calls are made for all members of the sets. If there is a
sufficiently large difference in size between the contributor
sets for the early and late variants, we can therefore expect
the early variant to be more efficient. However, early con-
dition evaluation may fail under certain circumstances, as
discussed below.

Applicability of the algorithms

We noted that the one-phase technique can fail if a contri-
bution for one collection attribute instance is dependent on
another instance of the collection attribute. The two-phase
technique overcomes this shortcoming since the contribu-
tions are not evaluated in the joint survey phase. They are
evaluated in the combination phase when each attribute is
evaluated individually on demand.

In a similar way, we can note that the two-phase tech-
nique with early condition evaluation can fail, causing loop-
ing evaluation, if a contribution condition for one collection
attribute instance is dependent on another instance of the
collection attribute. The two-phase technique with late con-
dition evaluation cannot fail this way, since the conditions
are evaluated in the on-demand combination phase rather
than in the jointly evaluated survey phase.

The two-phase algorithm with late condition evaluation
can fail only if there is a true circular dependency. To see
this, we first observe that the only expressions that are eval-
uated in the survey phase are the references to the nodes
with collections. A cyclic evaluation can therefore occur
only if such a reference expression is dependent on one of
the collection attribute instances. But each instance of the
collection attribute depends on all instances of the reference
expressions, since all these references need to be evaluated
in order to examine whether a contribution is valid for the
collection attribute instance being computed. Thus, if any
of the instances of the reference expressions depends on any
instance of the collection attribute, the dependency graph is
cyclic. The attributes on the cycle must then be evaluated
using algorithms capable of dealing with cyclic dependen-
cies. Such algorithms are more expensive, and are discussed
in Section 4.5.

To conclude this analysis, different algorithms may be
the fastest for different applications. The one-phase algo-
rithm and the two-phase with early condition evaluation
may fail for certain applications, even if there are no cir-
cular dependencies. However, we have not found any re-
alistic applications of this kind. The two-phase algorithm
with late condition evaluation and the naive algorithm will
work for all non-circular problems. If there is a true circular
dependency, an algorithm that can deal with circularities is
needed.

Additional variants

Grouped joint evaluation The discussed one-phase and
two-phase algorithms evaluate all or parts of all in-
stances of a single collection attribute. It is also possi-
ble to evaluate instances of more than one collection
attribute jointly. We call this grouped joint evalua-
tion. The grouping can be done in combination with
either of the joint evaluation algorithms: one-phase,
two-phase with early conditions, or two-phase with
late conditions.

Pruned traversal Through a simple analysis of the ab-
stract grammar, it can be determined which AST types
can be derived from a given AST type T. If none of
these AST types contain contributions for a given col-
lection attribute c, then the AST traversal for c can
be pruned at T nodes, thereby speeding up the traver-
sal. However, for Java, such prunings cannot be ex-
pected to be other than marginal due to the very recur-
sive structure of the language. For example, a Java ex-
pression can derive an anonymous class, which means
that most AST types can be derived from expressions.

4.5. Circular collection attributes

In [17] we showed how the combined formalism CRAG
(Circular Reference Attributed Grammar) supporting ref-
erence attributes and circularly defined attributes enhances
the expressivness of AGs. Having introduced collection at-
tributes it then becomes natural also to explore the possibil-
ity to handle collection attributes involved in circular depen-
dencies. In this section we will briefly discuss this extension
and describe evaluation algorithms.

The requirement for non-circularity in traditional AGs is
a sufficient but not necessary condition to guarantee that the
AG is well defined, i.e., that all semantic rules can be satis-
fied. It actually suffices that all attribute instances involved
in circular dependencies have a fixed point that can be com-
puted with a finite number of iterations. Conditions to en-
sure this for ordinary attributes can easily be carried over to
collection attributes. Evaluation algorithms that work well
if these conditions are met can be built by combining the
ideas for CRAGs as in [17] and the ideas for evaluating
non-circular collection attributes as described earlier in this
paper. We have developed and implemented two algorithms
for circular collection attribute one of which has two alter-
natives.

The first algorithm builds on the ideas of the two-phase
joint evaluation technique used for non-circular collection
attributes. The survey phase is carried out as before while
the combination phase is iterated until a fixed point is
reached. It is applicable for cases where no dependencies
between instances of the attribute being computed appear
during the survey phase. As for non-circular attributes the
algorithm has two variants. One evaluates conditions dur-
ing the survey phase and the other postpone these computa-
tion until the combination phase. Hence, the first alternative
cannot handle interdependencies caused by the conditions
but is more efficient as condition evaluation can be omitted
in the iterative combination phase. The second alternative
only fails if dependencies on other instances are caused by
the reference attributes, which seems to be extremely rare.

When the second alternative above fails another algo-
rithm has to be used. It builds on the ideas of the naive
algorithm for non-circular collection attributes. It is an iter-
ative process where for each iteration the AST is traversed
looking for and combining contributions to the demanded
instance. It is more expensive than the two-phase technique
described above and should therefore only be used when
the other alternatives fail. This algorithm can also be used
when attempting to use the non-circular variant with late
condition evaluation fails as described in Section 4.4.

4.6. Implementation of the algorithms

In JastAdd, we have implemented the following algo-
rithms for evaluation of noncircular collection attributes:

naive, one-phase, two-phase with early condition evalua-
tion, two-phase with late condition evaluation, and grouped
joint evaluation (that can be combined with any of the joint
evaluation algorithms). Pruned traversal has not been im-
plemented. For circular collection attributes we have imple-
mented both variants of the two-phase technique and also
the naive algorithm. For each of the algorithms, failures
(due to real circularities for attributes declared to be non-
circular or to shortcomings of the algorithm) will be de-
tected dynamically. The evaluator will then throw an ex-
ception and stop the execution. The default algorithm for
noncircular as well as for circular collection attributes is
non-grouped two-phase with late condition evaluation. It
is possible to annotate individual collection attributes to se-
lect another algorithm for that attribute. This can be useful
if the first algorithm failed, or to achieve faster evaluation.

5. Application Examples

This section discusses some applications that we have
implemented using collection attributes.

5.1. Devirtualization

For object-oriented languages it is possible to improve
execution speed by applying devirtualization techniques.
The aim is to determine statically which virtual method calls
can be replaced by static method calls. There are many
different techniques for devirtualization based on analyzing
the class hierarchy and the call graph of the program.

The simplest condition for devirtualization is that a class
has no subclasses. If for a methodcall a.m() the declared
type of a is a class A with this property, then m() can be
devirtualized. This is also possible if A has subclasses but
m() is not overridden in any of them. Part of a devirtualiza-
tion analysis based on these simple criteria can be specified
using collection attributes. Assume that ClassDecl is a
node class modelling class declarations and that a set-valued
attribute superClasses() has been specified to contain
references to all its superclasses. The set of subclasses can
then be modelled as a collection attribute:

coll HashSet ClassDecl.subClasses()
[new HashSet()] with add;

ClassDecl contributes this
to ClassDecl.subClasses()
for each superClasses();

A collection attribute overriders() can be specified for
methods in the same simple manner provided that an ordi-
nary set-valued attribute overrides() containing refer-
ences to all overriding methods is available.

Devirtualization can be improved if reachability is taken
into account as in the well-known RTA algorithm. This al-
gorithm uses information about global class instantiation
and class hierarchy. In order to decide whether a class is
instantiated we need to find new expressions inside reach-
able methods. The property for a method of being reachable
can be defined in a recursive manner: the main method is
reachable and other methods are reachable if any of their
callers are reachable. Therefore it can be modelled as a cir-
cular attribute reachable() using an auxiliary attribute
callers() for its specification. The callers() at-
tribute is naturally expressed as a collection attribute cross-
referencing an ordinary attribute calls() modelling the
set of methods called from inside a method body.

5.2. Metrics

To evaluate the use of collection attributes in a real-life
application we implemented Chidamber and Kemerer’s set
of object-oriented metrics [5]. These metrics include struc-
tural properties such as the height of inheritance tree and
number of subclasses, but also more global properties such
as the coupling between classes. Internal properties such
as the lack of cohesion of methods within a class and the
number of weighted methods per class are also computed.

The metrics are implemented as a modular extension to
our Java 1.4 checker and consists of 7 collection attributes,
17 contribution declarations, and 12 synthesized utility at-
tributes. The entire specification, including code for print-
ing the metrics for each type, is 165 lines of code exclud-
ing comments, and is available on the JastAdd web site [1].
We compare our implementation to the program ckjm [18]
which provides an alternative implementation for the same
set of metrics but that is using a set of visitors on top of
the Byte Code Engineering Library (BCEL). That imple-
mentation is also completely modular but more than twice
as large, being 380 lines of code without comments. The
collection attribute based implementation has a number of
improvements compared to the visitor based solution. The
implementation is not as tangled, i.e., each attribute com-
putes a single metric rather than interleaving multiple ones
within a visitor. Another improvement is that each metric is
implemented by a set of equations in a single module rather
than being scattered across multiple visitors. The declara-
tive attributes also alleviates the programmer from the man-
ual scheduling of visitor passes, and the temporary storage
of intermediate state.

5.3. Grammar flow problems

Specifications using ordinary circular attributes can, in
some cases, be expressed in a more simple and concise
way using circular collection attributes. An example is the

task of computing the nullable property and the first and
follow sets for the nonterminals of context-free grammars.
In [17] it is shown how the recursive definitions of these
concepts can be translated into specifications using circu-
lar attributes. This is straightforward for nullable and first
but somewhat more laborious for follow. The reason is
that all places where a nonterminal is used in production
right-hand sides contribute to its follow set and these places
are distributed all over the grammar. Using circular col-
lection attributes the specification becomes trivial. A refer-
ence attribute decl() from nonterminal use sites NUse to
nonterminal “declaration” sites (production left-hand sides)
NDecl from the name analysis is reused for this purpose:

coll HashSet NDecl.follow() circular
[new HashSet()] with addAll;

NUse contributes followContribution()
to NDecl.follow()
for decl();

followContribution() is an ordinary synthesized at-
tribute defined to contain all terminals that can immediately
follow an applied occurrence of a nonterminal.

6. Experimental results

6.1. Emulated, naive, and joint evaluation

We start by comparing the performance of emulated col-
lection attributes (using ordinary attributes) with real col-
lection attributes using the naive algorithm and the two-
phase algorithm with late condition evaluation (2Ph-LC).
The 2Ph-LC variant of the joint evaluation algorithms is
chosen because it is the most general one (it can handle
all non-circular collections), and is therefore functionally
equivalent to both the naive algorithm and to the emulated
solution.

As an extension to the front end of our JastAdd extensi-
ble Java compiler [7], we have specified two cross-reference
attributes: varUses which is similar to the computation of
uses in Section 3.2, but uses a condition in the contribu-
tion to cover uses of variables only; and subClasses as
shown in Section 5.1. To measure performance, we have
run a number of Java programs in this extended front end.
Table 1 shows the results for demanding all instances of
varUses, and Table 2, the same for subClasses.

The tests have been run on three sample Java programs.
The first one is a typical student program with about 750
lines of code. The second program has 15.000 lines and has
been constructed especially to test a case with several con-
tributions for each collection attribute instance. The third
program is the source code for the javac compiler which
comprises about 36.500 lines.

Time is measured in milliseconds and is given for the
following different evaluation alternatives: Emulated col-
lection attributes (Emul attrs), the naive algorithm (Naive
alg), and two-phase joint evaluation with late evaluation of
conditions (2Ph-LC).

For each test, the following information concerning the
size is given: number of lines of Java code in the program
(lines), number of collection attribute instances (coll inst),
number of contributing nodes (contr inst) and number of ap-
plicable contributions (appl contr), i.e., the number of con-
tributions for which the attached condition, if any, is true.
Note that the number of applicable contributions can be
greater than the number of contributing nodes when there
are for-each clauses or when-clauses in the contributions.

As expected, the joint evaluation technique (2Ph-LC)
outperforms emulated collection attributes as well as the
naive algorithm. The reason is that the tree has to be tra-
versed for each instance of the collection attribute in the
latter cases. It is also evident that the 2Ph-LC algorithm
scales well, even sublinearly, with program size. The rea-
son is that even small programs bring in large parts of the
standard libraries.

Table 1. Computation of varUses
Size Time (ms)

lines coll contr appl Emul Naive 2Ph-
inst inst contr attrs alg LC

750 73 337 184 4100 1050 50
15000 30 14565 14565 3100 730 135
36500 1969 29180 6464 675000 165000 200

Table 2. Computation of subclasses
Size Time (ms)

lines coll contr appl Emul Naive 2Ph-
inst inst contr attrs alg LC

750 8 8 0 550 160 35
15000 77 77 126 6300 1600 60
36500 180 180 153 110000 15000 200

6.2. 1-phase versus 2-phase evaluation

In Section 4 we stated that 2-phase evaluation should be
faster than 1-phase joint evaluation (1Ph) if sufficiently few
instances of a collection attribute were demanded. A reason
why instances can be un-demanded is that for some analy-
sis tasks only instances appearing in certain contexts are of
interest. This is the case, for example, in devirtualization
analysis.

Table 3 shows results for a very simple devirtualization
analysis. It checks two simple conditions for possible de-
virtualization. The first condition is that for each virtual
methodcall exp.m() the formal type F of exp is a class

with no subclasses. The second conditon is that m() is not
overridden in classes below F. The specification involves
two collection attributes modelling the set of subclasses for
a class and the set of overriders of a method. As indicated
in the table, only a subset of these attribute instances are
demanded. If a method is never called or if it only ap-
pears in static method calls, the value of its collection at-
tribute instance is not needed. In the 2Ph-LC evaluation
technique the combination phase will be performed only for
demanded instances, while the 1Ph technique always eval-
uates all instances. As a consequence, the 2Ph-LC is some-
what faster in this case.

We have also measured the difference between the 2Ph-
LC and 2Ph-EC (two-phase with early condition evaluation)
variants, and found the differences to be very marginal.

Table 3. Devirtualization computations
Size Time (ms)

Coll attr instances Demanded instances 2Ph 1Ph
subClasses overriders subClasses overriders LC joint

645 6769 139 1219 700 760

6.3. Grouped evaluation

We have performed measurements on our implementa-
tion of the Chidamber and Khemerer metrics, described
in Section 5.2. Since these are defined using 7 different
collection attributes, this gives the opportunity to measure
grouped evaluation, i.e., evaluating several different collec-
tion attributes jointly.

As a sample application to compute the metrics on, we
have used the source code of the Jigsaw web server. Jigsaw
is the W3C’s web server platform, consisting of more than
100 k lines of Java code excluding comments.

We have performed one suite of tests computing met-
rics for all types in the Jigsaw application, and another
suite of tests for only the types that are in packages starting
with org.w3c.www. While this subset of types accounts for
roughly a fifth of the source code, all source code for Jigsaw
is needed to perform the computations, since some of the
metrics take contributions from types in other Jigsaw pack-
ages. This allows us to evaluate whether we can exploit the
demand driven evaluation of the collection attributes for this
particular application: For the first suite, all collection at-
tribute instances are demanded. For the org.w3c.www case,
only a subset of the instances are demanded.

Table 4 shows the results of our experiments for differ-
ent evaluation algorithms. We see that the one-phase al-
gorithm (1Ph) is somewhat faster than the two-phase algo-
rithm (2Ph-LC), even in the org.w3c.www case when not all
collection attribute instances are demanded. The number of

demanded instances is thus not small enough for the two-
phase algorithm to get an advantage. The contributions are
actually all very simple, typically adding one to a counter
or adding a reference to a set. The main execution cost is
thus related to AST traversal.

The table also shows results from grouped joint evalua-
tion, both for one-phase (1Ph-Grp) and for two-phase (2Ph-
LC-Grp). We could not place all collection attributes in the
same group, due to dependencies between the collection at-
tributes. But we could place six of them in one group and
the seventh in a group of its own. We can see that there
are significant performance improvements for this grouped
evaluation.

The times in Table 4 are in milliseconds and Decr is the
decrease in execution time. Times include only the execu-
tion time for computing the metrics. The entire analysis also
includes lexing, parsing, AST building, and error checking,
which adds another 12 seconds to the overall analysis time.
It is somewhat unfair to compare this result to ckjm, which
takes 3.4 seconds, since it processes bytecode which re-
quires much less static analysis, e.g., all names are bound
before hand. Processing source will therefore always be
more expensive than bytecode, but we still find the perfor-
mance perfectly reasonable for a fairly large project, and
we notice that for this particular application the bottleneck
is not the collection attributes.

Table 4. Metrics computation (ms)
Jigsaw types 1Ph 1Ph- Decr 2Ph- 2Ph- Decr

Grp LC LC-Grp
all 2207 1535 24% 2585 1948 25%

org.w3c.www 1320 693 47% 1639 1002 39%

6.4. Circular evaluation algorithms

For circular collection attributes the two phase and the
naive schemes have been implemented. Table 5 shows exe-
cution times when these are used to compute the follow sets
for the Java grammar. For comparison we show results for
two solutions using ordinary circular synthesized attributes.
The first (Emul-naive) specifies the follow attribute as a
tree traversal during which contributions to follow sets are
collected. The evaluator will in this case perform iterations
over the entire AST. The second (Emul-improved) is the one
used in [17]. It emulates the two-phase technique for collec-
tion attributes by introducing auxiliary ordinary set valued
attributes for non terminals containing references to their
use sites. The circular follow attribute is specified as the
union of contributions from these sites. As a consequence,
iterations will only involve these sites.

Specifications using collection attributes outperforms the
naive emulated solution. The improved emulated specifica-

tion is, however, faster than the naive algorithm for collec-
tion attributes. The reason being that the latter performs
iterations over the entire AST. Also, the improved emulated
solution is only marginally slower than the 2Ph-LC algo-
rithm. The experiment thus indicates that circular collec-
tion attributes give modest performance improvement. The
main advantage being that they yield much simpler specifi-
cations.

Table 5. Circular collection attributes
Size Time

Coll Contr Emul- Emul- Naive 2Ph-
inst inst naive improved LC
155 280 22500 320 480 270

7. Related Work

Restricted forms of collection attributes were introduced
by Knuth [16] who allowed global sets in the start symbol,
and by Kaiser [13] and Beshers [2] who allowed collection
attributes associated with subtrees. Hedin introduced gen-
eral collection attributes with contributions via reference at-
tributes, but with partly manual implementation techniques
[10].

The collection attributes as presented in this paper were
introduced by Boyland in his PhD-thesis, [3]. His APS sys-
tem also supports circular collection attributes. The focus
of Boyland’s thesis is on the attribute specification mecha-
nisms and how they can be applied. There is only a brief
sketch of the implementation, and no performance results
are reported. Just like JastAdd, the APS system uses a
demand-driven evaluation technique. The APS technique
for evaluating collection attributes is based on a concept
called guards, i.e., artificial attributes that are added by the
APS compiler. Consider a collection attribute c in node type
N. Each instance of c is made dependent on a guard, and the
guard is in turn made dependent on all the reference expres-
sions of type N. Each instance of c is evaluated on demand,
but not until all reference expressions of type N are evalu-
ated. The implementation sketch does not give the details
of how this is done, but the effect seems similar to our two-
phase algorithm.

In his later work on collection attributes, e.g., [4], Boy-
land investigates static evaluation algorithms and incremen-
tal versions of them. In this work, circular dependencies are
no longer supported, and the evaluation technique is based
on static analysis of the grammar rather than demand evalu-
ation. This work focuses on theory and contains no reports
on practical applications or performance results.

Silver [21] is a recent AG system supporting collec-
tion attributes. It supports several extensions to traditional
AGs such as higher-order attributes, forwarding and pattern

matching. There is, however, no support for circular at-
tributes. In Silver, attributes are evaluated by translating
the AG specifications into Haskell. The system is modu-
lar, consisting of a core attribute grammar language which
serves as the host language for specifying extensions. Col-
lection attributes have been implemented as one such lan-
guage extension. The work focuses on the composability of
language constructs and the application of Silver to extensi-
ble and domain-specific languages. No performance results
or specific evaluation algorithms are reported.

8. Conclusions

We have shown how cross-reference-like properties can
be specified very concisely using collection attributes. We
have presented several evaluation algorithms, and found
that the joint evaluation algorithm works very well for
large practical applications. Our implementation of the
Chidamber and Kemerer metrics increased the compilation
time with only 1-2 seconds for Java programs of 100 k lines
of code. As shown by our smaller examples, the naive al-
gorithm is several orders of magnitude slower. Emulation,
using ordinary inherited and synthesized attributes, is much
slower still.

We have presented a series of variants on the joint evalu-
ation algorithm. The 2Ph-LC variant is a general algorithm
and can handle all non-circular collection attributes. It is
used by default in the JastAdd system. The other variants:
1Ph and 2Ph-EC, can be faster for some applications, but
they are not completely general: contrived non-circular ex-
amples can be constructed that these algorithms cannot han-
dle. For our example applications, the 2Ph-EC variant was
only very marginally faster than the 2Ph-LC algorithm. The
1Ph variant was marginally slower on some examples and
marginally faster on others. These variants can be selected
by annotating individual collection declarations.

Using grouped joint evaluation led to decreased execu-
tion time from 25% to almost 50% on the metrics applica-
tion, depending on source program and on algorithm vari-
ant. However, grouping cannot be done automatically: the
user has to explicitly annotate the collection attribute decla-
rations with the desired group.

We have also extended the algorithms to circular vari-
ants that can handle collection attributes explicitly declared
as circular. The 2Ph-LC circular algorithm is used as the de-
fault. On our example application in grammar flow analysis,
the use of circular collection attributes gave a much sim-
pler specification than the corresponding non-collection at-
tribute solution, without leading to decreased performance.

References

[1] JastAdd, 2007. http://jastadd.cs.lth.se/web/.

[2] G. M. Beshers and R. H. Campbell. Maintained and con-
structor attributes. In Proceedings of the ACM SIGPLAN
85 symposium on Language issues in programming envi-
ronments, pages 34–42, New York, NY, USA, 1985. ACM
Press.

[3] J. T. Boyland. Descriptional Composition of Compiler Com-
ponents. PhD thesis, University of California, Berkeley,
Sept. 1996.

[4] J. T. Boyland. Remote attribute grammars. J. ACM,
52(4):627–687, 2005.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Trans. Softw. Eng., 20(6):476–
493, 1994.

[6] T. Ekman. Extensible Compiler Construction. PhD thesis,
Lund University, Sweden, June 2006.

[7] T. Ekman and G. Hedin. The JastAdd Extensible Java Com-
piler. Accepted for publication at OOPSLA’07.

[8] T. Ekman and G. Hedin. Rewritable Reference Attributed
Grammars. In Proceedings of ECOOP 2004, volume 3086
of LNCS, pages 144–169. Springer, 2004.

[9] R. Farrow. Automatic generation of fixed-point-finding eval-
uators for circular, but well-defined, attribute grammars. In
Proceedings of CC’86, pages 85–98. ACM Press, 1986.

[10] G. Hedin. An overview of door attribute grammars. In Pro-
ceedings of CC’94, volume 786 of LNCS, pages 31–51, Ed-
inburgh, Apr. 1994.

[11] G. Hedin. Reference Attributed Grammars. In Informatica
(Slovenia), 24(3), pages 301–317, 2000.

[12] G. Hedin and E. Magnusson. JastAdd: an aspect-oriented
compiler construction system. Science of Computer Pro-
gramming, 47(1):37–58, 2003.

[13] G. E. Kaiser. Semantics for structure editing environments.
PhD thesis, Carnegie Mellon University, 1985.

[14] U. Kastens and W. M. Waite. Modularity and reusability in
attribute grammars. Acta Informatica, 31(7):601–627, 1994.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In Proceed-
ings of ECOOP 2001, volume 2072 of LNCS, pages 327–
355. Springer, 2001.

[16] D. E. Knuth. Semantics of context-free languages. Mathe-
matical Systems Theory, 2(2):127–145, June 1968. Correc-
tion: Mathematical Systems Theory 5, 1, pp. 95-96 (March
1971).

[17] E. Magnusson and G. Hedin. Circular Reference Attributed
Grammars - Their Evaluation and Applications. Electr.
Notes Theor. Comput. Sci., 82(3), 2003.

[18] D. D. Spinellis. ckjm - Chidamber and Kemerer Java Met-
rics, 2007. http://www.spinellis.gr/sw/ckjm/.

[19] E. Van Wyk, O. d. Moor, K. Backhouse, and P. Kwiatkowski.
Forwarding in attribute grammars for modular language de-
sign. In Proceedings of CC 2002, volume 2304 of LNCS,
pages 128–142. Springer, 2002.

[20] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order
attribute grammars. In Proceedings PLDI’89, pages 131–
145. ACM Press, 1989.

[21] E. V. Wyk, L. Krishnan, A. Schwerdfeger, and D. Bodin.
Attribute Grammar-based Language Extensions for Java. In
Proceedings of ECOOP’07, LNCS. Springer, 2007.

