
Reengineering Standard Java Runtime Systems through
Dynamic Bytecode Instrumentation

Walter Binder
Faculty of Informatics
University of Lugano

CH–6900 Lugano, Switzerland
walter.binder@unisi.ch

Jarle Hulaas, Philippe Moret
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH–1015 Lausanne, Switzerland
{jarle.hulaas, philippe.moret}@epfl.ch

Abstract

Java bytecode instrumentation is a widely used tech-
nique, especially for profiling purposes. In order to ensure
the instrumentation of all classes in the system, including
dynamically generated or downloaded code, instrumenta-
tion has to be performed at runtime. The standard JDK
offers some mechanisms for dynamic instrumentation,
which however either require the use of native code
or impose severe restrictions on the instrumentation of
certain core classes of the JDK. These limitations prevent
several instrumentation techniques that are important for
efficient, calling context-sensitive profiling. In this paper
we present a generic bytecode instrumentation framework
that goes beyond these restrictions and enables the cus-
tomized, dynamic instrumentation of all classes in pure
Java. Our framework addresses important issues, such as
bootstrapping an instrumented JDK, as well as avoiding
measurement perturbations due to dynamic instrumenta-
tion or execution of instrumentation code. We validated
and evaluated our framework using an instrumentation for
exact profiling which generates complete calling context
trees of various platform-independent dynamic metrics.

Keywords: Java, JVM, dynamic bytecode instrumenta-
tion, program transformations, dynamic metrics, profiling,
aspect-oriented programming

1. Introduction

Bytecode instrumentation is a valuable technique for
transparently enhancing virtual execution environments, for
purposes such as monitoring or profiling [36]. In previ-
ous work, we applied bytecode instrumentation in order to
isolate untrusted software components executing within the
same Java Virtual Machine (JVM) [6, 7], to monitor and

control resource consumption [11, 14, 25], and to gener-
ate calling context-sensitive profiles for performance analy-
sis [8, 10].

In reference [12], we introduced a generic bytecode in-
strumentation framework called BMW that eases the de-
velopment of custom instrumentation-processes.1 BMW is
related to aspect-oriented programming [28], since it sup-
ports the specification of certain low-level pointcuts (e.g.,
the beginning of basic blocks of code), where user-defined
instrumentation-code templates are inserted, after special-
ization of the template code according to the individual join
points. This specialization, which relies on partial evalua-
tion, can take statically pre-computed bytecode metrics into
account. The BMW framework has been designed so as to
keep the instrumentation overhead low, and provides spe-
cific support for efficiently maintaining thread-local state
and for calling context reification, which is particularly use-
ful in profiling use cases.

While we successfully applied the BMW framework
in the context of profiling and resource management, the
framework suffered from two serious limitations:

1. Core classes of the JDK were not instrumented, result-
ing in incomplete profiles and resource consumption
information.

2. The framework supported only static instrumentation,
where the whole application (including libraries) had
to be instrumented prior to execution. Hence, dynam-
ically generated or downloaded code was not instru-
mented.

In this paper we present a generic framework for dy-
namic bytecode instrumentation in pure Java called FER-

1In order to avoid any confusion between the code that performs
an instrumentation and the extra code inserted by an instrumentation,
we refer to the former as instrumentation-process and to the latter as
instrumentation-code. Instrumented-code denotes the code resulting from
an instrumentation-process, i.e., including the original code as well as the
inserted instrumentation-code.

1

RARI (Framework for Efficient Rewriting and Reification
by Advanced Runtime Instrumentation), which enables the
instrumentation of the whole JDK including all core classes,
as well as the instrumentation of dynamically loaded classes
at runtime. FERRARI has been designed to be used in con-
junction with BMW, although FERRARI can take an arbi-
trary user-defined instrumentation-process (conforming to
the simple FERRARI API, which will be explained later in
this paper) and enhance it with support for full JDK instru-
mentation and dynamic instrumentation.

FERRARI uses a combination of static and dynamic in-
strumentation to achieve its goals. Only core classes of the
JDK are instrumented statically, whereas all other classes
are instrumented at runtime. Instrumenting core classes
of the JDK requires special caution, since instrumentation-
code must not disrupt the bootstrapping of the JVM. We
solved this problem by ensuring that instrumentation-code
is not executed before the bootstrapping phase is completed.

Dynamic instrumentation can perturbate measurements,
particularly because any Java-based bytecode engineering
library relies on classes of the JDK which themselves have
been instrumented. Hence, we had to provide a mecha-
nism that allows to temporarily prevent the execution of
instrumentation-code.

The original contribution of this paper is a novel frame-
work for bytecode instrumentation in Java, which is imple-
mented in pure Java, supports user-defined instrumentation-
processes written in pure Java, ensures that every class
gets instrumented, and supports dynamic instrumentation at
runtime with minimal perturbations. Moreover, we evalu-
ated our approach using an instrumentation-process for ex-
act profiling, which collects calling-context sensitive pro-
files using platform-independent dynamic metrics, such as
the number of executed bytecodes per calling context, the
number of allocated objects of certain types, etc. We also
show that the overhead caused by our profiling approach
can be orders of magnitude lower than using standard pro-
filing interfaces, such as the JVMPI [33] or the more recent
JVMTI [34].

This paper is structured as follows: Section 2 gives back-
ground information on bytecode instrumentation and on ex-
isting tools. In Section 3 we describe our generic instrumen-
tation framework, while Section 4 illustrates the API for
custom instrumentation-processes. Section 5 presents our
concrete use case, a tool for exact profiling that was adapted
to exploit the new instrumentation framework. Section 6
discusses the strengths and limitations of our approach. Fi-
nally, Section 7 presents related work, and Section 8 con-
cludes this paper.

2. Background

In the following we give an overview of available byte-
code instrumentation tools, discuss the pros and cons of
static versus dynamic instrumentation, and summarize the
instrumentation mechanisms offered by standard JVMs.

2.1. Bytecode Instrumentation Tools

Altering Java semantics via bytecode transformations is
a well-known technique [36] and has been used for many
purposes that can be generally characterized as adding re-
flection or aspect-orientedness to programs. When work-
ing at the bytecode level, the program source code is not
needed.

There are many tools for manipulating JVM bytecode.
The bytecode engineering library BCEL [18] represents
method bodies as graph structures. Individual bytecode
instructions are mapped to Java objects. Both our instru-
mentation frameworks BMW and FERRARI are based on
BCEL.

Javassist [15, 16], which is used by JBoss [27], enables
structural reflection and provides convenient source-level
abstractions.

Soot [39] is a framework for analyzing and transforming
JVM bytecode that offers four intermediate code represen-
tations. For instance, Jimple is a typed, stack-less, three-
address code intermediate represention. Soot is often used
for bytecode optimization.

ASM [31], JOIE [17], JikesBT [26], and Serp [5] are
further examples of bytecode manipulation libraries imple-
mented in Java.

2.2. Static versus Dynamic Instrumentation

Static bytecode instrumentation inserts all
instrumentation-code before the program under instru-
mentation starts execution. The advantage of this approach
is that it causes less runtime overhead, as all classes are
instrumented before the program is executed. The major
drawback of static instrumentation is that dynamically
generated or loaded code is not instrumented.

Dynamic bytecode instrumentation is interleaved with
the execution of the program under instrumentation;
an instrumentation agent is invoked each time a class
is loaded and may augment the loaded bytecode with
instrumentation-code. On the one hand, this approach in-
troduces extra overhead (mainly during program startup)
and may perturbate measurements due to the runtime
instrumentation-process. However, on the other hand, it
ensures that all classes will be instrumented and avoids
tedious bytecode instrumentation before program startup.
Whereas static instrumentation is typically applied to all

library classes, including those that are never used by an
application, dynamic instrumentation processes only those
classes that are actually being loaded. Moreover, dynamic
instrumenation prevents certain mistakes, such as forgetting
to instrument classes after modification and recompilation.
Among these benefits of dynamic instrumentation, the guar-
antee that all loaded classes are instrumented carries most
weight for us.

2.3. Instrumentation Support in Standard
Java Environments

The JVMTI [34] offers a mechanism to instrument
classes as they are being loaded. Unfortunately, the JVMTI
requires instrumentation-processes to be implemented in
native code, contradicting the Java motto ‘write once, run
anywhere’. As we aim at supporting instrumentation in pure
Java, we chose not to rely on the JVMTI.

JDK 1.5 has introduced a mechanism,
Java language instrumentation agents (package
java.lang.instrument), to instrument classes
as they are being loaded. Even though instrumentation
agents are loaded and executed before the class containing
the main(String[]) method, these agents are loaded
only after the JVM has completed bootstrapping. At that
stage of execution, already several hundred classes have
been loaded but not been processed by any instrumentation
agent. The JDK offers a mechanism to redefine these
pre-loaded classes, which however imposes several strong
limitations on redefinition, as summarized in the JDK 1.6
API documentation: ‘The redefinition may change method
bodies, the constant pool and attributes. The redefinition
must not add, remove or rename fields or methods, change
the signatures of methods, or change inheritance.’ These
limitations are far too restrictive for many instrumentation-
processes, such as e.g. for calling context reification which
requires the introduction of additional method arguments
and therefore changes method signatures [8, 10, 12].

Our approach leverages the
java.lang.instrument package for dynamic
instrumentation, but we resort to static instrumentation for
those core classes of the JDK that are initially loaded upon
JVM startup, in order to avoid the aforementioned severe
restrictions imposed on class redefinition.

3. Generic Instrumentation Framework

In the following we describe FERRARI, our generic
bytecode instrumentation framework. FERRARI combines
the advantages of both static and dynamic instrumentation.
We statically instrument only the core classes of the JDK,
which need to be loaded before dynamic instrumentation is

possible, and afterwards rely on an instrumentation agent to
dynamically instrument all other classes.

3.1. Core Classes and Bootstrapping
Classes

FERRARI comprises two agents that rely on the package
java.lang.instrument, a probing agent that gathers
information regarding the set of classes to be instrumented
statically, and an instrumentation agent for dynamic instru-
mentation.

We denote as C the set of core classes requiring static
instrumentation, and as B the set of bootstrapping classes
loaded prior to the execution of any agent. We define
the bootstrapping phase to last until an agent executes the
first bytecode; after the bootstrapping phase, arbitrary client
code can execute.

The probing agent uses a function in package
java.lang.instrument to compute B.2 On a given
JVM, the bootstrapping classes are always loaded before
any instrumentation agent and therefore have to be instru-
mented statically prior to JVM startup; i.e., B ⊆ C . In gen-
eral, C ⊃ B, since a user-defined instrumentation-process
may depend on JDK core classes that are not part of B.

FERRARI’s instrumentation agent uses a dedicated
classloader to load the classes constituting a custom
instrumentation-process and the BCEL [18] classes (i.e.,
the bytecode engineering library FERRARI itself depends
on) into a separate namespace IP. Classes in IP are ex-
cluded from instrumentation. Depending on the custom
instrumentation-process, the classes in IP may include
further general-purpose instrumentation libraries, such as
e.g. ASM [31] or SERP [5]. Nonetheless, if such classes are
also loaded by the application under instrumentation using
another classloader (e.g., the system classloader), they will
get instrumented as any other application class. The names-
pace IP just guarantees that the instrumentation-process it-
self is not instrumented.

Unfortunately, JDK classes (in package java.*) can-
not be reloaded with a custom classloader. I.e., only a
single version of a JDK class can exist within the JVM.
Let D denote the set of JDK classes FERRARI and the
user-defined instrumentation-process (transitively) depend
on. Then, C = B ∪ D. If D cannot be determined stati-
cally for a given instrumentation-process, the set of all JDK
classes may be used as an upper bound.

After static instrumentation of the core classes C, the
instrumented core classes are included in the beginning of
the bootclasspath so as to replace the non-instrumented ver-
sions of these classes. After the bootstrapping phase, FER-
RARI’s instrumentation agent dynamically instruments all
subsequently loaded classes according to the user-defined

2Instrumentation.getAllLoadedClasses()

public class BootstrapLock {
public static boolean isBootstrap = true;
public static synchronized boolean isBootstrap() {

return isBootstrap;
}
public static synchronized void setEndOfBootstrap() {

isBootstrap = false;
}

}

Figure 1. The BootstrapLock class.

instrumentation-process (with the exception of classes in
C or in IP). For each JVM version and each custom
instrumentation-process, the core classes have to be deter-
mined (by the probing agent) and instrumented statically.

3.2. Bootstrapping Flag

Concerning instrumentation of the bootstrapping classes
B, it is essential not to disrupt the bootstrapping of
the JVM. As FERRARI cannot determine whether an
instrumentation-process would disrupt the bootstrapping, it
ensures that no user-defined instrumentation-code is exe-
cuted during the bootstrapping phase.

In order to disable execution of instrumentation-code
during the bootstrapping phase, we use a global flag to
indicate bootstrapping (see Figure 1). Initially, the flag
is set; it is cleared by FERRARI’s instrumentation agent
(BootstrapLock.setEndOfBootstrap()) and re-
mains in cleared state until JVM termination.

In a multi-threaded system, such as the JVM, it is nec-
essary to access the bootstrap flag in a critical section
(synchronized access). In order to reduce the synchro-
nization overhead, we perform a well-known optimization,
double-checked locking [22], which avoids the synchro-
nization overhead once the bootstrapping phase is over and
all threads have seen the cleared flag. Note that reading
the static field BootstrapLock.isBootstrap may
return the out-dated value true; in that case, the syn-
chronized method BootstrapLock.isBootstrap()
will be called, ensuring that the calling thread will read
the current state of the flag, according to the Java Memory
Model [23].3

3.3. Static Initializers

For each class, the JVM ensures that the static initializer
(also known as class initializer) is executed exactly once
before the class is used for the first time (e.g., before the
first invocation of a static method, before the first access to

3Alternatively, we could have defined the flag as volatile in order
to avoid reading an outdated value. However, volatile variables cause
some extra overhead, whereas our approach minimizes overhead for the
common case, i.e., for access after the bootstrapping phase is over.

a static field, or before the first object instantiation). This
feature is known as Java’s lazy class initialization strategy,
i.e., classes are initialized upon first use, but not before [23].

Allowing instrumentation of static initializers is prob-
lematic, because bootstrapping classes must not execute
any instrumentation code before the end of the bootstrap-
ping phase. If a class is initialized during the bootstrap-
ping phase, there is no way to re-run the instrumented static
initializer after the bootstrapping phase. However, some
user-defined instrumentation-processes require the insertion
of static fields into all classes (e.g., the instrumentation-
process for exact profiling outlined in Section 5 relies on
the insertion of static fields), which may need to be initial-
ized by the static initializers.

FERRARI solves this problem as follows: Although
classes initialized during the bootstrapping phase exe-
cute the non-instrumented static initializer, the custom
instrumentation-process may introduce additional classes
for each instrumented class. These extra classes may in-
clude static fields and their own static initializers. As the
added classes are referenced only by instrumentation-code,
which is guaranteed not to execute during the bootstrapping
phase, the JVM’s lazy class initialization strategy ensures
that the extra classes will be initialized after the bootstrap-
ping phase, when the execution of instrumented static ini-
tializers does not cause any problem.

FERRARI ensures that added classes are placed in
the same package as the class they conceptually belong
to. Thus, static fields in added classes may be public,
protected, or package-visible, but (typically) cannot be
private (unless corresponding accessor methods are de-
fined).

3.4. Constructors

Because instrumentation-processes may insert also in-
stance fields (as opposed to static fields) to be initialized by
constructors, objects created during the bootstrapping phase
may be incompletely initialized, as only non-instrumented
constructors are executed during the bootstrapping phase.
One approach to deal with this issue is to collect all in-
completely initialized objects in a structure (e.g., in a dy-
namically growing object array) and to pass that structure
to the instrumentation-process upon end of the bootstrap-
ping phase in order to complete initialization. However,
since the instrumentation-processes we envision do not re-
quire this functionality, FERRARI currently does not sup-
port this feature. Some of our instrumentation-processes,
in particular BMW-based instrumentation-processes [12],
indeed insert instance fields in certain classes (e.g., in
java.lang.Thread), but leave these fields uninitial-
ized. Instrumentation-code is responsible of lazily initial-
izing these fields on demand. Because added instance fields

are not initialized by the constructor, they (typically) cannot
be declared as final.

3.5. Preventing Measurement Perturba-
tions

In order to prevent measurement perturbations, FER-
RARI provides mechanisms to temporarily disable the exe-
cution of instrumentation-code for each thread. This feature
is important to ensure that the dynamic instrumentation-
process does not cause artifacts in data structures created
by instrumentation-code, such as in profiles.4 Moreover,
instrumentation-code may need to invoke non-instrumented
methods or constructors as well. E.g., profiling code may
need to allocate objects to represent profiling data; such al-
locations must not invoke any instrumented constructor.

FERRARI introduces a thread-local flag
execInstrCode in order to select for each thread
whether it should execute instrumentation-code. In par-
ticular, FERRARI’s instrumentation agent disables this
flag for the current thread before invoking a user-defined
instrumentation-process. By default, FERRARI stores this
flag as an instance field added to java.lang.Thread,
although it is also possible to embed the flag in thread-
local state that is reified as an extra method argument
by the instrumentation-process (e.g., in BMW-based
instrumentation-processes [12]). The latter approach often
causes less overhead, since it avoids the otherwise needed
calls to Thread.currentThread().

During the bootstrapping phase, the execInstrCode
flag is disabled for each thread. FERRARI’s instrumenta-
tion agent is in charge of enabling the flag for each thread
in the system when signaling the end of the bootstrapping
phase. FERRARI instruments thread creation such that a
new thread ‘inherits’ the flag value from the creating thread.

Because the constructor of java.lang.Object
may be frequently invoked by instrumentation-code (e.g.,
in order to create profiling data structures), FERRARI
offers a second mechanism to prevent the execution of
instrumentation-code: FERRARI introduces a second
constructor in java.lang.Object, which takes an
argument of type org.ferrari.NoInstrCode and
behaves as the original, non-instrumented constructor. The
argument is necessary only to distinguish the constructor
signature; typically, instrumentation-code invokes the spe-
cial constructor with a null argument. For performance
reasons, FERRARI applies the same idea to several other
methods which are frequently invoked by instrumentation-
code, such as Thread.currentThread() and
System.identityHashCode(Object).

4Although the classes corresponding to the custom instrumentation-
process are loaded in a separate namespace and are excluded from instru-
mentation, they may rely on instrumented core classes.

Please note that our approach does not prevent pertur-
bations concerning the measurement of low-level resource
consumption. Obviously, dynamic instrumentation con-
sumes CPU and memory resources at runtime. Nonethe-
less, our approach ensures that instrumentation-code is not
aware of dynamic instrumentation; there are no artifacts
in data structures created by instrumentation-code. If an
instrumentation-process collects only platform-independent
dynamic metrics based on the bytecodes being executed,
then our approach reduces perturbations to a minimum. In
this case, the only perturbations are due to differences in
thread scheduling for multi-threaded applications. In Sec-
tion 5 we will refer to an instrumentation-process for exact
profiling that focuses on dynamic bytecode metrics.

3.6. Instrumentation Scheme

A user-defined instrumentation may (1) modify method
bodies (but leave the signatures unchanged), (2) leave meth-
ods (signature and body) unchanged, or (3) introduce new
methods (with signatures that do not exist in the original
program).

For case (1), Figure 2 and Figure 3 illustrate FERRARI’s
instrumentation scheme.5 Figure 2 applies to bootstrap-
ping classes, whereas Figure 3 corresponds to all other
classes (whether instrumented statically or dynamically).
FERRARI keeps the non-instrumented bytecode version to-
gether with the instrumented-code and inserts a conditional
to select the version to be executed. Note that in the com-
mon case, reading the isBootstrap flag returns false
and the static synchronized method isBootstrap()will
not be invoked.

Regarding case (2), methods that are not touched by the
custom instrumentation-process are left unchanged.

In case (3), methods added by the instrumentation-
process are directly inserted into the final bytecode with-
out further instrumentation. We require that such methods
may only override an added method in a supertype, but not
a method that already existed in the original program. This
restriction guarantees that added methods can only be in-
voked by instrumentation-code.

FERRARI ensures that added methods are not visible
through the reflection API by filtering the result returned
by reflection methods in java.lang.Class. For this
purpose, FERRARI keeps an exclusion list of methods that
should be hidden from reflection. These constraints ensure
that added methods are guaranteed not to execute during the
bootstrapping phase and that they do not break code using
reflection.

5In this paper, all instrumentation is presented at the level of Java lan-
guage expressions, whereas our implementation operates at the bytecode
level.

f() {
if (Thread.currentThread().execInstrCode &&

(!BootstrapLock.isBootstrap ||
!BootstrapLock.isBootstrap())) {

// f’: method body instrumented by custom
// instrumentation-process
...

} else {
// f: original, non-instrumented method body
...

}
}

Figure 2. Instrumentation scheme for boot-
strapping classes.

f() {
if (Thread.currentThread().execInstrCode) {

// f’: method body instrumented by custom
// instrumentation-process
...

} else {
// f: original, non-instrumented method body
...

}
}

Figure 3. Instrumentation scheme for non-
bootstrapping classes.

4. API for Custom Instrumentation-Processes

FERRARI uses the Instrumentation interface (see
Figure 4) in order to invoke a user-defined instrumentation-
process. Method instrument(String, byte[])
takes the fully qualified classname and the class bytecodes
as arguments and has to return an object implementing the
Instrumented interface, which allows FERRARI to ac-
cess the following information:

• changedMethods() – Returns the set of meth-
ods that have been modified by the instrumentation-
process. A MethodDesc instance uniquely identi-
fies a method by its name, signature, etc. As the
instrumentation-process is required to explicitly state
the set of modified methods, FERRARI does not have
to perform any complex analysis.

• instrumentedClass() – Returns the class pro-
cessed by the custom instrumentation-process as a byte
array.

• addedClasses() – Allows to add extra classes (see
Section 3.3). The added classes are returned as a Map
of strings to byte arrays, which correspond respec-
tively to the classnames and bytecodes of the added
classes. The extra classes are added to the package of
the instrumented class.

public interface Instrumentation {
Instrumented instrument(String className,

byte[] classBytes);
}

public interface Instrumented {
Set<MethodDesc> changedMethods();
byte[] instrumentedClass();
Map<String, byte[]> addedClasses();

}

public interface MethodDesc {
String getName();
String getSignature();
boolean isStatic();
...

}

Figure 4. FERRARI API. The custom
instrumentation-process has to implement
the Instrumentation interface, while FER-
RARI provides default implementations of
the interfaces Instrumented and Method-
Desc.

5. Case Study: Exact Profiling

Profiling allows a detailed analysis of the resource con-
sumption of programs. It helps detecting hot spots and per-
formance bottlenecks, guiding the developer in which parts
of a program optimizations may pay off. Profiling provides
detailed execution statistics on the basis of individual meth-
ods (e.g., call stack, invocation counter, CPU time, etc.).

A classical approach in Java [23] is to use the
JVMTI [34] or JVMPI [33] interfaces which are provided
by the JDK. This approach has two shortcomings: the pro-
filing agent is written in native code and is therefore not
portable, secondly it may introduce a high overhead, espe-
cially when used for exact profiling. For these reasons, we
developed JP, a Java profiler that relies on neither of these
APIs, but directly instruments the bytecode of Java pro-
grams in order to obtain detailed execution statistics. JP was
first presented in [8], but without the dynamic instrumenta-
tion facilities and systematic coverage of all JDK classes
brought by FERRARI.

Adapting JP to be usable as instrumentation-process
in conjunction with FERRARI required only two mi-
nor changes to JP: (1) JP had to implement the
Instrumentation interface presented in Section 4, and,
(2) static fields that JP inserts to hold method identifiers (im-
mutable objects that uniquely identify the methods defined
in a class) had to be moved to separate classes (see Sec-
tion 3.3).

In the following we evaluate the overhead caused by
FERRARI with our JP instrumentation-process for exact
profiling in two settings: In the first setting, JP generates a
Calling Context Tree (CCT) [2] with the number of method

invocations and the number of executed bytecodes for each
calling context [8]. In the second setting, each calling con-
text is augmented with additional memory alloction metrics;
for details see reference [9].

To evaluate the overhead caused by our profiling scheme,
we used the SPEC JVM98 benchmark suite [38] (prob-
lem size 100), which consists of 7 benchmarks, as well as
the SPEC JBB2005 benchmark [37] (warehouse sequence
1, 2, 3, 4, 5, 6, 7, 8) on a Linux Fedora Core 2 computer
(Intel Pentium 4, 2.66 GHz, 1024 MB RAM). The met-
ric used by SPEC JVM98 is the execution time in seconds,
whereas SPEC JBB2005 measures the throughput in opera-
tions/second. All benchmarks were run in single-user mode
(no networking) and we removed background processes as
much as possible in order to obtain reproducible results. For
each setting and each benchmark, we took the median of 10
runs. For the SPEC JVM98 suite, we also computed the
geometric mean of the 7 benchmarks. Here we present the
measurements made with the Sun JDK 1.6.0 platform in its
‘client’ mode.

Figure 5 shows the profiling overhead for the two set-
tings. In all tests, we used a simple profiling agent that
avoids processing profiling data during program execution,
but employs a JVM shutdown hook to generate the pro-
file upon program termination. On average, the measured
overhead due to FERRARI and JP is 69–1 386% for the
SPEC JVM98 suite, and about 120% for SPEC JBB2005.
For all measured benchmarks, the additional overhead for
collecting memory allocation metrics is relatively low when
compared with the overhead of CCT generation.

To compare our approach with a standard profiler
based on the JVMPI/JVMTI, we also evaluated the over-
head caused by the ‘hprof’ profiling agent shipped with
standard JDKs. We started the profiling agent ‘hprof’
with the ‘-agentlib:hprof=cpu=times’ option,
which activates JVMTI-based profiling (available since
JDK 1.5.0). The argument ‘cpu=times’ ensures that
the profiling agent tracks every method invocation, as our
instrumentation-code does. For all benchmarks, the over-
head caused by ‘hprof’ is 1–2 orders of magnitude higher
than the overhead caused by FERRARI and JP. For ‘mtrt’,
the overhead due to ‘hprof’ even exceeds 320 000%.

In previous work we also promoted an instrumentation-
process for sampling profiling, called Komorium [8,10,12].
Komorium is fully compatible with FERRARI. With a rea-
sonable sampling rate, FERRARI and Komorium cause an
average overhead of about 50%.

6. Discussion

In the following we discuss the strengths and limitations
of our approach and outline our ongoing research on dy-
namic bytecode instrumentation.

284%

378%

69%

365%

251%

212%

321%

118%

289%

392%

69%

373%

255%

227%

327%

1358%

1386%

121%

0% 200% 400% 600% 800% 1000% 1200% 1400%

compress

jess

db

javac

mpegaudio

mtrt

jack

Geom. Mean

JBB2005

Without Memory Profiling

With Memory Profiling

Figure 5. Profiling overhead for SPEC JVM98
and SPEC JBB2005 on Sun JDK 1.6.0, ‘client’
mode.

As main contribution, our instrumentation framework
reconciles full coverage of all bytecodes executed by an
application, dynamic instrumentation at runtime, and user-
defined instrumentation-processes written in pure Java (and
using any Java-based bytecode engineering library). In con-
trast, prevailing approaches to dynamic bytecode instru-
mentation either require native code (e.g., JVMTI-based in-
strumentation [34]) or impose severe restrictions on the in-
strumentation of certain JDK core classes.

An interesting aspect of our approach is that dynamic in-
strumentation happens within the same JVM process that
runs the program under instrumentation. In order to avoid
perturbations of statistics collected by instrumentation-
code, our framework offers a mechanism which ensures
that dynamic instrumentation (as well as execution of
instrumentation-code) is not accounted for. Nonetheless,
user-defined instrumentation-processes may leverage the
full JDK. A drawback of our approach is that it can per-
turbate measurements of low-level resource consumption,
such as CPU time.

An alternative to our approach would be to execute the
instrumentation-process in a separate JVM, as it is done by
the NetBeans Profiler [30]. Such a solution ensures that
most of the CPU time spent on dynamic instrumentation is

consumed by another process. However, using a separate
process for dynamic instrumentation suffers from several
drawbacks:

1. Overall resource usage (in particular memory con-
sumption) is increased, because the second JVM pro-
cess has to load and compile at least several hundred
JDK classes.

2. In order to instrument also the core classes of the JDK,
a JVMTI agent needs to communicate with a sepa-
rate JVM process using Inter-Process-Communication
(IPC) mechanisms of the underlying operating system,
which are platform specific. Hence, native code is re-
quired and portability is compromised.

3. IPC involves context switches and causes overhead
(e.g., cache flush upon context switch). Consequently,
significant perturbations are possible.

Another alternative is to do without a separate JVM and
directly instrument all classes by a JVMTI agent written in
native code. Apart from sacrificing portability, the devel-
opment of such an instrumentation agent is cumbersome,
because to the best of our knowledge, there are no general-
purpose bytecode engineering libraries written in native
code. Available libraries (e.g., BCEL [18], ASM [31],
Javassist [15, 16], Soot [39], JOIE [17], JikesBT [26],
Serp [5], etc.) are all implemented in Java. Actually, an im-
portant reason for resorting to a separate JVM for dynamic
instrumentation is that implementing an instrumentation-
process in native code is much more difficult and error-
prone than doing the same in Java with the support of an
existing, well-tested bytecode engineering library.

The obvious limitation of our approach is that byte-
code instrumentation does not cover native code execution.
We can mitigate this problem by instrumenting also native
methods using a new feature of the JVMTI in JDK 1.6
called native method prefixing [13, 34]. However, even
though we can instrument invocations of native methods,
we still cannot keep track of the native code executed by
these methods.

Another drawback of our approach is code bloat. FER-
RARI employs an instrumentation scheme that keeps a copy
of the original method body together with the instrumented
version. For the core classes that are statically instrumented,
this code duplication cannot be avoided, since during boot-
strapping and during dynamic instrumentation the original
method bodies have to be executed. For those classes that
are dynamically instrumented, the original method bodies
will not be executed unless instrumentation-code wants to
call these methods with the execInstrCode flag dis-
abled (see Section 3.6). In general, FERRARI does not
know which methods instrumentation-code is going to call.

E.g., in the case of our instrumentation-process JP for ex-
act profiling, instrumentation-code may periodically invoke
a custom profiling agent to process profiling data at run-
time. There are no restrictions concerning which methods a
user-defined profiling agent may call. Nonetheless, we are
investigating ways of analyzing custom instrumentation-
processes in order to avoid code bloat in dynamically in-
strumented classes.

As dynamic instrumentation adds to the program execu-
tion time, it is important to optimize the instrumentation-
process. To this end, we are providing a second API,
where classes are passed as parsed objects (and not as raw
bytecodes) between our framework and the user-defined
instrumentation-process. Hence, this approach avoids pars-
ing and dumping the same class twice, but requires the
instrumentation-process to employ the same bytecode en-
gineering library our framework uses (i.e., BCEL [18]).

Applications of FERRARI are not limited to profiling
and monitoring. For instance, instrumentation-processes
can be defined in order to generate program execution
traces, which are needed for various purposes, such as code
analysis, testing, reverse engineering, logging, failure diag-
nosis, etc. FERRARI promises to generate execution traces
with much less overhead than prevailing techniques based
on the JVMPI [33] or the JVMTI [34].

7. Related Work

While FERRARI is a general-purpose framework for
dynamic bytecode instrumentation, it is particularly well
suited for implementing profilers. Hence, in the following
we discuss related work regarding dynamic metrics and pro-
filing.

In [20] the authors present a variety of dynamic metrics,
including bytecode metrics, for selected Java programs,
such as the SPEC JVM 98 benchmarks [38]. They intro-
duce a tool called *J [21] for the metrics computation. *J
relies on the JVMPI [29, 33], a former profiling interface
for the JVM, which is known to cause very high measure-
ment overhead6 and requires profiling agents to be written
in native code, contradicting the Java motto ‘write once, run
anywhere’. Because of the high overhead, tools like *J may
only be applied to programs with a short execution time. In
contrast, our framework enables instrumentations that incur
moderate overhead to be implemented in pure Java. There-
fore, it is possible to instrument long-running, complex ap-
plications in a way that is portable across different virtual
execution environments.

6Overheads caused by profiling agents based on the JVMPI [33] or the
more recent JVMTI [34] may easily exceed factor 4 000, because certain
profiling events prevent runtime optimizations, such as just-in-time com-
pilation [8].

There is a large body of related work in the area of
profiling. Fine-grained instrumentation of binary code has
been used for profiling by Ball and Larus [4]. The ATOM
framework [32] has been successfully used for many profil-
ing tools that instrument binary code. However, as binary
code instrumentation is inherently platform-dependent, this
technique is not appropriate to build tools for the platform-
independent performance analysis of software components.

The NetBeans Profiler [30] integrates Sun’s JFluid pro-
filing technology [19] into the NetBeans IDE. JFluid ex-
ploits dynamic bytecode instrumentation and code hotswap-
ping in order to turn profiling on and off dynamically, for the
whole application or just a subset of it. However, this tool
needs a customized JVM and is only available for a limited
set of environments.

Whereas we perform exact profiling, other approaches
use sampling in order to minimize the overhead, but at the
price of a possible loss of precision, as e.g. in reference [40].
An interesting technique using counter-based code instru-
mentation in order to produce profiling samples is described
in reference [3]. We also implemented a sampling profiler
that approximates the number of executed bytecodes in each
calling context [10]. While such an approach reduces over-
head, the profiles lack method invocation counters and, de-
pending on the profiled application, may suffer from limited
accuracy.

Hardware performance counters that record events, such
as instructions executed, cycles executed, pipeline stalls,
cache misses, etc. are often exploited for profiling. In [2]
hardware performance metrics are associated with execu-
tion paths. The Jikes RVM [1], an open source research
virtual machine that offers a flexible testbed for prototyping
virtual machine technology, has been enhanced to gener-
ate traces of hardware performance monitor values for each
thread in the system [35]. In [24] the authors introduce ‘ver-
tical profiling’, which combines hardware and software per-
formance monitors in order to improve the understanding of
system behaviour by correlating profile information from
different levels. All these approaches aim at generating pre-
cise profiling information for a particular environment, with
a focus on improving virtual machine implementations. In
contrast, our instrumentation-process for exact profiling is
a software development tool that helps in program analysis.
It does not rely on any platform-specific features in order
to offer a completely portable profiling system that allows
developers to profile applications in their preferred environ-
ment, generating reproducible profiles.

8. Conclusions

In this paper we presented a new framework for dynamic
bytecode instrumentation in Java. Its particular strength
is the support for instrumenting all classes, including the

core classes of the JDK. This enables bytecode instrumen-
tation to cover the execution of all bytecode in the system.
Our framework deals with issues of bootstrapping an instru-
mented JDK and of avoiding measurement perturbations by
runtime instrumentation. It offers a simple API to define
custom instrumentation-processes.

As shown in this paper, our framework can be used in
the area of profiling in order to instrument the whole JDK,
resulting in complete, calling-context-sensitive profiles.

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton, B. Burke, P. Cheng,
J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F.
Hummel, D. Lieber, V. Litvinov, M. F. Mergen, N. Ngo,
J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E.
Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalapeño virtual machine. IBM Systems Journal, 39(1):211–
238, 2000.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performance counters with flow and context sensitive pro-
filing. In PLDI ’97: Proceedings of the ACM SIGPLAN
1997 conference on Programming language design and im-
plementation, pages 85–96. ACM Press, 1997.

[3] M. Arnold and B. G. Ryder. A framework for reducing
the cost of instrumented code. In SIGPLAN Conference on
Programming Language Design and Implementation, pages
168–179, 2001.

[4] T. Ball and J. R. Larus. Optimally profiling and tracing pro-
grams. ACM Transactions on Programming Languages and
Systems, 16(4):1319–1360, July 1994.

[5] BEA. Serp. Web pages at http://serp.
sourceforge.net/.

[6] W. Binder. Design and implementation of the J-SEAL2 mo-
bile agent kernel. In The 2001 Symposium on Applications
and the Internet (SAINT-2001), pages 35–42, San Diego,
CA, USA, Jan. 2001.

[7] W. Binder. J-SEAL2 – A secure high-performance mobile
agent system. Electronic Commerce Research, 1(1/2):131–
148, 2001.

[8] W. Binder. A portable and customizable profiling frame-
work for Java based on bytecode instruction counting. In
Third Asian Symposium on Programming Languages and
Systems (APLAS 2005), volume 3780 of Lecture Notes in
Computer Science, pages 178–194, Tsukuba, Japan, Nov.
2005. Springer Verlag.

[9] W. Binder. Portable profiling of memory allocation in Java.
In Net.ObjectDays 2005 (NODe 2005), volume P-69 of Lec-
ture Notes in Informatics, pages 110–128, Erfurt, Germany,
Sept. 2005.

[10] W. Binder. Portable and accurate sampling profiling for
Java. Software: Practice and Experience, 36(6):615–650,
2006.

[11] W. Binder and J. Hulaas. A portable CPU-management
framework for Java. IEEE Internet Computing, 8(5):74–83,
Sep./Oct. 2004.

[12] W. Binder and J. Hulaas. Flexible and efficient measurement
of dynamic bytecode metrics. In Fifth International Con-
ference on Generative Programming and Component Engi-
neering (GPCE-2006), Portland, Oregon, USA, Oct. 2006.

[13] W. Binder, J. Hulaas, and P. Moret. A quantitative evalua-
tion of the contribution of native code to Java workloads. In
2006 IEEE International Symposium on Workload Charac-
terization (IISWC-2006), San Jose, CA, USA, Oct. 2006.

[14] W. Binder, J. G. Hulaas, and A. Villazón. Portable resource
control in Java. ACM SIGPLAN Notices, 36(11):139–155,
Nov. 2001. Proceedings of the 2001 ACM SIGPLAN Con-
ference on Object Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA’01).

[15] S. Chiba. Load-time structural reflection in Java. In
Proceedings of the 14th European Conference on Object-
Oriented Programming (ECOOP’2000), volume 1850 of
Lecture Notes in Computer Science, pages 313–336.
Springer Verlag, Cannes, France, June 2000.

[16] S. Chiba and M. Nishizawa. An easy-to-use toolkit for effi-
cient Java bytecode translators. Lecture Notes in Computer
Science, 2830:364–376, 2003.

[17] G. Cohen, J. Chase, and D. Kaminsky. Automatic program
transformation with JOIE. In 1998 USENIX Annual Techni-
cal Symposium, pages 167–178, 1998.

[18] M. Dahm. Byte code engineering. In Java-Information-Tage
1999 (JIT’99), Sept. 1999. http://jakarta.apache.
org/bcel/.

[19] M. Dmitriev. Profiling Java applications using code
hotswapping and dynamic call graph revelation. In WOSP
’04: Proceedings of the Fourth International Workshop on
Software and Performance, pages 139–150. ACM Press,
2004.

[20] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge.
Dynamic metrics for Java. ACM SIGPLAN Notices,
38(11):149–168, Nov. 2003.

[21] B. Dufour, L. Hendren, and C. Verbrugge. *J: A tool
for dynamic analysis of Java programs. In OOPSLA ’03:
Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications, pages 306–307, New York, NY, USA, 2003.
ACM Press.

[22] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and
D. Lea. Java Concurrency in Practice. Addison-Wesley,
2006.

[23] J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java
Language Specification, Third Edition. The Java Series. Ad-
dison-Wesley, 2005.

[24] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind.
Vertical profiling: Understanding the behavior of object-
oriented applications. In OOPSLA ’04: Proceedings of the
19th annual ACM SIGPLAN Conference on Object-oriented
programming, systems, languages, and applications, pages
251–269. ACM Press, 2004.

[25] J. Hulaas and W. Binder. Program transformations for
portable CPU accounting and control in Java. In Proceed-
ings of PEPM’04 (2004 ACM SIGPLAN Symposium on Par-
tial Evaluation & Program Manipulation), pages 169–177,
Verona, Italy, August 24–25 2004.

[26] IBM. Jikes Bytecode Toolkit. Web pages at http://www.
alphaworks.ibm.com/tech/jikesbt.

[27] JBoss. Open source middleware software. Web pages at
http://www.jboss.com/.

[28] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Akşit and S. Matsuoka, editors, Pro-
ceedings of European Conference on Object-Oriented Pro-
gramming, volume 1241, pages 220–242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

[29] S. Liang and D. Viswanathan. Comprehensive profiling sup-
port in the Java virtual machine. In Proceedings of the
5th USENIX Conference on Object-Oriented Technologies
and Systems (COOTS-99), pages 229–240, Berkeley, CA,
May 3–7 1999. USENIX Association.

[30] NetBeans. The NetBeans Profiler Project. Web pages at
http://profiler.netbeans.org/.

[31] ObjectWeb. ASM. Web pages at http://asm.
objectweb.org/.

[32] A. Srivastava and A. Eustace. ATOM: A system for build-
ing customized program analysis tools. SIGPLAN Not.,
39(4):528–539, 2004.

[33] Sun Microsystems, Inc. Java Virtual Machine Profiler Inter-
face (JVMPI). Web pages at http://java.sun.com/
j2se/1.4.2/docs/guide/jvmpi/.

[34] Sun Microsystems, Inc. JVM Tool Interface
(JVMTI) version 1.1. Web pages at http:
//java.sun.com/javase/6/docs/technotes/
guides/jvmti/index.html.

[35] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Di-
wan, D. Grove, and M. Hind. Using hardware performance
monitors to understand the behavior of Java applications.
In Virtual Machine Research and Technology Symposium,
pages 57–72, 2004.

[36] E. Tanter, M. Ségura-Devillechaise, J. Noyé, and J. Pi-
quer. Altering Java semantics via bytecode manipulation.
In Proceedings of the ACM SIGPLAN/SIGSOFT Conference
on Generative Programming and Component Engineering
(GPCE 2002), USA, volume 2487 of LNCS, pages 283–298,
Oct. 2002.

[37] The Standard Performance Evaluation Corporation. SPEC
JBB2005 (Java Business Benchmark). Web pages at http:
//www.spec.org/osg/jbb2005/.

[38] The Standard Performance Evaluation Corporation. SPEC
JVM98 Benchmarks. Web pages at http://www.spec.
org/osg/jvm98/.

[39] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pom-
inville, and V. Sundaresan. Optimizing Java bytecode using
the Soot framework: Is it feasible? In Compiler Construc-
tion, 9th International Conference (CC 2000), pages 18–34,
2000.

[40] J. Whaley. A portable sampling-based profiler for Java Vir-
tual Machines. In Proceedings of the ACM 2000 Conference
on Java Grande, pages 78–87. ACM Press, June 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

