
Relating the Evolution of Design Patterns and Crosscutting Concerns

Lerina Aversano, Luigi Cerulo, Massimiliano Di Penta
aversano@unisannio.it, lcerulo@unisannio.it, dipenta@unisannio.it

RCOST — Research Centre on Software Technology,
University of Sannio, Via Traiano 82100 Benevento, Italy

Abstract

Crosscutting concerns consist in software system fea-
tures having the implementation spread across modules as
tangled and scattered code. In many cases, these crosscut-
ting concerns represent design pattern clients, i.e., invoca-
tions to pattern features. When a design pattern evolves,
this can cause the addition or the change of scattered and
tangled code, which contributes to the evolution of the
crosscutting concern.

This paper empirically analyzes the relationship between
design pattern evolution and the changes in the induced
crosscutting concerns. Specifically, the paper investigates
to what extent the crosscutting concern co-changes with the
pattern, whether there is a relationship between the type of
change and the induced crosscutting change, and whether
different patterns induce different amount of crosscutting.
The paper reports results from the analysis of Tomcat and
JHotDraw evolution.

Keywords: Software Evolution, Mining Software
Repositories, Design Patterns, Crosscutting Concerns, Em-
pirical Study.

1 Introduction

Crosscutting concerns are software system features im-
plemented as tangled and scattered code. Tangled code is
the interference across multiple concerns in order to imple-
ment a new concern, while scattered code is the code of one
concern spread across the system classes.

A common, pervasive example of crosscutting concern
is represented by scattered code into design pattern [12]
clients. Accessing wrapped code through anAdapter, ac-
cepting aVisitor into a data structure, notifying a model
change toObservers, or invoking a software system piece of
functionality through aCommand, are just some examples
of scattered code related to design pattern usage [22, 17].

One important benefit in the use of design patterns is the
resilience to changes, avoiding that new requirements, and

in general any kind of system evolution, causes major re-
design. When a design pattern evolves, this can have conse-
quences on the crosscutting concern of its clients. In some
cases, the pattern interface changes (e.g., for aVisitor this
can be due to changes in the accessed data structure). In
other cases, the addition of new features to the pattern is
made through sub-classing (for aVisitor this means that a
new Concrete Visitoris available). Finally, the pattern in-
terface and hierarchy may remain unchanged, while its im-
plementation undergoes maintenance activities. These three
kind of pattern changes may impact the crosscutting con-
cern; in some cases the impact is expected due to the avail-
ability of new pieces of functionality offered by the pattern;
in other cases — especially when the crosscutting changes
due to pattern internal modifications — the change can be
thought as a pattern modification side-effect and as a limited
resilience of the pattern to changes.

While many benefits related to the use of design pat-
terns have been stated, a little has been done to empiri-
cally investigate pattern change proneness [2] or whether
there is a relationships between the presence of defects in
the source code and the use of design patterns [27]. In par-
ticular, there is lack of empirical studies aimed at analyzing
what kind of changes each type of pattern undergoes during
software evolution, and whether such a change have conse-
quences on other classes and in particular on classes access-
ing to the pattern. The availability of source repositoriesfor
many object-oriented open source systems realized making
use of design patterns, of techniques for identifying change
sets [11] — i.e., sets of artifacts changed together by the
same author — from source code repositories triggers op-
portunities for this kind of studies.

This paper investigates the relationships existing be-
tween the evolution of design patterns and the evolution of
crosscutting concerns they induce. The study stems from
a previous work on the identification of crosscutting con-
cerns through change sets mined from software reposito-
ries [8], and analyzes to what extent the crosscutting co-
changes with the pattern, how the crosscutting evolves af-
ter pattern changes, and if there is any relationship between

the type of change and the resulting impact on the cross-
cutting. Finally, the study investigates whether particular
types of patterns induce more changes in the crosscutting
concern. As case studies, we considered the crosscutting
concerns identified by Marinet al. [21] on JHotDraw and
Tomcat and, in particular, the subset of them related to de-
sign pattern clients. Results indicate a consistent change
of crosscutting with the pattern. In particular, changes af-
fecting the pattern interface almost always induce immedi-
ate co-change or delayed changes in the crosscutting, while
pattern implementation changes do not always impact on
the crosscutting and, where this happens, the crosscuttingis
co-changed with the pattern.

The remainder of this paper is organized as follows. Sec-
tion 2 details the process to extract the information needed
to perform the empirical study. Section 3 describes the em-
pirical study, reports and discusses results. After a review
of the literature in Section 4, Section 5 concludes the paper
and outlines directions for future work.

2 Analysis Process

This section describes the steps necessary to extract,
from the CVS of the system under analysis, the data re-
quired to perform the empirical study presented in this pa-
per. This study exploits the advantage of analyzing a soft-
ware system from different perspectives, as stated in [9],
that are, in our case, both spatial (code dimension) and tem-
poral (historic dimension).

2.1 Step 1: identification of crosscutting
concerns and invoked pattern classes

The first step of our analysis process aims at selecting
crosscutting concerns and patterns of which the crosscut-
ting constitutes the client. We used the set of crosscutting
concerns identified and discussed by Marinet al. [21] with a
semi-automatic approach based on the fan-in metric, a mea-
sure of the number of methods that call some other method
(a potential symptom of concern scattering across modules).
Such an identified crosscutting concern (CC) is represented
by a set of class methods calls (CCc) which invoke a set
of class methods (CCm). For the purposes of this paper
we consider crosscutting concerns containing invocation of
methods belonging to design pattern classes.

2.2 Step 2: snapshots extraction and
co-changes identification

After having identified a crosscutting concern, we an-
alyze its changes by mining the version repository of the
system under analysis. To this aim we rely on a technique

to extract from CVS/SubVersioN repositories, logical cou-
pled changes performed by developers working on a bug fix
or an enhancement feature [11]. Such a technique considers
the evolution of a software system as a sequence ofSnap-
shots(S) generated by a sequence ofModification Trans-
actions(MT s) (also known as Change Sets), representing
the logical changes performed by a developer in terms of
added, deleted, and changed source code lines. Change sets
can be extracted from a CVS/SVN history log using various
approaches. We adopt a time-windowing approach that con-
siders a change set as a sequence of file revisions that share
the same author, branch, and commit notes, and such that
the difference between the time-stamps of two subsequent
commits is less or equal than 200 seconds [31].

2.3 Step 3: Location of pattern changes
and determination of the kind of
change

To determine in which snapshot a classc participat-
ing to a design pattern has been changed, we analyze the
source code files changed in each snapshot, and perform a
comparison between the class revision in two subsequent
snapshots,Sj−1 andSj . By focusing more on structural
changes, such a comparison aims at identifying: (i) addi-
tion/removal/changeof attributes and associations; (ii)addi-
tion/removal of methods or changes in their signatures; (iii)
changes in methods source code; and (iv) addition/removal
of subclasses. The presence of at least a difference between
c ∈ Sj−1 andc ∈ Sj indicates that the classc — and thus
the pattern — has been changed in correspondence of the
snapshotSj . The analysis is automatically performed by
using a fact extractor based on the JavaCC parser gener-
ator1 and a Perl script that compares facts (e.g., for each
class the list of methods, attributes, associations, parents,
descendants) of the two versions ofc to identify the above
mentioned differences.

2.4 Step 4: Locating crosscutting concern
changes

The set of method calls of a crosscutting concern (CCc)
are well represented with the set of source code lines con-
taining invocations to pattern methods. Unlike the previous,
in this step we focus on line of code changes as more suit-
able to this kind of representation. In this way we are able to
identify if a crosscutting method call identified in snapshot
Sj , has been modified and/or added in a snapshotSk, with
k < j. We ignore its deletion as we are performing a back-
ward analysis by starting from the snapshot (corresponding
to a system release) were the crosscutting concerns have
been identified.

1https://javacc.dev.java.net/

Table 1. Case study history characteristics
KNLOC CLASSES

SYSTEM SOFTWARE TYPE OBSERVED PERIOD SNAPS RELEASES min max min max
JHotDraw Graphical editor 03/2001∼ 02/2004 177 5.2 – 5.4b2 13.5 36.3 164 489

Tomcat Servlet container 04/2002∼ 03/2006 24, 758 3.3 – 5.5 577.8 1, 296.0 4, 792 8, 295

2.5 Step 5: Relating design pattern and
crosscutting concern changes

The objective of this paper is to investigate on the re-
lationship between pattern changes and changes in the in-
duced crosscutting method call changes. To this aim, we
use the results obtained in the previous steps to identify the
snapshots in which the patterns and the crosscutting method
calls changed together, and those in which they change sep-
arately. For each snapshot and for each crosscutting con-
cern we determine: the kind and the size of pattern change,
and the number of added crosscutting methods calls. Also,
since the crosscutting concerns may or may not co-change
with the pattern, we consider for them anextended change,
including all the system snapshots from a pattern change to
the next pattern change (or to the last snapshot if the pattern
does not change anymore). In other words, this allows for
analyzing the effect of a pattern change on the crosscutting
even if this effect is not immediate, assuming that, until the
pattern does not change again, the crosscutting change is
due to the pattern last change.

3 Empirical Study

This section describes the empirical study context, de-
fines the research questions, and discuss the obtained re-
sults.

3.1 Context description

We selected two open-source systems, JHotDraw and
Tomcat which can be classified as small and large size sys-
tems, respectively. We extracted from such systems only
the HEAD development trunk, excluding branches. Table 1
reports, for each system, the number of extracted snap-
shots, the range of analyzed releases, the number of non-
commented klines of code (KNLOC), and the number of
classes (excluding anonymous-classes).

JHotDraw2 is a Java framework for drawing 2D graph-
ics. The project started in October 2000 with the main
purpose of showing the Design Pattern Programming in a
real context. We extracted a total of 177 snapshots from
release5.2 to release5.4 BETA2, in the time interval be-
tween March 2001 and February 2004. In that interval the

2http://www.jhotdraw.org

Table 2. Concerns in JHotDraw v.5.4b1
CONCERN/PATTERN TARGET SIZE FAN-IN

(nr. of methods) (max)
Adapter 1 37
Command 2 24
Composite 12 24
Decorator 6 57
Observer 10 37
Persistence 6 22
Command (Undo) 3 25

Table 3. Concerns in Tomcat v.5.5.17

CONCERN/PATTERN TARGET SIZE FAN-IN

(nr. of methods) (max)
Chain of responsibility
(pipeline)

24 18

Composite 9 37
Observer (life-cycle) 5 42
Observer (container) 6 56
Redirector (request) 1 25
Redirector (response) 1 17
Visitor 1 28

size of the system grew almost linearly from13.5 KNLOC
at release5.2 to 36.5 KNLOC at release5.4 BETA2.

Apache Tomcat3 is a servlet container developed within
the open-source Apache Jakarta project. The main elements
of Tomcat are: the servlet container,Catalina, the JSP en-
gine, Jasper, and the Tomcat connectors. We extracted a
total of 24758 snapshots from release3.3 to release5.5.17,
in the time interval between April, 2002 and March, 2006.
In that interval the size of the system grew almost linearly
from 577.8 KNLOC at release3.3 to 1296.0 KNLOC at re-
lease5.5.

Tables 2 and 3 show the crosscutting concerns having
as target a design pattern identified, respectively, in re-
leases5.4b1 (152th snapshot) and5.5.17 (22960th snap-
shot) of JHotDraw and Tomcat. Such crosscutting concerns
are those identified and widely described by Marinet al.
in [21], which reports the same characteristics in terms of
number of called methods, i.e. target size, and the maxi-
mum number of fan-in calls.

3http://tomcat.apache.org

3.2 Research Questions

This empirical study aims at answering the following re-
search questions:

• RQ1: To what extent design patterns co-change with
their induced crosscutting concerns?This research
question analyzes whether the crosscutting concerns
tend to change in correspondence of pattern changes
(i.e., in the same change set) or after the pattern change
(i.e., in the extended change set).

• RQ2: Which is the relationship between different de-
sign pattern change types and their induced crosscut-
ting concern changes?This research question analyzes
whether some design pattern change types (method ad-
dition or removal, attribute addition or removal, sub-
class addition or removal, or method implementation
change) cause more changes in the induced crosscut-
ting concern than others.

• RQ3: Which is the relationship between different
design pattern types and their induced crosscutting
concern changes?This research question analyzes
whether different design patterns cause more change
in the induced crosscutting concern than others.

This study is intended to be an explorative case study
[28], aimed at answering research questions by pattern
matching — or statistical tests where necessary — on data
extracted by means of the analysis explained in Section 2,
rather than attempting to reject null hypotheses.

3.3 Results

This section reports results of the analysis of of data
collected on the two systems according to the process de-
scribed in Section 2, with the aim of answering the research
questions formulated in Section 3.2.

Figures 1 and 2 show, for JHotDraw and Tomcat respec-
tively, the cumulative changes performed on design pattern
classes and the cumulative changes (additions and modifica-
tion) of their induced crosscutting method calls. Thex-axis
of each sub-figure represents the evolution time, i.e., the se-
quence of snapshots in which the changes occurred. The
y-axis indicates the cumulative number of changes made
in the pattern (solid line) or in the induced crosscutting
(dashed line). Each kind of change in the pattern — i.e.,
the pattern class is added or removed, a subclass is added or
removed, an attribute or a method is added or removed, or a
method undergoes a change in its implementation — counts
one, as well as the addition or change of a method invoca-
tion in the crosscutting concern. Of course, this does not
provide a clear figure of the amount of change happened,

while it provides an indication of whether the pattern in-
terface or implementation changed, and whether a method
was added or changed in the crosscutting. This, as shown
in Figures 1 and 2, provides a visual representation of the
temporal sequence of changes happened in the pattern and
in the induced crosscutting. In correspondence of slopes,
the pattern curve is labeled with the type(s) of change the
pattern underwent:

• C, class addition/removal. It occurs when a new pat-
tern class is added or removed.

• H, hierarchy change. It occurs when a subclass of the
pattern class inducing the crosscutting is added and/or
removed.

• M method change. It occurs when a pattern class
method is modified, removed, and/or added.

• A, attribute change. It occurs when a pattern class at-
tribute is modified, removed, and/or added.

• I, method implementation change. It occurs when the
implementation of a pattern class method changes.

According to the information hiding principle, it is ex-
pected that changes in the pattern implementation should
induce less changes in the crosscutting, while changes in the
pattern interface should induce more changes in the cross-
cutting. We therefore consider two cases:

1. if design pattern classes undergo to changes of type
(M)ethod, (C)lass, and/or (H)ierarchical, then its in-
duced crosscutting concern will be affected at the same
time (co-change), or with a short delay, and in any case
before the next pattern change (extended change).

2. if design pattern classes undergo to changes of type
(A)ttribute and/or (I)mplementation, then nothing
should happen to its induced crosscutting concern.

By analyzing the plots, it can be noted that the above
two conditions were almost always met. In JHotDraw
(see Figure 1) consistent changes can be explicitly ob-
served for Composite, Undo, Command, and Persistence.
However, as shown in Figures 1(e), 1(g), and 1(f), it can
be noted that Observer, Decorator, and Adapter undergo
to a set of (M)ethod type changes, which do not affect
their induced crosscutting code. Such missed changes in
crosscutting concern code can be explained by looking at
source code and CVS messages. In snapshot 208, the
java.awt.Cursorclass has been systematically replaced with
CH.ifa.draw.contrib.framework.Cursor, causing changes in
Adapter and Decorator. Such a re-factoring did not affect
their crosscutting code, because of homonymy of the Cur-
sor class name. In snapshot 138, a merge conflict has been

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250

A,M

M,I

I

(a) Composite

0

5

10

15

20

25

0 50 100 150 200 250

H

I

(b) Command

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

C
I

(c) Undo

0

5

10

15

20

25

30

0 50 100 150 200 250

I A,I

M
I I

(d) Persistence

0

5

10

15

20

25

30

35

0 50 100 150 200 250

M,I

M
I

I

(e) Observer

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250

M,H

M

(f) Adapter

0

5

10

15

20

25

30

0 50 100 150 200 250

M

AM M

(g) Decorator

pattern

crosscut

Figure 1. JHotDraw – cumulative changes of patterns and thei r induced crosscutting concerns

0

20

40

60

80

100

120

140

220000 270000 320000 370000

A,M,I

A,I

(a) Chain of responsibility (pipeline)

0

5

10

15

20

25

30

220000 270000 320000 370000

C

(b) Visitor

0

5

10

15

20

25

30

220000 270000 320000 370000

C

(c) Redirector (response)

0

2

4

6

8

10

12

14

16

18

220000 270000 320000 370000

C

(d) Redirector (request)

0

5

10

15

20

25

30

35

40

45

220000 270000 320000 370000

C,M

(e) Observer (life-cycle)

0

10

20

30

40

50

60

220000 270000 320000 370000

C,I

M

(f) Observer (container)

0

20

40

60

80

100

120

140

160

180

220000 270000 320000 370000

C

M,I

C,I

(g) Composite

pattern

crosscut

Figure 2. Tomcat – cumulative changes of patterns and their i nduced crosscutting concerns

�������������	
��������������
���

������������������
����������

(a) co-changes

 !""#$%&'!%(#)*+,,-.//01234/3153
5-67123,

898:989:;<89<8<9<:
=>=?@>@?>?

(b) extended changes

Figure 3. JHotDraw – crosscutting (a) co-
changes and (b) extended changes for differ-
ent pattern change types

resolved with a number of methods added and removed in
Observer classes, however without affecting its behavior.
As a result, the crosscutting code was not affected. For
Tomcat, as shown in Figure 2, in many cases a change in
the pattern immediately induces a co-change in the cross-
cutting: this is the case of Redirectors, Observer (container)
and Composite. In other cases, i.e., Chain of responsibility,
Observer (life-cycle), and Visitor, the part of the crosscut-
ting undergo a delayed change. This is especially the case
of Visitor, started to be used about 20,000 snapshots after
its insertion.

Figures also show that, for almost all patterns, after an
initial burst of activity and change, the pattern and its call-
dependent code tend to remain stable. This indicates that,
overall, patterns work well as a mechanism to mitigate some
kinds of evolution and their impact.

While Figures 1 and 2 provide a temporal view of the
pattern and crosscutting changes, to better answerRQ1and
RQ2 it would be useful to analyze, for different pattern

ABCCDEFGHBFIDJKLMMNOPPQRSNLTNUVR
SWM

XYXYZ[XY[X
\]\̂_]_̂̀]̂̀]̂

(a) co-changes

abccdefghbfidjklmmnoppqrstuptrvt
vnwxrstm

yzyz{|yz|y
}~}��~���~��~�

(b) extended changes

Figure 4. Tomcat – crosscutting (a) co-
changes and (b) extended changes for differ-
ent pattern change types

changes (or combinations of changes) overall figures of the
amount of crosscutting (i) co-changed with the pattern or
(ii) changed within the patternextendedchange. Results
are shown as boxplots for JHotDraw in Figure 3. The x-
axis indicates the different kind of changes, while the y-axis
represent boxplots of the cumulative number of changes of
that type for all the patterns in the system. As the box-
plots show, not only different types of pattern changes in-
duce different amount of crosscutting co-changes. Also, it
is possible to note differences between the crosscutting ad-
dition/modification occurred in the pattern co-change (Fig-
ure 3(a)) and extended change (Figure 3(b)). The most ev-
ident difference, though not statistically significant, isvis-
ible for pattern class additions, i.e., (C)lass change type:
the amount of induced co-change is higher in the extended
change than in the co-change. The same applies for change
in the pattern class (H)ierarchy; in this case the differ-
ence is also statistically significant4 according to the Mann-

4In the context of this paper we used a significance level of 95%.

�����������	��
����
	�

�������������������������������� �����������!�����"��!���
#$#%&$&%$%

(a) co-changes

'()**+,--./012-1/31
3+)4+56/01*

789:;<:==>89;?@ABCBD@8E@FGB@AH@AI@E:A>D:A<:=J:BCD@K9>JD@A
LMLNOMONMN

(b) extended changes

Figure 5. JHotDraw – crosscutting (a) co-
changes and (b) extended changes for differ-
ent patterns

Whitney test (p-value=0.046). Differences in the opposite
direction can be noted for (I)implementation changes, in-
ducing more immediate crosscutting co-changes (as shown
in Figure 1, this kind of change is visible in particular for
Composite, Observer). This can be explained by the fact
that changes in the pattern interface (i.e., addition of classes
of sub-classing) are mainly related to the addition of new
features, accessed by other subsystems at a later stage (ex-
tended change) with the addition of method invocations
in the crosscutting. Vice versa, implementation changes
should not affect the crosscutting; when this happens, it can
be due to corrective maintenance that needs to be quickly
propagated. We did not find evidence of such a conjecture in
the JHotDraw bug tracking system, probably because, being
JHotDraw a relatively small open source project, the correc-
tive interventions were propagated in the crosscutting by the
same person who maintained the pattern without posting the
problem on the bug tracking system.

Figure 4 shows boxplots of crosscutting co-changes and

PQRSSTUVVWXYTRZT[\X
Y]S

_̂̀_abcdef_cegabchcèibj̀ekdef_cegabchcelmèaknòecpechq_resgtgqeknòecpechgbjau_jeckvbwib̀_aevxu_jbrcèibj̀_o_q_ath
i_ieq_jek

yzy{|z|{}z}{z{
(a) co-changes

~������������������
�������� ��� �¡�¢�£� ���������������¤�����¥�¦������¥§¤���¡���������� ��£�

���� ����
©̈̈ª«©«ª¬©¬ª©ª

(b) extended changes

Figure 6. Tomcat – crosscutting (a) co-
changes and (b) extended changes for differ-
ent patterns

extended changes for Tomcat, again grouped by type of pat-
tern change. As for JHotDraw, also in Tomcat different
types of pattern changes induce different co-changes and
extended changes in the crosscutting. The most evident and
significant (p-value=< 2.2 · 10

−16) difference occurs when
a new pattern (C)lass is added: also in this case the number
of changes is higher when considering the extended change.
Moreover, in Tomcat it is possible to note that the amount of
changes involving methods (AMI5, M, MI6) is higher in the
co-change than in the extended change, even though such
a difference is not statistically significant. Differentlyfrom
JHotDraw, for Tomcat implementation changes (I) tend to
induce more extended changes than co-changes in the cross-
cutting. This because Tomcat is a larger system, involving
more developers, and thus the maintenance of classes im-
pacted by pattern change is delayed and, above all, it might
be performed by a developer different from who maintained

5AMI=changes in Attributes, Method signatures, and Implementations
6MI=changes in Method signatures and Implementations

the pattern.

It is now possible to provide an answer to bothRQ1
and RQ2. We found, for both case studies, a consis-
tent co-change between patterns and the induced crosscut-
ting: except for some cases in JHotDraw (discussed above),
changes in the pattern implementation (A or I) tend not to
induce changes in the crosscutting, while changes in the
pattern interface (C, H, M) induce immediate co-changes
or delayed (extended) changes. Whenever implementation
changes impact on the crosscutting, this happens immedi-
ately (at least where this is possible, like in smaller sys-
tems like JHotDraw) since it can be due to corrective main-
tenance that can impact pattern clients as well.

To answerRQ3, we analyzed the crosscutting induced
co-change and extended change for different types of pat-
tern. Boxplots for JHotDraw are shown in Figure 5. As the
figure shows, and as it was confirmed by a multiple-means,
non-parametric comparison test (Kruskal-Wallis) there is
no significant difference in terms of induced crosscutting
co-change or extended changes among different pattern.
Only the Adapter induces a higher (although not signifi-
cantly higher) number of co-changes than other patterns,
due to its role: when theAdaptee(the class that provide
the adapted interface), interface changes, clients need tobe
maintained. Also, no difference was found if comparing,
for each pattern, the co-change with the extended change.
Figure 6 shows boxplots for Tomcat. It can be noted how
changes related to Chain of responsibility induce immedi-
ate crosscutting co-changes rather than delayed (extended)
changes. This because such a pattern decouples requests
between sender and receivers, and its changes need there-
fore to be immediately propagated. Observer (life-cycle),
Redirectors, and Visitor induced more extended (i.e., de-
layed) that (immediate) co-changes. This is understandable
for Observer and Visitor, since clients do not need to use
these patterns as they change or as they are introduced in
the system: aSubject— i.e., an object whose changes are
observed by the observer — can attach an Observer when-
ever there is the need to notify it some changes in theSub-
ject state. For the same reason, a data structure (Element)
accepts a Visitor if the operation performed by such a Visi-
tor needs to be performed on that data structure. Although
Redirectors are similar to Chain of responsibility, they in-
duce more extended changes than co-change. However, this
is not significant since the data set only contains one Redi-
rector (request) and one Redirector (response).

In summary, it is possible to answerRQ3 stating that,
although in general it is not possible to identify design pat-
terns inducing more crosscutting changes than others, there
are patterns, essentially having a decoupling responsibility
— such as Chain of responsibility or Adapter — that in-
duce immediate co-changes, while others — like Visitor or
Observer — induce changes only when the client need to

access the introduced/maintained feature.

3.3.1 Threats to Validity

This section discusses threats to validity that can affect the
results reported in Section 3.3, following a well-known tem-
plate for case studies [28]. Regardingconstruct validity,
threats can be due to the measurement performed, in partic-
ular related to (i) how crosscutting and patterns were iden-
tified; (ii) how change sets were identified; and (iii) how
crosscutting and pattern changes were analyzed across re-
leases. For crosscutting and pattern identification we relied
on an available oracle [21] that was already assessed. We
analyzed change sets as a way to assess the impact of pattern
change on the crosscutting. Of course, co-change could also
happen accidentally, and more sophisticated impact analy-
sis techniques could have been used [1], although change-
sets and bug issues are used for this purpose [7, 31]. The
pattern changes analysis relied on information extracted by
our analyzer based on the JavaCC Java grammar, and on
CVS/SVN diffs. As discussed in Section 2.4, we limited the
analysis of crosscutting concerns to modifications and addi-
tions, having performed a backward analysis. Relationships
between pattern changes and crosscutting removal remains
to be investigated.

Threats tointernal validitydid not affect this particular
kind of study, being it an explorative study [28].

Threats toexternal validityare related to what extent we
can generalize our findings. We considered two different
software systems, differing for their domain (graphical edi-
tor vs. servlet container) and size (small vs. medium-large),
and obtained some common findings and some results pe-
culiar to each system. Nevertheless, it would be desirable to
analyze further systems — also developed in different pro-
gramming languages — to draw more general conclusions.
Finally, the analysis here was limited to a limited set of pat-
terns accessed by means of crosscutting belonging to the
Marin et al. [21] dataset.

Regardingreliability validity, the source code of the
three systems is publicly available, as well as the crosscut-
ting concern dataset, and the way our analyses were per-
formed is described in detail in Section 2.

4 Related Work

In our knowledge, there are no papers aimed at empir-
ically analyzing the relationship between the evolution of
design pattern and their induced crosscutting concerns. A
number of papers investigate on the relationship between
design patterns and their homologue implemented as aspect
modules, such as Hannemann and Kiczales [17], and Gar-
cia et al. [13]. The first shows that in 17 of 23 cases there
is an improvement in code quality when a design pattern

is implemented as an aspect, the latter measures such qual-
ity in both cases showing that aspect oriented code exhibits
higher code quality. As a future work, we aim to extract
the evolution of such aspect oriented re-factoring changes
to show if the code quality improves in time by looking, for
example, at defect density. Regarding the analysis of design
pattern evolution, Biemanet al.[2] analyzed four small size
systems and one large size system to identify the observable
effects of the use of design patterns, such as pattern change
proneness; Vokáč [27] analyzed the corrective maintenance
of a large commercial product over three years, comparing
defect rates for classes that participated in design patterns
versus those that did not participate; Precheltet al.[24] per-
formed a series of controlled experiments with the aim of
comparing design patterns with alternative, simpler solu-
tions to perform maintenance tasks.

Historical co-change analysis has provided new oppor-
tunities for a number of issues: predict change propa-
gation [29, 31], observe clone [14, 18] and crosscutting
concern [6] evolution, identify crosscutting concerns [4,
8], detect of logical coupling between modules [11],
find common error patterns [20], or identify fix inducing
changes [19].

Although we relied on crosscutting concerns mined us-
ing the Marinet al. approach [21] based on the fan-in met-
ric, this can be done using alternative approaches.Aspect
Browser [15] uses text-based pattern matching to identify
aspects. A developer specifies a regular expression that de-
scribes the code belonging to the aspect and the tool iden-
tifies the code conforming to the regular expression. Prior
knowledge of the system strongly affects the usefulness of
the achieved results [23]. Various extensions of this tool has
been developed by introducing different mining heuristics,
such as type ranking and control flow information [16, 30].
Ettingeret al. [10] propose a program slicing technique to
identify entangled code. The slice is computed from an ex-
pression or a statement pointed out by a developer. Bruntink
et al. [5] propose the use of clone detection for the identifi-
cation of crosscutting concerns, comparing the performance
of different clone detection techniques, namely AST-based
and token-based. Aspect mining using dynamic analysis
has been proposed by Breu and Krinke [3]: the idea is to
detect particular patterns occurring in an execution trace.
An approach for aspect mining using formal concept analy-
sis on execution traces was proposed by Tonellaet al. [25].
Also aspects were mined by detecting patterns in execution
traces using formal concept analysis by Tourwéet al. [26].

5 Conclusions and Work-in-Progress

This paper reported an empirical study investigating
on the relationship between design pattern evolution and
changes in the induced crosscutting concerns. Results indi-

cate that different type of changes in design patterns classes
cause a different behavior on the induced crosscutting con-
cerns. It was found that, in most cases, a change per-
formed on a design pattern class — involving the pattern
interface or class hierarchy — causes a consistent change
of the induced crosscut. If changes are of type (A)ttribute
and/or (I)mplementation — i.e., are hidden to pattern clients
— then nothing happens to the induced crosscutting con-
cern. When analyzing the distribution of co-changes and
delayed (extended) changes, it was found that, whenever
possible, implementation changes, if impacting crosscutting
concerns, are propagated immediately, i.e., within the pat-
tern co-change, while other changes — such as hierarchy
changes and addition of pattern classes — tend to induce
late changes in the crosscutting. When analyzing the effect
induced by different pattern types, overall no significant dif-
ference was found, although pattern having decoupling re-
sponsibilities tend to induce their impact on the crosscutting
within the co-change rather than delaying it.

The analysis process proposed in this paper poses the ba-
sis for further studies aimed at increasing the external valid-
ity of results and leading to more general conclusions. Fu-
ture work also aims at improving the accuracy of results by
considering more accurate impact analysis or dependency
analysis techniques. In this paper we mainly focused on
what happened in the past with respect to a snapshot where
a crosscutting concern is identified. We aim to include, by
performing aforward analysis, what happens in the future,
e.g., crosscutting concern deletions.

6 Acknowledgments

The work described in this paper is supported by the
project METAMORPHOS (MEthods and Tools for mi-
grAting software systeMs towards web and service Ori-
ented aRchitectures: exPerimental evaluation, usability,
and tecHnOlogy tranSfer), funded by MiUR (Ministero
dell’Universit e della Ricerca) under grant PRIN2006-
2006098097. Authors would like to thank the anonymous
reviewers for their useful feedbacks.

References

[1] R. S. Arnold and S. A. Bohner. Impact analysis - towards
a framework for comparison. InProceedings of the IEEE
International Conference on Software Maintenance (ICSM
1993), Montréal, Quebec, Canada, pages 292–301. IEEE
Computer Society, 1993.

[2] J. M. Bieman, G. Straw, H. Wang, P. W. Munger, and R. T.
Alexander. Design patterns and change proneness: An ex-
amination of five evolving systems. In9th International
Software Metrics Symposium (METRICS03), pages 40–49.
IEEE Computer Society, 2003.

[3] S. Breu and J. Krinke. Aspect mining using event traces.
In 19th IEEE International Conference on Automated Soft-
ware Engineering (ASE 2004), 20-25 September 2004, Linz,
Austria, pages 310–315, 2004.

[4] S. Breu and T. Zimmermann. Mining aspects from ver-
sion history. In S. Uchitel and S. Easterbrook, editors,21st
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2006), pages 221–230. ACM Press,
September 2006.

[5] M. Bruntink, A. van Deursen, R. van Engelen, and
T. Tourwé. On the use of clone detection for identify-
ing crosscutting concern code.IEEE Trans. Software Eng.,
31(10):804–818, 2005.

[6] G. Canfora and L. Cerulo. How crosscutting concerns
evolve in JHotDraw. InSTEP ’05: Proceedings of the 13th
IEEE International Workshop on Software Technology and
Engineering Practice, pages 65–73. IEEE Computer Soci-
ety, 2005.

[7] G. Canfora and L. Cerulo. Impact analysis by mining soft-
ware and change request repositories. In11th IEEE Interna-
tional Software Metrics Symposium (METRICS 2005), pages
29–38. IEEE Computer Society, 2005.

[8] G. Canfora, L. Cerulo, and M. Di Penta. On the use of
line co-change for identifying crosscutting concern code.In
22nd IEEE International Conference on Software Mainte-
nance (ICSM 2006), 24-27 September 2006, Philadelphia,
PA, USA, pages 213–222, 2006.

[9] L. Cerulo. On the Use of Process Trails to Understand Soft-
ware Development. PhD thesis, University of Sannio, 2006.

[10] R. Ettinger and M. Verbaere. Untangling: a slice extraction
refactoring. InAOSD, pages 93–101, 2004.

[11] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history
data for detecting logical couplings. InIWPSE ’03: Pro-
ceedings of the 6th International Workshop on Principles of
Software Evolution, page 13. IEEE Computer Society, 2003.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley, 1995.

[13] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lu-
cena, and A. von Staa. Modularizing design patterns with
aspects: a quantitative study. InAOSD ’05: Proceedings
of the 4th international conference on Aspect-oriented soft-
ware development, pages 3–14, New York, NY, USA, 2005.
ACM Press.

[14] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation
of code clones and change couplings. InProceedings of the
9th International Conference of Funtamental Approaches to
Software Engineering (FASE), number 3922 in LNCS, pages
411–425, Vienna, Austria, March 2006. Springer.

[15] W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the
map metaphor in a tool for software evolution. InProceed-
ings of the 23rd International Conference on Software En-
gineering, ICSE 2001, 12-19 May 2001, Toronto, Ontario,
Canada, pages 265–274, 2001.

[16] J. Hannemann and G. Kiczales. Overcoming the prevalent
decomposition in legacy code. In P. Tarr and H. Ossher,
editors,Workshop on Advanced Separation of Concerns in
Software Engineering (ICSE 2001), May 2001.

[17] J. Hannemann and G. Kiczales. Design pattern implemen-
tation in java and aspectj. InOOPSLA ’02: Proceedings
of the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages
161–173, New York, NY, USA, 2002. ACM Press.

[18] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An em-
pirical study of code clone genealogies. InProceedings
of the European Software Engineering Conference and the
ACM Symposium on the Foundations of Software Engineer-
ing, pages 187–196, Lisbon, Portogal, September 2005.

[19] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead. Au-
tomatic identification of bug-introducing changes. InASE
’06: Proceedings of the 21st IEEE International Conference
on Automated Software Engineering (ASE’06), pages 81–90.
IEEE Computer Society, 2006.

[20] B. Livshits and T. Zimmermann. Dynamine: finding com-
mon error patterns by mining software revision histories. In
ESEC/FSE-13: Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIG-
SOFT international symposium on Foundations of software
engineering, pages 296–305. ACM Press, 2005.

[21] M. Marin, A. van Deursen, and L. Moonen. Identifying
crosscutting concerns using fan-in analysis.ACM Trans.
Softw. Eng. Methodol., 2007.

[22] M. P. Monteiro and J. M. Fernandes. Refactoring a Java
code base to AspectJ: An illustrative example. InProceed-
ings of the 21st IEEE International Conference on Software
Maintenance (ICSM 2005), pages 17–26. IEEE Computer
Society, 2005.

[23] G. C. Murphy, W. G. Griswold, M. P. Robillard, J. Hanne-
mann, and W. Leong. Design recommendations for concern
elaboration tools. In R. E. Filman, T. Elrad, S. Clarke, and
M. Akşit, editors,Aspect-Oriented Software Development,
pages 507–530. Addison-Wesley, Boston, 2005.

[24] L. Prechelt, B. Unger, W. F. Tichy, P. Brössler, and L. G.
Votta. A controlled experiment in maintenance comparing
design patterns to simpler solutions.IEEE Trans. Software
Eng., 27(12):1134–1144, 2001.

[25] P. Tonella and M. Ceccato. Aspect mining through the for-
mal concept analysis of execution traces. InProceedings
of the Working Conference on Reverse Engineering, pages
112–121, 2004.

[26] T. Tourwé and K. Mens. Mining aspectual views using for-
mal concept analysis. InWorkshop on Source Code Analysis
and Manipulation, pages 97–106, 2004.

[27] M. Vokáč. Defect frequency and design patterns: An em-
pirical study of industrial code.IEEE Trans. Software Eng.,
30:904–917, 2004.

[28] R. K. Yin. Case Study Research: Design and Methods -
Third Edition. SAGE Publications, London, 2002.

[29] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining revision history.
IEEE Trans. Software Eng., 30:574–586, sep 2004.

[30] C. Zhang and H.-A. Jacobsen. PRISM is research in aSpect
mining. OOPSLA Companion, 39(10):20–21, Oct. 2004.

[31] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. InICSE
’04: Proceedings of the 26th International Conference on
Software Engineering, pages 563–572. IEEE Computer So-
ciety, 2004.

