Relating the Evolution of Design Patterns and Crosscutting Concerns

Lerina Aversano, Luigi Cerulo, Massimiliano Di Penta
aversano@unisannio.it, Icerulo@unisannio.it, dipentai@annio.it
RCOST — Research Centre on Software Technology,
University of Sannio, Via Traiano 82100 Benevento, Italy

Abstract in general any kind of system evolution, causes major re-
design. When a design pattern evolves, this can have conse-
Crosscutting concerns consist in software system fea-quences on the crosscutting concern of its clients. In some
tures having the implementation spread across modules asases, the pattern interface changes (e.qg., idsitor this
tangled and scattered code. In many cases, these crosscutan be due to changes in the accessed data structure). In
ting concerns represent design pattern clients, i.e.,¢éavo other cases, the addition of new features to the pattern is
tions to pattern features. When a design pattern evolves,made through sub-classing (foMsitor this means that a
this can cause the addition or the change of scattered andnew Concrete Visitotis available). Finally, the pattern in-
tangled code, which contributes to the evolution of the terface and hierarchy may remain unchanged, while its im-
crosscutting concern. plementation undergoes maintenance activities. These thr
This paper empirically analyzes the relationship between kind of pattern changes may impact the crosscutting con-
design pattern evolution and the changes in the inducedcern; in some cases the impact is expected due to the avail-
crosscutting concerns. Specifically, the paper investigat ability of new pieces of functionality offered by the patter
to what extent the crosscutting concern co-changes with thein other cases — especially when the crosscutting changes
pattern, whether there is a relationship between the type ofdue to pattern internal modifications — the change can be
change and the induced crosscutting change, and whethethought as a pattern modification side-effect and as a limite
different patterns induce different amount of crosscgttin resilience of the pattern to changes.
The paper reports results from the analysis of Tomcat and \hile many benefits related to the use of design pat-

JHotDraw evolution. terns have been stated, a little has been done to empiri-
) o cally investigate pattern change proneness [2] or whether
Keywords: Software Evolution, Mining Software there s a relationships between the presence of defects in
Repositories, Design Patterns, Crosscutting Concerns, EMthe source code and the use of design patterns [27]. In par-
pirical Study. ticular, there is lack of empirical studies aimed at anailgzi
what kind of changes each type of pattern undergoes during
1 Introduction software evolution, and whether such a change have conse-
guences on other classes and in particular on classes access
Crosscutting concerns are software system features imJNg to the pattern. The availability of source repositofes
plemented as tangled and scattered code. Tangled code i812ny object-oriented open source systems realized making
the interference across multiple concerns in order to imple US€ of design patterns, of techniques for identifying cleang
ment a new concern, while scattered code is the code of oné€ts [11] — i.e., sets of artifacts changed together by the
concern spread across the system classes. same ggthor —_from source cpde repositories triggers op-
A common, pervasive example of crosscutting concern Portunities for this kind of studies.
is represented by scattered code into design pattern [12] This paper investigates the relationships existing be-
clients. Accessing wrapped code through/adapter ac- tween the evolution of design patterns and the evolution of
cepting aVisitor into a data structure, notifying a model crosscutting concerns they induce. The study stems from
change t@bserversor invoking a software system piece of a previous work on the identification of crosscutting con-
functionality through &Commandare just some examples cerns through change sets mined from software reposito-
of scattered code related to design pattern usage [22, 17]. ries [8], and analyzes to what extent the crosscutting co-
One important benefit in the use of design patterns is thechanges with the pattern, how the crosscutting evolves af-
resilience to changes, avoiding that new requirements, ander pattern changes, and if there is any relationship betwee

the type of change and the resulting impact on the cross-to extract from CVS/SubVersioN repositories, logical cou-
cutting. Finally, the study investigates whether particul pled changes performed by developers working on a bug fix
types of patterns induce more changes in the crosscuttingor an enhancement feature [11]. Such a technique considers
concern. As case studies, we considered the crosscuttinghe evolution of a software system as a sequencenaip-
concerns identified by Mariet al. [21] on JHotDraw and shots(S) generated by a sequenceMbdification Trans-
Tomcat and, in particular, the subset of them related to de-actions(MT's) (also known as Change Sets), representing
sign pattern clients. Results indicate a consistent changehe logical changes performed by a developer in terms of
of crosscutting with the pattern. In particular, changes af added, deleted, and changed source code lines. Change sets
fecting the pattern interface almost always induce immedi- can be extracted from a CVS/SVN history log using various
ate co-change or delayed changes in the crosscutting, whileapproaches. We adopt a time-windowing approach that con-
pattern implementation changes do not always impact onsiders a change set as a sequence of file revisions that share
the crosscutting and, where this happens, the crosscigting the same author, branch, and commit notes, and such that
co-changed with the pattern. the difference between the time-stamps of two subsequent
The remainder of this paper is organized as follows. Sec-commits is less or equal than 200 seconds [31].
tion 2 details the process to extract the information needed
to perform the empirical study. Section 3 describes the em-2.3 Step 3: Location of pattern changes
pirical study, reports and discusses results. After a vevie and determination of the kind of
of the literature in Section 4, Section 5 concludes the paper change
and outlines directions for future work.
To determine in which snapshot a clasgarticipat-

2 AnalysisProcess ing to a design pattern has been changed, we analyze the

source code files changed in each snapshot, and perform a

comparison between the class revision in two subsequent

This section describes the steps necessary to exnamsnapshotssj_l and S;. By focusing more on structural
from the CVS of the system under analysis, the data re'changes, such a comparison aims at identifying: (i) addi-

quired to perform the empirical study presented in this pa- i, removalichange of attributes and associationsadidi-
per. This study exploits the advantage of analyzing a soft- i, removal of methods or changes in their signature; (ii

ware system from different perspectives, as stated in [9], ;panges in methods source code; and (iv) addition/removal
thatare, in our case, both spatial (code dimension) and temy¢ o classes. The presence of at least a difference between
poral (historic dimension). ¢ € Sj_1 andc € S; indicates that the clags— and thus
the pattern — has been changed in correspondence of the
2.1 Step 1: identification of crosscutting snapshotS;. The analysis is automatically performed by
concerns and invoked pattern classes using a fact extractor based on the JavaCC parser gener-
atot and a Perl script that compares facts (e.g., for each
The first step of our analysis process aims at selectingclass the list of methods, attributes, associations, p&ren
crosscutting concerns and patterns of which the crosscut-descendants) of the two versionscaio identify the above
ting constitutes the client. We used the set of crosscuttingmentioned differences.
concernsidentified and discussed by Matial. [21] with a
semi-automatic approach based on the fan-in metric,amea2.4 Step 4: Locating crosscutting concern

sure of the number of methods that call some other method changes
(a potential symptom of concern scattering across modules)
Such an identified crosscutting conceti({) is represented The set of method calls of a crosscutting concéra’y)

by a set of class methods call§'¢.) which invoke a set are well represented with the set of source code lines con-
of class methods({C,,). For the purposes of this paper taining invocations to pattern methods. Unlike the presjou
we consider crosscutting concerns containing invocatfon o in this step we focus on line of code changes as more suit-

methods belonging to design pattern classes. able to this kind of representation. In this way we are able to
identify if a crosscutting method call identified in snapsho
2.2 Step 2: snapshots extraction and S;, has been modified and/or added in a snapshotvith
co-changes identification k < j. We ignore its deletion as we are performing a back-

ward analysis by starting from the snapshot (corresponding
to a system release) were the crosscutting concerns have

After having identified a crosscutting concern, we an- > -
been identified.

alyze its changes by mining the version repository of the
system under analysis. To this aim we rely on a technique !https:/javacc.dev.java.net/

Table 1. Case study history characteristics

KNLOC CLASSES
SYSTEM SOFTWARE TYPE | OBSERVED PERIOD| SNAPS | RELEASES | min max min max
JHotDraw Graphical editor | 03/2001~ 02/2004 177 | 5.2-5.4b2 13.5 36.3 164 489
Tomcat Servlet container| 04/2002~ 03/2006 | 24,758 3.3-5.5 577.8 | 1,296.0 | 4,792 | 8,295

2.5 Step 5: Relating design pattern and

crosscutting concern changes Table 2. Concerns in JHotDraw v.5.4b1

CONCERNPATTERN TARGET SIZE | FAN-IN
(nr. of methods)| (max)
The objective of this paper is to investigate on the re- [“Adapter 1 37
lationship between pattern changes and changes in the intf Command 2 24
duced crosscutting method call changes. To this aim, we| Composite 12 24
use the results obtained in the previous steps to identfy th | Decorator 6 57
snapshots in which the patterns and the crosscutting methog Observer 10 37
calls changed together, and those in which they change sep- Persistence 6 22
arately. For each snapshot and for each crosscutting cont_command (Undo) 3 25
cern we determine: the kind and the size of pattern change,
and the number of added crosscutting methods calls. Also,
since the crosscutting concerns may or may not co-change Table 3. Concerns in Tomcat v.5.5.17
with the pattern, we consider for them extended change CONCERNPATTERN TARGET SIZE | FAN-IN
including all the system snapshots from a pattern change t . | (nr. of methods)| (max)
the next pattern change (or to the last snapshot if the patter | Chain of responsibility 24 18
does not change anymore). In other words, this allows for (p|pel|ne_)

. . Composite 9 37
analy;mg the effe_ct of a patter_n change on the crossc.uttmg Observer (life-cycle) 5 42
even if this effect is not |mmed.|ate, assuming that, un8l th | Observer (container) 6 56
pattern does not change again, the crosscutting change is regirector (request) 1 25
due to the pattern last change. Redirector (response) 1 17

Visitor 1 28

3 Empirical Study

This section describes the empirical study context, de-size of the system grew almost linearly fras.5 KNLOC
fines the research questions, and discuss the obtained reat releasé.2 to 36.5 KNLOC at releasé.4 BETA2.

sults. Apache Tomcdtis a servlet container developed within
the open-source Apache Jakarta project. The main elements
3.1 Context description of Tomcat are: the servlet contain€ataling, the JSP en-

gine, Jasper and the Tomcat connectors. We extracted a

We selected two open-source systems, JHotDraw andtotal of 24758 snapshots from rele&sa to releases.5.17,
Tomcat which can be classified as small and large size sysin the time interval between April, 2002 and March, 2006.
tems, respectively. We extracted from such systems onlyIn that interval the size of the system grew almost linearly
the HEAD development trunk, excluding branches. Table 1 from 577.8 KNLOC at releas&.3 to 1296.0 KNLOC at re-
reports, for each system, the number of extracted snapleases.5.
shots, the range of analyzed releases, the number of non- Tables 2 and 3 show the crosscutting concerns having
commented klines of code (KNLOC), and the number of a5 target a design pattern identified, respectively, in re-
classes (excluding anonymous-classes). leases5.4b1 (152th snapshot) and.5.17 (22960th snap-

JHotDraw? is a Java framework for drawing 2D graph- shot) of JHotDraw and Tomcat. Such crosscutting concerns
ics. The project started in October 2000 with the main gre those identified and widely described by Maginal.

purpose of showing the Design Pattern Programming in ajn [21], which reports the same characteristics in terms of
real context. We extracted a total of 177 snapshots fromnumber of called methods, i.e. target size, and the maxi-

releases.2 to releases.4 BETA2, in the time interval be- mum number of fan-in calls.
tween March 2001 and February 2004. In that interval the

2http://www.jhotdraw.org Shttp://tomcat.apache.org

3.2 Research Questions while it provides an indication of whether the pattern in-
terface or implementation changed, and whether a method
This empirical study aims at answering the following re- Was added or changed in the crosscutting. This, as shown
search questions: in Figures 1 and 2, provides a visual representation of the
temporal sequence of changes happened in the pattern and
e RQ1: To what extent design patterns co-change with in the induced crosscutting. In correspondence of slopes,
their induced crosscutting concernsThis research the pattern curve is labeled with the type(s) of change the
question analyzes whether the crosscutting concernspattern underwent:
tend to change in correspondence of pattern changes
(i.e., in the same change set) or after the pattern change ® C, class addition/removallt occurs when a new pat-

(i.e., in the extended change set). tern class is added or removed.
e RQ2: Which is the relationship between different de- ~ ® H, hierarchy changelt occurs when a subclass of the
ting concern changesPhis research question analyzes removed.

whether some design pattern change types (method ad-
dition or removal, attribute addition or removal, sub-
class addition or removal, or method implementation
change) cause more changes in the induced crosscut- e A, attribute changelt occurs when a pattern class at-
ting concern than others. tribute is modified, removed, and/or added.

e M method change It occurs when a pattern class
method is modified, removed, and/or added.

e RQ3: Which is the relationship between different e I, method implementation changk occurs when the
design pattern types and their induced crosscutting implementation of a pattern class method changes.
concern changes?This research question analyzes
whether different design patterns cause more change According to the information hiding principle, it is ex-
in the induced crosscutting concern than others. pected that changes in the pattern implementation should

induce less changes in the crosscutting, while changegin th

This study is intended to be an explorative case study pattern interface should induce more changes in the cross-

[28], aimed at answering research questions by patterncutting. We therefore consider two cases:
matching — or statistical tests where necessary — on data
extracted by means of the analysis explained in Section 2, 1. if design pattern classes undergo to changes of type

rather than attempting to reject null hypotheses. (M)ethod, (C)lass, and/or (H)ierarchical, then its in-
duced crosscutting concern will be affected at the same
3.3 Results time (co-change), or with a short delay, and in any case

before the next pattern change (extended change).

This section reportS results of the analySiS of of data 2. if design pattern classes undergo to Changes of type
collected on the two systems according to the process de- (A)ttribute and/or (I)mplementation, then nothing
scribed in Section 2, with the aim of anSWGring the research should happen to its induced Crosscutting concern.
guestions formulated in Section 3.2.

Figures 1 and 2 show, for JHotDraw and Tomcat respec- By analyzing the plots, it can be noted that the above
tively, the cumulative changes performed on design patterntwo conditions were almost always met. In JHotDraw
classes and the cumulative changes (additions and modificasee Figure 1) consistent changes can be explicitly ob-
tion) of their induced crosscutting method calls. Thaxis served for Composite, Undo, Command, and Persistence.
of each sub-figure represents the evolution time, i.e.,dhe s However, as shown in Figures 1(e), 1(g), and 1(f), it can
guence of snapshots in which the changes occurred. Thée noted that Observer, Decorator, and Adapter undergo
y-axis indicates the cumulative number of changes madeto a set of (M)ethod type changes, which do not affect
in the pattern (solid line) or in the induced crosscutting their induced crosscutting code. Such missed changes in
(dashed line). Each kind of change in the pattern — i.e., crosscutting concern code can be explained by looking at
the pattern class is added or removed, a subclass is added @ource code and CVS messages. In snapshot 208, the
removed, an attribute or a method is added or removed, or gava.awt.Cursoclass has been systematically replaced with
method undergoes a change in its implementation — countsCH.ifa.draw.contrib.framework.Curspcausing changes in
one, as well as the addition or change of a method invoca-Adapter and Decorator. Such a re-factoring did not affect
tion in the crosscutting concern. Of course, this does nottheir crosscutting code, because of homonymy of the Cur-
provide a clear figure of the amount of change happened,sor class name. In snapshot 138, a merge conflict has been

80
70
60
50
40
30
20
10

(a) Composite

30

0 50 100 150 200

(c) Undo

250

0 50 100 150 200

(e) Observer

250

254

204

15+

10 4

M—

J MH

(b) Command

(d) Persistence

140 30
120 25 e
100
20
80
15
60
10
40
20 5 :
C:
0 0
220000 270000 320000 370000 220000 270000 320000 370000
(a) Chain of responsibility (pipeline) (c) Redirector (response)
30 18
7
25
............ 14
20 12
10
15
8
10 6
4
5 .
Cc 2 c!
0 0
220000 270000 320000 370000 220000 270000 320000 370000
(b) Visitor (d) Redirector (request)

250

Figure 1. JHotDraw — cumulative changes of patterns and thei

Figure 2. Tomcat — cumulative changes of patterns and their i

0 50 100 150 200

(f) Adapter

My
0

220000 270000 320000 370000

(e) Observer (life-cycle)

C|

220000 270000 320000 370000

(f) Observer (container)

250

0 50 100 150 200 250

(g) Decorator

pattern

crosscut

r induced crosscutting concerns

220000 270000 320000 370000

(g) Composite

pattern
crosscut

nduced crosscutting concerns

25 35

20
254

20

T PLLL LT [

Crosscutting co-changes
Crosscutting co-changes

0— — L

A‘H A‘I AM i M MHI I/iI AM XI"H T I M IViI
Pattern change Pattern change
(a) co-changes (a) co-changes
2 35
w 30
20 3
_':E 254
154 * g 20
® g *®
o 154
£ 104 £
2 — x 2
8§ 5 8 54 *
s s Q0DHBo- = m S .
YA A AaM oA ¢ R T M Ma M AM A1 < I " MI
Pattern change Pattern change
(b) extended changes (b) extended changes
Figure 3. JHotDraw — crosscutting (a) co- Figure 4. Tomcat — crosscutting (a) co-
changes and (b) extended changes for differ- changes and (b) extended changes for differ-
ent pattern change types ent pattern change types

resolved with a number of methods added and removed inchanges (or combinations of changes) overall figures of the
Observer classes, however without affecting its behavior,@mount of crosscutting (i) co-changed with the pattern or
As a result, the crosscutting code was not affected. For(il) changed within the patterextendedchange. Results
Tomcat, as shown in Figure 2, in many cases a change in2r€ Shown as boxplots for JHotDraw in Figure 3. The x-
the pattern immediately induces a co-change in the cross2XIS indicates the different kind of qhanges, while the isax
cutting: this is the case of Redirectors, Observer (coetain ~ 'eéPresent boxplots of the cumulative number of changes of
and Composite. In other cases, i.e., Chain of respongibilit that type for all the patterns in the system. As the box-
Observer (life-cycle), and Visitor, the part of the crogscu PIots show, not only different types of pattern changes in-
ting undergo a delayed change. This is especially the casdluce different amount of crosscutting co-changes. Also, it

of Visitor, started to be used about 20,000 snapshots afteiS possible to note differences between the crosscutting ad
its insertion. dition/modification occurred in the pattern co-change {Fig

ure 3(a)) and extended change (Figure 3(b)). The most ev-
ident difference, though not statistically significantyis-

ible for pattern class additions, i.e., (C)lass change:type
the amount of induced co-change is higher in the extended
change than in the co-change. The same applies for change
in the pattern class (H)ierarchy; in this case the differ-
ence is also statistically significdrdccording to the Mann-

Figures also show that, for almost all patterns, after an
initial burst of activity and change, the pattern and itd-cal
dependent code tend to remain stable. This indicates that
overall, patterns work well as a mechanism to mitigate some
kinds of evolution and their impact.

While Figures 1 and 2 provide a temporal view of the
pattern and crosscutting changes, to better anR@rand
RQ2 it would be useful to analyze, for different pattern “4In the context of this paper we used a significance level of 95%

25 §‘3=
_.E 30
U 254
204 ® i EZO*
2 * £ 17
2 s 104
£ 154 g 5 D
8 § % 3 & = = T 1
z £z & % g ¢ 3
2 ~ o S = ‘g =
S 5 2 2 2 5 g
E H §))) E
Ada‘pﬂer Com‘)osme Deco‘ratnr Obsérver Undo-Corrma‘nd-Persistence 6
(a) co-changes (a) co-changes
2! 35 *®
304
254 JR— .
§ 20 20 = _
H e
] 10
3 151 z: = = E] ; ; ; :
H T & 5 % ¥ 3 B
- = 8 £ % % g 2
3 1] . &g 5 §F & & & -
£ & 2z g 5 B e
g s H H g 8 8 & 3
re oo et vk Undo Comm e 5
(b) extended changes (b) extended changes
Figure 5. JHotDraw — crosscutting (a) co- Figure 6. Tomcat — crosscutting (a) co-
changes and (b) extended changes for differ- changes and (b) extended changes for differ-
ent patterns ent patterns

Whitney test (p-values:046). Differences in the opposite €xténded changes for Tomcat, again grouped by type of pat-
direction can be noted for (I)implementation changes, in- (€M change. As for JHotDraw, also in Tomcat different
ducing more immediate crosscutting co-changes (as showrfYPes Of pattern changes induce different co-changes and
in Figure 1, this kind of change is visible in particular for €Xtended changes in the crosscutting. The most evident and
Composite, Observer). This can be explained by the factSignificant (p-value= 2.2 - 10~°) difference occurs when
that changes in the pattern interface (i.e., addition ofsga @ New pattern (C)lass is added: also in this case the number
of sub-classing) are mainly related to the addition of new ©f changes is higher when considering the extended change.
features, accessed by other subsystems at a later stage (e}l0reover, in Tomeatitis possible to note that the amount of
tended change) with the addition of method invocations €hanges involving methods (ABIIM, MI°) is higher in the

in the crosscutting. Vice versa, implementation changesC0-change than in the extended change, even though such
should not affect the crosscutting; when this happensnit ca & difference is not sta‘u_stlcally S|gn|f_|cant. Differenthpm

be due to corrective maintenance that needs to be quickly?Hotbraw, for Tomcat implementation changes (1) tend to
propagated. We did not find evidence of such a conjecture ininduce more extended changes than co-changes in the cross-
the JHotDraw bug tracking system, probably because, beingcuttlng. This because Tomcat is a I_arger system, mvolvmg
JHotDraw a relatively small open source project, the cerrec Mmore developers, and thus the maintenance of classes im-
tive interventions were propagated in the crosscuttingiby t Pacted by pattern change is delayed and, above all, it might
same person who maintained the pattern without posting the?€ Performed by a developer different from who maintained

proplem on the buQ traCkmg system.) 5AMI=changes in Attributes, Method signatures, and Impletations
Figure 4 shows boxplots of crosscutting co-changes and ®Mi=changes in Method signatures and Implementations

the pattern. access the introduced/maintained feature.

It is now possible to provide an answer to bdRiQ1
and RQ2. We found, for both case studies, a consis- 3.3.1 Threatsto Validity
tent co-change between patterns and the induced crosscut-) . o
ting: except for some cases in JHotDraw (discussed above) T his section discusses threats to validity that can affeet t
changes in the pattern implementation (A or 1) tend not to results reported in S_ect|0n 3.3, foIIOW|_ng awell-knoyvr_l tem
induce changes in the crosscutting, while changes in thePlate for case studies [28]. Regardingnstruct validity
pattern interface (C, H, M) induce immediate co-changes threats can be QUe to the measgrement performed, in partlc-
or delayed (extended) changes. Whenever implementatiort/!ar related to (i) how crosscutting and patterns were iden-
changes impact on the crosscutting, this happens immedilified; (n)_how change sets were identified; and (iii) how
ately (at least where this is possible, like in smaller sys- crosscutting and pattern changes were analyzed across re-

tems like JHotDraw) since it can be due to corrective main- leases. For crosscutting and pattern identification wedel
tenance that can impact pattern clients as well. on an available oracle [21] that was already assessed. We

To answerRQ3, we analyzed the crosscutting induced analyzed change sets agawayto assess the impact of pattern
. change on the crosscutting. Of course, co-change could also
co-change and extended change for different types of pat- . e .
happen accidentally, and more sophisticated impact analy-

tern. Boxplots for JHotDraw are shown in Figure 5. As the . .
) . . . sis techniques could have been used [1], although change-
figure shows, and as it was confirmed by a multiple-means, . .
. . . ._'sets and bug issues are used for this purpose [7, 31]. The
non-parametric comparison test (Kruskal-Wallis) there is ; : .)
s . : : . pattern changes analysis relied on information extracyed b
no significant difference in terms of induced crosscutting
) our analyzer based on the JavaCC Java grammar, and on
co-change or extended changes among different pattern L
. ' .. CVS/SVN diffs. As discussed in Section 2.4, we limited the
Only the Adapter induces a higher (although not signifi- : .) .
; analysis of crosscutting concerns to modifications and-addi
cantly higher) number of co-changes than other patterns,_ . : . :
tions, having performed a backward analysis. Relatiorsship

due to its role: when thé&daptee(the class that provide . .
. . . between pattern changes and crosscutting removal remains
the adapted interface), interface changes, clients neleel to . X
to be investigated.

maintained. Also, no difference was found if comparing, . e . .
for each pattern, the co-change with the extended change, . Threats tomte_rna! validity did n_ot affect this particular
kind of study, being it an explorative study [28].

Figure 6 shows boxplots for Tomcat. It can be noted how T
Threats teexternal validityare related to what extent we

changes related to Chain of responsibility induce immedi- i findi Wi idered two diff i
ate crosscutting co-changes rather than delayed (ext}endeocan generalize our Tindings. We considere o diteren
§§)ftware systems, differing for their domain (graphicat ed

changes. This because such a pattern decouples reques let contai dsi I di
between sender and receivers, and its changes need theréqr(;/s.b?e_rv% container) an sfl_z%_(sma vg,. me |um-I)Ttrge
fore to be immediately propagated. Observer (life-cycle), and obtaned some common indings and Some results pe-

Redirectors, and Visitor induced more extended (ie., Ole_cullar to each system. Nevertheless, it would be desirable t

layed) that (immediate) co-changes. This is understaedabl analyze_z furlther systems t—glso developed in Idlfferelnt pro-
for Observer and Visitor, since clients do not need to use dramming janguages — 1o draw more general conclusions.

these patterns as they change or as they are introduced iﬁinally, the analysis here was limited to a limited se_t of pat
the system: Subject— i.e., an object whose changes are tern; accessed by means of crosscutting belonging to the
observed by the observer — can attach an Observer Whenl_\/larm et aI_. [21] _dat_a_set. .-

ever there is the need to notify it some changes inSthb- Regardmgre_llablhty Va“d'tY' the source code of the
ject state. For the same reason, a data strucienten} three systems is publicly available, as well as the crosscut
accepts a Visitor if the operation performed by such a Visi- ting concern d?tase.t' and _th.e way our analyses were per-
tor needs to be performed on that data structure. Althoughformed is described in detail in Section 2.

Redirectors are similar to Chain of responsibility, they in

duce more extended changes than co-change. However, thid Related Work

is not significant since the data set only contains one Redi-

rector (request) and one Redirector (response). In our knowledge, there are no papers aimed at empir-
In summary, it is possible to answBQ3 stating that, ically analyzing the relationship between the evolution of
although in general it is not possible to identify design-pat design pattern and their induced crosscutting concerns. A
terns inducing more crosscutting changes than othese number of papers investigate on the relationship between
are patterns, essentially having a decoupling respoitgibil design patterns and their homologue implemented as aspect
— such as Chain of responsibility or Adapter — that in- modules, such as Hannemann and Kiczales [17], and Gar-
duce immediate co-changes, while others — like Visitor or cia et al.[13]. The first shows that in 17 of 23 cases there
Observer — induce changes only when the client need tois an improvement in code quality when a design pattern

is implemented as an aspect, the latter measures such quatate that different type of changes in design patternsetass
ity in both cases showing that aspect oriented code exhibitscause a different behavior on the induced crosscutting con-
higher code quality. As a future work, we aim to extract cerns. It was found that, in most cases, a change per-
the evolution of such aspect oriented re-factoring changesformed on a design pattern class — involving the pattern
to show if the code quality improves in time by looking, for interface or class hierarchy — causes a consistent change
example, at defect density. Regarding the analysis of desig of the induced crosscut. If changes are of type (A)ttribute
pattern evolution, Biemaet al.[2] analyzed four small size and/or (I)mplementation —i.e., are hidden to pattern ¢tien
systems and one large size system to identify the observable— then nothing happens to the induced crosscutting con-
effects of the use of design patterns, such as pattern changeern. When analyzing the distribution of co-changes and
proneness; Vokac [27] analyzed the corrective mainte@an delayed (extended) changes, it was found that, whenever
of a large commercial product over three years, comparingpossible, implementation changes, if impacting crossaytt
defect rates for classes that participated in design patter concerns, are propagated immediately, i.e., within the pat
versus those that did not participate; Prechettl.[24] per- tern co-change, while other changes — such as hierarchy
formed a series of controlled experiments with the aim of changes and addition of pattern classes — tend to induce
comparing design patterns with alternative, simpler solu- late changes in the crosscutting. When analyzing the effect
tions to perform maintenance tasks. induced by different pattern types, overall no significafit d
Historical co-change analysis has provided new oppor-ference was found, although pattern having decoupling re-
tunities for a number of issues: predict change propa- sponsibilities tend to induce their impact on the crosgogit
gation [29, 31], observe clone [14, 18] and crosscutting within the co-change rather than delaying it.
concern [6] evolution, identify crosscutting concerns [4, The analysis process proposed in this paper poses the ba-
8], detect of logical coupling between modules [11], sis for further studies aimed at increasing the externaval
find common error patterns [20], or identify fix inducing ity of results and leading to more general conclusions. Fu-
changes [19]. ture work also aims at improving the accuracy of results by
Although we relied on crosscutting concerns mined us- considering more accurate impact analysis or dependency
ing the Marinet al. approach [21] based on the fan-in met- analysis techniques. In this paper we mainly focused on
ric, this can be done using alternative approactfespect what happened in the past with respect to a snapshot where
Browser[15] uses text-based pattern matching to identify a crosscutting concern is identified. We aim to include, by
aspects. A developer specifies a regular expression that deperforming aforward analysiswhat happens in the future,
scribes the code belonging to the aspect and the tool idene.g., crosscutting concern deletions.
tifies the code conforming to the regular expression. Prior
knowledge of the system strongly affects the usefulness of
the achieved results [23]. Various extensions of this tasl h
been developed by introducing different mining heuristics

such as type ranking and control flow information [16, 30]. 1 ne work described in this paper is supported by the

Ettingeret al. [10] propose a program slicing technique to Proiect METAMORPHOS (MEthods and Tools for mi-

identify entangled code. The slice is computed from an ex- 9rAting software systeMs towards web and service Ori-

pression or a statement pointed out by a developer. Bruntinkentéd aRchitectures: exPerimental evaluation, usability

et al.[5] propose the use of clone detection for the identifi- @nd tecHNOlogy tranSfer), funded by MiUR (Ministero

cation of crosscutting concerns, comparing the performanc 9éll'Universit e della Ricerca) under grant PRIN2006-

of different clone detection techniques, namely AST-based 2006098097. Authors would like to thank the anonymous

and token-based. Aspect mining using dynamic analysisréviewers for their useful feedbacks.

has been proposed by Breu and Krinke [3]: the idea is to

detect particular patterns occurring in an execution trace Refer ences

An approach for aspect mining using formal concept analy-

SIS on execution tracgs was propos_ed by Tonﬂlt?ﬂ. [25]. . [1] R. S. Arnold and S. A. Bohner. Impact analysis - towards

Also aspects were mined by detecting patterns in execution = 5 framework for comparison. IRroceedings of the IEEE

traces using formal concept analysis by Touetal.[26]. International Conference on Software Maintenance (ICSM
1993), Montréal, Quebec, Canadpages 292-301. IEEE
Computer Society, 1993.

[2] J. M. Bieman, G. Straw, H. Wang, P. W. Munger, and R. T.
Alexander. Design patterns and change proneness: An ex-
This paper reported an empirical study investigating amination of five evolving systems. [8th International

on the relationship between design pattern evolution and Software Metrics Symposium (METRICS(®ges 40—49.

changes in the induced crosscutting concerns. Results indi IEEE Computer Society, 2003.

6 Acknowledgments

5 Conclusions and Work-in-Progress

[3] S. Breu and J. Krinke. Aspect mining using event traces. [17] J. Hannemann and G. Kiczales. Design pattern implemen-

(4]

(5]

(6]

(7]

(8]

(9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

In 19th IEEE International Conference on Automated Soft-
ware Engineering (ASE 2004), 20-25 September 2004, Linz,
Austria, pages 310-315, 2004.

S. Breu and T. Zimmermann. Mining aspects from ver-
sion history. In S. Uchitel and S. Easterbrook, edit@sst
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2008)ages 221-230. ACM Press,
September 2006.

M. Bruntink, A. van Deursen, R. van Engelen, and
T. Tourwé. On the use of clone detection for identify-
ing crosscutting concern codéEEE Trans. Software Eng.
31(10):804-818, 2005.

G. Canfora and L. Cerulo. How crosscutting concerns
evolve in JHotDraw. IrSTEP '05: Proceedings of the 13th
IEEE International Workshop on Software Technology and
Engineering Practicepages 65—-73. IEEE Computer Soci-
ety, 2005.

G. Canfora and L. Cerulo. Impact analysis by mining soft-
ware and change request repositoriesl1th IEEE Interna-
tional Software Metrics Symposium (METRICS 20pages
29-38. IEEE Computer Society, 2005.

G. Canfora, L. Cerulo, and M. Di Penta. On the use of
line co-change for identifying crosscutting concern cdde.
22nd IEEE International Conference on Software Mainte-
nance (ICSM 2006), 24-27 September 2006, Philadelphia,
PA, USA pages 213-222, 2006.

L. Cerulo. On the Use of Process Trails to Understand Soft-
ware DevelopmentPhD thesis, University of Sannio, 2006.
R. Ettinger and M. Verbaere. Untangling: a slice exti@at
refactoring. INAOSD pages 93-101, 2004.

H. Gall, M. Jazayeri, and J. Krajewski. CVS releasedrigt
data for detecting logical couplings. IWPSE '03: Pro-
ceedings of the 6th International Workshop on Principles of
Software Evolutionpage 13. IEEE Computer Society, 2003.
E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign
Patterns: Elements of Reusable Object Oriented Software
Addison-Wesley, 1995.

A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, @- L
cena, and A. von Staa. Modularizing design patterns with
aspects: a quantitative study. AOSD '05: Proceedings
of the 4th international conference on Aspect-orientedt sof
ware developmenpages 3-14, New York, NY, USA, 2005.
ACM Press.

R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation
of code clones and change couplings Pioceedings of the
9th International Conference of Funtamental Approaches to
Software Engineering (FASH)umber 3922 in LNCS, pages
411-425, Vienna, Austria, March 2006. Springer.

W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the
map metaphor in a tool for software evolution. Rroceed-
ings of the 23rd International Conference on Software En-
gineering, ICSE 2001, 12-19 May 2001, Toronto, Ontario,
Canada pages 265-274, 2001.

J. Hannemann and G. Kiczales. Overcoming the prevalent
decomposition in legacy code. In P. Tarr and H. Ossher,
editors,Workshop on Advanced Separation of Concerns in
Software Engineering (ICSE 200Nlay 2001.

tation in java and aspectj. I@OPSLA '02: Proceedings

of the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applicatipages
161-173, New York, NY, USA, 2002. ACM Press.

M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An em-
pirical study of code clone genealogies. Pmoceedings

of the European Software Engineering Conference and the
ACM Symposium on the Foundations of Software Engineer-

ing, pages 187-196, Lisbon, Portogal, September 2005.
S.Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead. Au-

tomatic identification of bug-introducing changes. ASBE
'06: Proceedings of the 21st IEEE International Conference
on Automated Software Engineering (ASE;@&ges 81-90.

IEEE Computer Society, 2006.

B. Livshits and T. Zimmermann. Dynamine: finding com-
mon error patterns by mining software revision histories. |
ESEC/FSE-13: Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIG-
SOFT international symposium on Foundations of software
engineeringpages 296-305. ACM Press, 2005.

M. Marin, A. van Deursen, and L. Moonen. Identifying
crosscutting concerns using fan-in analysiSsCM Trans.
Softw. Eng. Methodql2007.

M. P. Monteiro and J. M. Fernandes. Refactoring a Java
code base to AspectJ: An illustrative example.Phoceed-
ings of the 21st IEEE International Conference on Software
Maintenance (ICSM 2005pages 17-26. IEEE Computer
Society, 2005.

G. C. Murphy, W. G. Griswold, M. P. Robillard, J. Hanne-
mann, and W. Leong. Design recommendations for concern
elaboration tools. In R. E. Filman, T. Elrad, S. Clarke, and
M. Aksit, editors, Aspect-Oriented Software Development
pages 507-530. Addison-Wesley, Boston, 2005.

L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, and L. G
Votta. A controlled experiment in maintenance comparing
design patterns to simpler solutionkEEE Trans. Software
Eng, 27(12):1134-1144, 2001.

P. Tonella and M. Ceccato. Aspect mining through the for
mal concept analysis of execution traces. Pimceedings

of the Working Conference on Reverse Engineerpages
112-121, 2004.

T. Tourwé and K. Mens. Mining aspectual views using for
mal concept analysis. M/orkshop on Source Code Analysis

and Manipulation pages 97-106, 2004.
M. Vokat. Defect frequency and design patterns: An em

pirical study of industrial codelEEE Trans. Software Eng.

30:904-917, 2004.
R. K. Yin. Case Study Research: Design and Methods -

Third Edition SAGE Publications, London, 2002.

[29] A.T.T.Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.

Predicting source code changes by mining revision history.

IEEE Trans. Software Eng30:574-586, sep 2004.
C. Zhang and H.-A. Jacobsen. PRISM is research in aSpect

mining. OOPSLA Companiqr89(10):20-21, Oct. 2004.
T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller.

Mining version histories to guide software changedd8E
'04: Proceedings of the 26th International Conference on
Software Engineeringpages 563-572. IEEE Computer So-
ciety, 2004.

