
Extracting Meaning from Abbreviated Identifiers

Dawn Lawrie Henry Feild David Binkley
Loyola College
Baltimore MD

21210-2699, USA
{lawrie, hfeild, binkley}@cs.loyola.edu

Abstract

Informative identifiers are made up of full (natural lan-
guage) words and (meaningful) abbreviations. Readers of
programs typically have little trouble understanding the pur-
pose of identifiers composed of full words. In addition,
those familiar with the code can (most often) determine
the meaning of abbreviations used in identifiers. However,
when faced with unfamiliar code, abbreviations often carry
little useful information. Furthermore, tools that focus on
the natural language used in the code have a hard time in
the presence of abbreviations. One approach to provid-
ing meaning to programmers and tools is to translate (ex-
pand) abbreviations into full words. This paper presents
a methodology for expanding identifiers and evaluates the
process on a code based of just over 35 million lines of code.
For example, using phrase extraction,fs exists is expanded
to file status exists illustrating how the expansion process
can facilitate comprehension. On average, 16 percent of the
identifiers in a program are expanded. Finally, as an exam-
ple application, the approach is used to improve the syn-
tactic identification of violations to Deißenböck and Pizka’s
rules for concise and consistent identifier construction.

Keywords: Software Quality, Program Identifiers, Program
Comprehension

1 Introduction

The first Working Session on Information Retrieval
Based Approaches in Software Evolutionwas held at
ICSM’06. The number of attendees at this session un-
derscores the growing interest in applying Information Re-
trieval (IR) techniques to software engineering problems.
In order to make effective use of IR techniques, consistent
meaningful vocabulary is important. Identifiers present a
challenge when domain information is buried behind abbre-
viations and acronyms. One way to expose this information

is to translated terse identifiers into natural language. Then
existing (and future) IR based techniques can be employed
by software engineering tools to make use of this informa-
tion in problems such as concept location [22], quality as-
sessment [16], and software reuse [8].

The automated translation of existing identifiers to natu-
ral language is complicated by many facets. For example,
identifiers often include prefixes, suffixes, or use ‘common’
abbreviations (believed to be so well known that they go
undocumented). To address these, the translation process
applies three IR based techniques. First, probability dis-
tributions such as relative entropy [19] are used to identify
usualversusunusualaspects of identifiers.

Second, for specific parts of each identifier (e.g., non-
dictionary words), sets of possible expansions are generated
based on wildcard expansions (expansions that begin with
the same letter as the abbreviation and subsequent letters
occur in the same order). A learning algorithm is applied to
determine the likelihood of a particular expansion based on
characteristics such as the proportion of adjacent lettersin
the expansion. For example,lib can expand tolibrary and
liberty. In a function that includes comments such as ”find
opponent liberty and choose move to attack”, the expansion
would favorliberty overlibrary.

Finally, for multi-word identifiers, machine translation
techniques are employed to ensure that the expansion has
produced a meaningful cohesive unit. For example, the
identifier thenewestone includes three dictionary words
fused together. This identifier is a challenge for a naive
splitting algorithm as it can be split into three dictionary
words two different ways:the-newest-one or then-ewe-
stone. Borrowing from machine translation techniques for
resolving translation ambiguity, the likelihood of findingthe
words the, newest, andone versus that of findingthen,
ewe, andstone in close proximity can be compared.

The usefulness of expanded identifiers is far reaching.
For example, they could be used to provide GUI ‘tool tips’,
as an aide to an engineer who must map the program’s

1



identifiers to the concepts that they represent. Further-
more, by increasing the amount of natural language found
in the code, expansion improves existing source code anal-
ysis tools that attempt to map program identifiers to do-
main level concepts (e.g., those appearing in the documen-
tation). Examples of this include the techniques of Antoniol
et al. and Marcus et al. that seek to (re)establish links be-
tween source code and its documentation [3, 21]. In another
example expansion allows for better automatic recognition
of quality identifiers: while humans can often comprehend
code whose identifiers are composed of meaningful abbre-
viations [17], tools have a much more difficult time doing
so. Finally, expansion facilitates correctly identifyingvi-
olations of conciseness and consistency rules for identifiers
such as those laid out by Deißenböck and Pizka [7, 15]. This
final example is used herein to demonstrate an application
of the expansion.

This paper presents a first step in this process: the expan-
sion of abbreviations and acronyms into meaningful words
and phrases based on local function-level language infor-
mation. For example, a phrase dictionary, built for each
function using phrases found in the comments, provides one
source of meaningful names. This step allows the value of
local information to be better understood and also highlights
places where using global information is useful.

The remainder of this paper consists of a description of
the process used to expand identifiers in Section 2. An anal-
ysis of the expanded identifiers is presented in Section 3.
Section 4 describes the example application of the tech-
nique. The final sections discuss related and future work
and conclude.

2 Technique

In the current implementation, identifier expansion is a
two step process. The first step, described in Section 2.1,
splits an identifier into its constituentwords. Then, as ex-
plained in Section 2.2, a collection of possible expansions
are considered.

2.1 Identifier Splitting

Following past studies, identifiers are first divided into
their constituent parts for analysis [3, 7, 6, 9, 25]. Herein,
these parts are called “words” – sequences of characters
with which some meaning may be associated. Two kinds
of words are considered:hard wordsandsoft words. Hard
words are separated by the use of word markers (e.g., the
use of camelCasing or underscores) [3]. For example, the
hard wordspongeBob andsponge bob both contain the
well separated hard wordssponge andbob.

For many identifiers, the division into hard words is suffi-
cient. This occurs when all hard words are dictionary words

or known abbreviations. When a hard word is in neither cat-
egory, the identifier may contain non-well-separated words.
For example, the identifiereasycase includes the two non-
well separated wordseasy andcase. The identification of
these “soft words” is the goal of identifier splitting. One
approach does so using a greedy algorithm that recursively
finds the longest prefix and suffix that are in the dictionary
or a known abbreviation list [9].

For example, the identifierzeroindeg includes a single
hard word because there are no word markers; thus, divi-
sion into hard words is insufficient to identify the concepts
within the identifier. The splitting algorithm divides this
hard word into the three soft wordszero-in-deg.

2.2 Expanding Abbreviations

The expansion algorithm works independently on soft
words in the context of the source code for a particular
function. It uses four lists of potential expansions: a list
of natural-language words extracted from the code, a list of
phrases extracted from the code, a list of programming lan-
guage specific words referred to as astoplist, and finally a
natural-language dictionary. There are two sources of words
for the first list: first, words contained in the comments that
appear before and within the function, and second dictio-
nary hard words found in the identifiers of the function.

The phrase list is obtained by running the comments and
multiword-identifiers through a phrase finder [10]. Here,
the first letter of each word in the phrase is used to build an
acronym. If a sequence of letters matches an acronym ex-
actly, the phrase is considered a potential expansion. For in-
stance, the phrase finder extracts the phrasefile statusfrom
the comments of the programwhich. This phrase is later
returned as the expansion for the soft wordfs contained in
the identifierfs exists.

Once the list of potential words and phrases has been ex-
tracted, expansion begins. This process has two stages that
look first in the word list extracted from the code and com-
ments and in the phrase dictionary, and then in a natural-
language dictionary. Thus, language extracted from the
source is favored over words that appear in the dictionary,
and words on the stoplist are treated the same as natural lan-
guage words. A word from one of these list matches an ab-
breviation if it begins with the same letter and the individual
letters of the abbreviation occur, in order, in the word. For
example, the search for “abs” in the mozilla source cor-
rectly discovers the expansionabsolute, while horiz and
triag are correctly expanded tohorizontal andtriangle, re-
spectively.

In the present implementation, if there is a single match
in either stage of the search, it is returned as the expansion
of the abbreviation. Future work will explore techniques for
selecting from among multiple potential expansions by fa-

2



voring words where the sequences of letters are adjacent,
minimizing the number of different expansions for a se-
quence within the program and across programs, and, for
multi-word identifiers, maximizing the likelihood that the
words occur together based on co-occurrence information
derived from approximately 1 trillion word tokens of text
from publicly accessible web pages. This data set of n-
grams was developed by Google and is available from the
Linguistic Data Consortium [4].

Two information retrieval (IR) techniques are used to im-
prove the extraction. The first technique,stemming, elimi-
nates word suffixes; thus, ignoring the particular form of a
word [13]. For example, the ‘stem’ of ‘walk’, ‘ walking’,
and ‘walked’ is ‘ walk’. Stemming is used to more accu-
rately determine if hard words are dictionary words, since
the particular type of stemming used (Krovetz stemming)
stems words to dictionary words [13].

The second technique,stopping, filters soft words
through astop-list, which in IR is a collection of words not
thought to be relevant to any query. For example, in English,
words such as ‘the’ and ‘an’ are stop-list words. When con-
sidering source code, a special stop-list is used that includes
programming language specific entries. For example, the
stop-list for C includes keywords (e.g., while), prede-
fined identifiers (e.g., NULL), library function, and variable
names (e.g., strcpy anderrno). Because the meaning
of these stop words are rarely described in the code and
engineers generally recognize them as is, it would be in-
advisable for the expansion algorithm to modify them, for
example, by expandingstrcpy to string copy.

3 Analysis

This section presents an analysis of the expansion algo-
rithm. It begins by discussing the 158 programs studied, and
then, to illustrated the successes and failures of the algo-
rithm, considers two representative examples (the programs
which anda2ps) in greater detail. Finally, the quality of
the expansion is considered first by comparing the tool gen-
erated expansion of 64 identifiers with ‘by-hand’ expansion
of the same identifiers and then using quantitative statistics.

3.1 Subject Programs

The analysis includes empirical data collected from 158
programs, some of which are different versions of the same
program. Ignoring multiple versions, 63 unique programs
were considered. Programs ranged in size from 1,423 to
3,003,526 LoC and covered a range of application domains
(e.g., aerospace, accounting, operating systems, program
environments, movie editing, games, etc.) and styles (com-
mand line, GUI, real-time, embedded, etc.). Most of the

code was written inC. SignificantC++ andJava code were
also studied.

Table 1 shows 10 representative programs. It reports
code sizes for theC, C++, andJava code (and their sum) as
counted by the Unix utilitywc (excluding header files). In
addition, the total number of non-comment non-blank lines
of code, as reported bysloc [27], is shown. The average
percentage of non-comment non-blank lines varies by lan-
guage with 66% of theC code, 72% of theC++ code, and
58% of theJava code being non-comment non-blank lines.

Table 2 summarizes statistics regarding the identifiers
along with some demographic information (e.g., dominant
programming language, and the start and release years of
the program). The table shows a representative sample of
the programs. Finally, Table 3 summarizes identifier related
data over all programs (not just those shown in Tables 1
and 2). The table presents that data by programming lan-
guage and all the data taken collectively.

3.2 Example Output

Using several examples, this section illustrates the out-
put of the expansion process. The examples, taken from the
programswhich and a2ps, highlight the capabilities and
weaknesses of the current algorithm. These include correct
expansions, incorrect expansions of valid abbreviations,and
finally incorrect expansions due to hard word splitting er-
rors.

To begin with, the top three entries in Table 4 show some
triumphs of the algorithm. Each example uses a different
source to find the correct expansion. In the case of the first
identifier,pw dir, the wordpasswordis found in a comment
near the appearance of the identifier. As an aside,dir is not
expanded because there are three possible expansions, one
of which isdirectory. With the second example, the phrase
finder discovers the correct expansion. The code includes
the identifierfile status. The phrase finder entersfile status
as a phrase having the acronymfs. Therefore, the expan-
sion, when trying to matchFS uncovers the phrasefile sta-
tus. In the third example, the worddirection is used in an
identifier within the function that includes the abbreviation
STACK DIR. Thus, here again the code itself is the source
of the expansion andSTACK DIR is correctly expanded to
STACK DIRECTION.

This last example is interesting as it illustrates the need
for context in the expansion process. The example comes
from the filealloca.c. In this file dir corresponds todirec-
tion and is correctly expanded todirection. However, in the
file tilde.c of the same program, the abbreviationdir cor-
rectly expands todirectory. From a comprehension stand-
point, this is an issue if these identifiers are visible in the
same scope (for example, if one were a global). The issue
is less severe if both are local to their own module (file or

3



wc sloc
program C C++ Java Total Total

cinelerra-2.0 1,044,996 106,357 0 1,151,353 820,980
cpm68k1-v1.2a 132,171 0 0 132,171 102,252
empireserver 85,548 0 0 85,548 62,793
eMule0.46c 1,759 172,164 0 173,923 135,567
ghostscript-7.07 302,336 2,872 0 305,208 225,459
jakarta-tomcat-5.5 68,003 0 353,604 421,607 219,766
LEDA-3.0 41,610 0 0 41,610 27,425
minux-2.0 326,210 0 0 326,210 244,033
mozilla-1.4 1,047,741 1,949,292 6,493 3,003,526 2,107,436
quake3-1.32b 353,806 57,431 0 411,237 281,432
Totals for all code not just that shown above
total 26,338,235 15,374,576 6,909,487 48,643,480 32,521,078

Table 1. Subject Programs.

dominant start release LoC unique id hard soft percent‡

program language year year (wc) ids instances words words increase
apache1.3.29 C 1995 1999 101,515 8,419 99,172 17,942 22,971 28.0%
cinelerra-2.0 C 1996 2004 1,151,353 84,612 1,833,424 209,059 261,793 25.2%
cpm68k1-v1.1 C 1974 1983 73,172 4,167 79,660 4,560 8,193 79.7%
cvs-1.11.1p1 C 1989 2001 91,446 5,876 82,315 10,918 14,344 31.4%
eclipse-3.2m4 Java 2001 2005 3,087,545 167,662 3,893,272 554,068 612,632 10.6%
gcc-2.95 C 1987 1999 841,633 44,941 897,728 110,060 146,474 33.1%
jakarta-tomcat-5.5.11 Java 1999 2005 421,607 19,202 351,487 48,537 54,471 12.2%
minux-2.0 C 1980 1996 326,210 22,951 325,341 35,967 51,428 43.0%
mozilla-1.6 C++ 1998 2004 2,919,307 189,916 3,649,329 563,448 659,396 17.0%
mysql-5.0.17 C++ 1996 2005 1,293,270 50,383 1,023,362 132,249 163,363 23.5%
quake3-1.32b C 1999 2005 411,237 31,114 542,664 75,474 94,144 24.7%
sendmail-8.7.5 C 1983 1996 78,757 2,877 62,075 4,492 6,828 52.0%
spice3f4 C 1985 1993 298,734 12,388 452,423 24,599 34,882 41.8%

Table 2. Basic counts from 14 selected programs. Some of the p rograms from Table 1 are repeated
for comparison, other’s were selected to provide diversity in the presented data. ‡Percent increase
is the percent increase from hard words to soft words.

function); although even in this case a programmer consid-
ering both modules may still confuse the two.

The second grouping of three identifiers in Table 4 shows
examples where the algorithm chose the wrong expansion.
Most such problems occur when an abbreviation is so com-
mon that it is unlikely the full word expansion appears in
the code or comments. For example, in the first casecnt
corresponds tocount. In the second example,da is misin-
terpreted asdictionary due to a lack of good information
in the local context. Looking in the file where the func-
tion da qsort is defined it is obvious thatda should match
the phrasedynamic array(something the phrase finder gets
correct within the file). However, the error occurs in the
file whereda qsort is called. This example is indicative
of a category of false positives that would be mitigated by
considering a broader scope (e.g., the entire program). Un-

like the expansion ofdir above, becauseda qsort is in the
global scope, having a single expansion is preferable. The
final example is particularly interesting case becauser and
n refer to the whitespace characters ‘\r’ and ‘\n’ rather
than natural language words. In this caser andn are rather
informative and thus expansion has little to offer.

The last grouping of three identifiers in Table 4 demon-
strates problems in the splitting that lead to problems in the
expansion. In the first case,argcasematch should have
been splitarg case match. Unfortunately,argc is an ab-
breviation known to the splitter whilearg is not, and there-
fore, the split that includesargc is preferred. In the second
case, the splitting algorithm did not recognize any of the
subsequences so the splitting is, in essence, random, and the
words chosen for expansion are nonsensical. Had the split-
ter producedxv str rpl instead, then using comments and

4



Totals for hard soft
(over all code not instances words words LoC unique id hard soft percent
just that shown) per id per id per id (wc) ids instances words words increase

C 18.6 2.5 3.1 26,338,235 1,566,289 2,9074,119 3,956,372 4,821,045 21.9%
C++ 19.3 2.9 3.5 15,375,576 965,402 18,836,801 2,835,896 3,341,987 17.8%
Java 22.1 3.0 3.4 6,909,487 356,225 7,885,428 1,076,709 1,203,537 11.8%
Grant Total 19.3 2.7 3.2 48,643,480 2,890,153 55,638,621 7,872,119 9.370,562 19.0%

Table 3. Total counts from all programs.

Original Identifier Split Identifier Expanded Identifier
1 pw dir pw dir password dir
2 FS EXISTS fs exists file status exists
3 STACK DIR stack dir stack direction
1 cnt cnt current
2 da qsort da qsort dictionary qsort
3 eol rn eol rn eol Returns
1 argcasematch argc a se match argc a size match
2 xvstrrpl xv st rr pl xv stream rr Plain
3 EDF SUFFIX ed f suffix encodings f suffix

Table 4. Example Identifiers

source from the file where the function is defined leads to
the correct expansionxv string replacement. In the final
example, no splitting should have occurred. The acronym
EDF is defined in the preceding comment asEncoding De-
scription Files. One of the words shows up in the expansion,
but this was luck. This last group of examples points to the
need for better integration between the splitting and expan-
sion algorithms. In all three cases such integration would
have improved the splitting and the subsequent expansion.

3.3 Manual Inspection

To gain a feeling for the quality of the automatic ex-
pansion, a manual inspection of the output was performed.
Considering millions of identifiers was not practical, so a
random sample of 64 identifiers effected by expansion was
created. For each, the correctness was judged by three peo-
ple: one of the three authors (randomly chosen) and two
student programmers at the end of their second or third year
of study. The inspection involved being given an identifier
before and after expansion along with the function (includ-
ing preceding and internal comments). If the expansion was
deemed incorrect, then the programmer was asked to pro-
vide a correct expansion.

The collected data was filtered so that each identifier had
a single judgement. Where discrepancies occurred, the ma-
jority judgment was used. In most cases there were three
judgements for each identifier. However, because two stu-
dents misunderstood the directions, their data was disre-
garded. This resulted in five ties, in which cases the authors
decided the correct response; thus, 64 identifiers were con-

sidered in the remainder of the inspection. About one-third
of the identifiers were correctly split and expanded. Sur-
prisingly, 36 of the expansions were based on a single letter.
One difficulty with expanding single letters is that they are
not always an abbreviation, such as whenn represents the
columns in a 2-dimensional array.

The first inspection aims to ascertain the correctness of
the expansion algorithm independently of the splitting al-
gorithm. Thus, only identifiers that are split correctly are
considered here. Overall the data, 58% of the identifiers are
expanded correctly. For identifiers whose expansions were
based on one or two characters, 57% of the identifiers are
expanded correctly; however, for identifiers whose expan-
sion were based on three or more characters, the percentage
rises to 64%. Thus, it appears that longer soft words lead to
increased accuracy.

The second inspection considers the correctness of the
splitting algorithm. A similar pattern is observed. Overall
the data, 75% of the identifiers are correctly split. For iden-
tifiers of one or two characters grouped together, 57% are
split correctly. The percentage rises to 91% for identifiers
with groups of three or more characters. This indicates that
when splitting algorithm groups a large number of charac-
ters, it is more likely to have split the identifier correctly.

In addition to the quantitative analyses, qualitative anal-
ysis of the data suggests several ways the algorithm can
be improved. First, many of the incorrect expansions are
caused by prefixes (e.g., m size for the attribute (mem-
ber) size). In such cases, the expansion algorithm should
expand these prefixes uniformly throughout the entire pro-
gram and be conservative by only expanding when there is
strong evidence in favor of the expansion. Second, standard
acronyms such asRDF andCERTtend not to be defined in
the code. Such acronyms (as opposed to abbreviations used
in a particular program) are more likely to appear in exter-
nal documentation. This makes their recognition more of a
challenge; however, capitalization may be helpful.

3.4 Quantitative Statistics

This section evaluates the impact of the expansion algo-
rithm on the entire code base. Four different statistics are
considered. The first two focus on the identifiers that are
expanded using the current algorithm. The second two ex-

5



Figure 1. Percentage of expanded identifiers
per program by programming language.

amine all the identifiers and the possibility of expansion and
the usefulness of different sources for expansion.

Overall, about 16% of identifiers in programs are mod-
ified by the current expansion algorithm. By program, this
value ranges from 3% to 31%. Figure 1 shows a boxplot of
the data by programming language. Given that a majority of
the subject programs are written inC, it is no surprise that
its characteristics are similar to the overall characteristics. It
is interesting to note that on average, more expansions occur
for C++ code, while fewer occur forJava code. Given that
both are object oriented languages, this is probably a result
of the strict naming conventions thatJava programmers are
encouraged to use.

Given that the expansion algorithm uses local informa-
tion for expansion, an identifier, such as a global variable or
function name, that appears in multiple functions is not nec-
essarily expanded the same in all contexts. For example,pd
is expanded toprinted andpublished. An analysis of the
number of identifiers involved in multiple expansions was
performed to determine the extent of this effect. On aver-
age 7% of identifiers have multiple expansions (i.e., just un-
der half the expanded identifiers have multiple expansions).
This indicates the importance of using more global informa-
tion to provide a more consistent expansion of identifiers.
By program, this percent ranges from less than one percent
to 16%.

Thus far, the focus of the evaluation has been on the iden-
tifiers that contain at least one soft word with a single pos-
sibility for expansion. The second part of the discussion
includes all identifiers. By considering all the soft words,
one can understand the scope of the expansion task. In to-
tal 57% of the soft words are associated with a single word.
Included in this percentage are all the words recognized as
dictionary words or stoplist words. These account for 50%
of the soft words (20% are stoplist words and the remainder

come from the dictionary). This means that only 7% of the
soft words are expanded.

In order to ascertain the number of possibilities that the
machine translation portion of the algorithm will have to
cope with, soft words can be ranked by size of the sets of
possible expansions. Of the 8.1 million unique soft words
studied, sets range in size from 1 to 6735 possible expan-
sions. Although the largest sets are much larger than tradi-
tional machine translation algorithms consider, 25% of the
soft words requiring expansion have 10 or fewer possibili-
ties, which is a reasonable size for these sorts of algorithms.
After size 10, sets grow in size rapidly. For example, con-
sidering 30% of the soft words includes sets of size 140.

When considering the non-dictionary soft words, the
sources for the expansions help explain the usefulness of
each source. Table 5 shows the break down of the sources
for soft words that are expanded by the current algorithm
and soft words that are not. Note that the percentages on
each line do not necessarily add to 100% because a single
soft word might have multiple sources for expansion. In ad-
dition, even when a soft word is in the dictionary (making it
aWordin the Table), the comments and source code are still
examined for expansions as short words are sometimes used
as abbreviations such ascat which abbreviatesconcatena-
tion rather than the referring to the animal. Finally, none of
the abbreviations with a single expansion are words because
such soft words would not be expanded.

Encouragingly, the source code and documentation pro-
vide a possible expansion for over 60% of soft words. In
addition the dictionary is not currently being utilized very
frequently for soft words with a single expansion. When
examining multiple word sets, dictionary usage goes up to
36%. The code and comments share equally in providing
possible expansions which is another indication of the ex-
tend of natural language embedded in identifiers. Finally,
phrases are not used very frequently which may indicate
that acronyms are less likely to be defined in the code.

From the analysis of potential expansions, considering
soft words with ten of fewer expansions allows 25% of the
soft words to be expanded. Therefore, the last two lines of
Table 5 separate soft words into those withsmall multi-word
sets–sets of sizes between two and ten, and those withlarge
multi-word sets–sets of size greater than ten. The percent-
ages for small sets are much more similar to the singleton
sets. In particular, the dictionary is only used 2% of the
time. Furthermore, for small sets, the code and documenta-
tion are good sources for expansions of soft words. In the
large sets, the dictionary is required 87% of the time, indi-
cating the dictionary is generally responsible for the large
number of possible expansions.

6



Code Comment Phrase Word Dictionary
Singleton Sets 43% 51% 2% 0% 3%

Multi-Word Sets 52% 46% 2% 30% 36%

Small Multi-Word Sets 77% 67% 2% 50% 2%
Large Multi-Word Sets 13% 13% 0.3% 0.4% 87%

Table 5. Sources of expansions for soft words

4 An Application

Multiple studies have pointed to the importance of good
identifier names. For example, Rilling and Kelmola observe
“In computer programs, identifiers represent defined con-
cepts” [25], while Caprile and Tonella point out that “Iden-
tifier names are one of the most important sources of infor-
mation about program entities” [6].

Concise and consistent variable namingcan improve
identifier naming and thus code quality; thus, producing
programs that are easier to comprehend and manipulate due
to a lack of naming confusion. To illustrate the useful-
ness of abbreviation expansion, its impact on the detection
of identifier conciseness and consistency failures is consid-
ered [7, 15].

The original detection algorithm requires a mapping
from the domain of identifiers to the domain of concepts [7].
A syntacticversion of this algorithm, which replaces the
need for a concept mapping with information extracted
from the syntactic makeup of the identifiers, fails to iden-
tify violations what occur in the presence of abbreviations
within identifiers [15].

The expansion algorithm presented herein can be used
to improve the syntactic approach. The presentation of this
idea begins in Section 4.1, which introduces Deißenböck
and Pizka’s rules for concise and consistent identifier con-
struction [7] and a syntactic version of these rules [15]. It
then, in Section 4.2, considers the impact of abbreviation
expansion on the syntactic rules is considered.

4.1 Concise and Consistent Identifiers

Deißenböck and Pizka describe a formal model for well-
formed identifier naming that includes rules forconsistent
andconcisenaming of identifiers [7]. Their rules are based
on a mapping of identifiers to the set of all concepts used
in a program. Thus, they provide “a formal model based on
bi-jective mappings between concepts and names”[7].

Their rules include three requirements: two related to
identifier consistency (involving homonyms and synonyms)
and one related to identifier conciseness. These three are
formalized as follows: an identifieri is a homonym if it
represents more than one concept from the program (e.g.,
the identifierfile in Figure 2a). Two identifiersi1 and i2

are synonyms if the concepts associated withi1 have a non-
empty overlap with the concepts associated withi2 (e.g., the
identifiersfile andfile name share the conceptfile namein
Figure 2b). The presence of homonyms or synonyms indi-
cate inconsistent naming of concepts in a program and thus
violate Deißenböck and Pizka’s identifier consistency rule.
Finally, an identifieri for conceptc is concise if no concept
less general thanc is represented by another identifier. For
example, the identifierposition most directly corresponds
to the conceptposition. It would concisely represent the
conceptabsolutepositionprovided that the program did not
include any other position concepts that were less general
thenposition(e.g., relative position).

In the absence of a mapping from identifiers to concepts,
a restricted form of synonym consistency and conciseness,
referred to herein assyntactic consistency and conciseness,
can be achieved [15]. The absence of a concept map-
ping precludes the discovery of identifiers that violate the
homonym restriction only. The approach is based on iden-
tifier containment: an identifier iscontainedwithin another
if all of its soft words are present, in the same order, in the
containing identifier. For example, the identifierposition
is contained in the identifierrelative position. The key as-
sumption of the syntactic approach is that a maximal identi-
fier – an identifier not contained in any other – is associated
with a unique concept. Thus, the set of concepts is approx-
imated using thesemaximalidentifiers.

When an identifier is contained within another, one of
two possible violations has occurred. One possibility, illus-
trated in Figure 3a, is that there is a single concept asso-
ciated with the two identifiers; thus, violating Deißenböck
and Pizka’s synonym consistency requirement. For exam-
ple, if the program contains only the conceptrelative po-
sition and there are the same two identifiers,position and
relative position, a synonym consistency violation exists.
This is not a conciseness problem becauseposition ade-
quately describes the conceptrelative positionwhen it is
the only type of position used in the program.

The other possibility, is that the two identifiers map to
different concepts in the concept space. In this case, the
contained identifier violates Deißenböck and Pizka’s con-
ciseness requirement. An example of this situation is shown
in Figure 3b where the identifierposition maps to the con-
ceptabsolute positionand the identifierrelative position
maps to the conceptrelative position. The identifierpo-

7



file name

file
file_name

file pointer
file name

file

file pointer

Space
Concept

Name
Space

(a) (b)

Figure 2. Illustration of the two types of violations. Figur e (a) shows a homonym violation. Figure
(b) shows how a synonym violation is also introduced by the fu nction that opens a file.

sition violates the conciseness requirement by being too
general a name for the conceptabsolute positionbecause
it might refer to arelative positionas well.

4.2 Examples

The expansion can uncover a violation that was previ-
ously undetected and remove an errant violation. For exam-
ple, without expansion the syntactic definition of concise-
ness and consistency cannot identify the violation between
abspos and absolute position. The expansion ofsz to
size is another example. In the other direction the expan-
sion ofdir to direction in one context and todirectory in a
different context removes the homonym violation in which
dir was associated with the conceptsdirection and direc-
tory. This violation was previously undetectable using the
syntactic approach.

The proceeding two cases involve identifiers composed
of a single soft word. For identifiers composed of more than
one soft word, the expansion can have the following four ad-
ditional effects: it can cause an identifier to be newly con-
tained in another, it can cause an identifier to newly contain
another, it can remove a containee, and it can remove a con-
tained identifier. As a representative example of these four
(all four are similar), the first effect is seen in the expansion
of main buf to main buffer. After expansionbuffer is a
newly contained soft word. Thus, pre-expansion, there is an
undetected conciseness violation caused bymain buf and
buffer potentially both referring to the concept of themain
buffer.

Of the 2.6 million unique identifiers in all programs,
2.3% include a single soft word. From these 46,230 vio-
lations were uncovered and 25,195 simple errant violations
were broken. At present, categorization for compound iden-
tifiers is not completely automated and thus cannot be easily
quantified.

5 Related Work

Anquetil and Lethbridge (among others) have observed
that there is some controversy over the value of general
identifier names [1]. For example, Sneed finds that “in
many legacy systems, procedures and data are named ar-
bitrarily · · · programmers often choose to name procedures
after their girlfriends or favorite sportsmen” [26]. A similar
pattern was observed by one of the authors at a previous in-
dustrial position in the code of a colleague who was fond of
Star Wars.

The work presented herein follows Anquetil and Leth-
bridge in assuming that software engineers are trying to give
significant names (although they may have failed in this at-
tempt) [1]. With the spread of true engineering discipline
in the software construction process, this assumption grows
increasingly more likely to be satisfied. Also following pre-
vious work (e.g., that of Jones [11]), identifier quality is
assumed to be correlated to the use of dictionary words and
coherent abbreviations.

Work related to this topic comes from two different dis-
ciplines. Within the natural language processing commu-
nity, work was been done on acronym expansion, some of
which is highlighted below [14, 24]. Within the software
engineering community, identifiers are receiving increasing
attention both when finding characteristics of programs [1]
and using them to better understand the domain of the pro-
gram [5, 6, 18, 20, 12, 22]. The work highlighted here is
somewhat different from the project discussed in this pa-
per because up to this point, only rudimentary processing
of identifiers has been attempted.

Acronym expansion has been studied within the con-
text of written language. Larkey et al. developed a heuris-
tic approach to the problem [14]. They mined web pages
in search of acronyms and then relied on standard patterns
of text to identify the correct expansion. This approach is
not suitable to source code because of the reliance on tex-
tual patterns that do not occur in source code. Pakhomov
worked on normalizing acronyms in medical text [24]. This

8



Concept

Name
Space

Space

relative_position position

relative position

position

absolute position

(a) (b)

relative position

relative_position

Figure 3. Shows the syntactic violations. Figure (a) shows a Conciseness Violation. Figure (b) shows
a Synonym Consistency Violation.

has more similarity to the problem in source code because
numerous abbreviations and acronyms are used throughout
the text. The goal of this work is disambiguation (to decide
which of several expansions is correct). A maximum en-
tropy technique is used to decide which of the expansions is
correct. The seven words before and after the abbreviation
are used to determine the context. This technique may be
applicable to choosing from among the correct expansions
in source code and represents future work on the expansion
algorithm.

Several researchers have made use of identifiers to find
characteristics of programs. Anquetil and Lethbridge con-
sider extracting information from type names in a large Pas-
cal application [1]. In their definition two records imple-
ment the sameconceptif they have similar field names and
types (though they are lax on enforcing type equivalence).
Thus, this work provides a framework in which to study a
form of concept identification (or at least concept equiva-
lence) through types.

Another project considers file names rather then identi-
fiers names. Following the work of Merlo et al. [23] who
proposed clustering files according to the concepts referred
to in the file’s comments and the function names they con-
tain, Anquetil and Lethbridge discuss techniques for ex-
tracting concepts (referred to as “abbreviations”) from file
names [2]. The task is difficult because file names rarely
contain word markers (e.g., capital letters, hyphens, and un-
derscores). File names also tend to be short and include a
large number of terse abbreviations.

Caprile and Tonella analyze function identifiers by con-
sidering their lexical, syntactical, and semantical struc-
ture [5]. They later present an approach for restructur-
ing function names aimed at improving their meaningful-
ness [6]. The analysis involves breaking identifiers into
well separated words (i.e., hard words). The restructuring
involves two steps. First, a lexicon is standardized by using
only standard terms for composing words within identifiers.
Second, the arrangement of standard terms into a sequence
has to respect a grammar that conveys additional informa-

tion. For example, the syntax of an indirect action, where
the verb is implicit, is different from the syntax of a direct
action. They were able to come up with an effective gram-
mar for the restricted domain of function identifiers.

Finally, identifiers play a key role in several applications
of information retrieval (IR) to software. For example, the
early work of Maarek [18], which used IR to automatically
construct software libraries, made heavy use of identifiers.
More recently, Marcus et al. used IR to identify semantic
similarities between source code documents [20]. Based
on IR, similar high-level concepts (e.g., abstract data types)
are extracted as identified clusters in the code. In similar
work, Kawaguchi et al. describe an automatic software cat-
egorization algorithm to help find similar software systems
in software archives [12]. They explore several known ap-
proaches including code clones-based similarity metric, de-
cision trees, and latent semantic analysis. Finally, in a re-
lated vein, Marcus et al. address the problem of concept
location using latent semantic analysis [22]. Two concept
locators are presented–one based on user queries and the
other on partially automated queries.

6 Summary and Future Work

This paper has presented a first step toward the transfor-
mation of source code by expanding abbreviations (either
permanently or as a ‘tool tip’ in a GUI). Such expansion
can avoid mistakes made by programmers with an incorrect
understanding of the abbreviations. It also helps subsequent
analysis tools by making meaning easier to extract from the
source code. Given the payoffs in terms of better compre-
hension and better utilization of identifiers in software tools,
identifier expansion is a useful transformation.

Looking forward, additional work will consider abbrevi-
ations that appear in multiple locations. The key tradeoff
here is whether or not to limit an abbreviation to a single
expansion within a program. Furthermore, as noted in Sec-
tion 3 better integration of the splitting and expansion pro-
cess will improve the quality of the expanded identifiers. Fi-

9



nally, given that words in an identifier need to make sense as
a unit, co-occurrence models can play a role. For example,
two possible expansions of the identifierthenewestone are
the newest one andthen ewe stone. However, the soft
words that make upthe newest one have greater proba-
bility of co-occurring and thus are preferred over those of
then ewe stone.

7 Acknowledgments

This work is supported by National Science Foundation
grant CCR0305330. Special thanks to students of CS 302
for their participation in the evaluation.

References

[1] N. Anquetil and T. Lethbridge. Assessing the relevance of identi-
fier names in a legacy software system. InProceedings of the 1998
conference of the Centre for Advanced Studies on Collaborative Re-
search, Toronto, Ontario, Canada, November 1998.

[2] Nicolas Anquetil and Timothy Lethbridge. Extracting concepts from
file names; a new file clustering criterion. In20th IEEE Interna-
tional Conference and Software Engineering (ICSE 1998), pages 84–
93, Kyoto, Japan, April 1998. IEEE Computer Society Press, Los
Alamitos, California, USA.

[3] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Re-
covering traceability links between code and documentation. IEEE
Transactions on Software Engineering, 28(10), October 2002.

[4] T. Brants and A. Franz. Web 1t 5-gram version 1, 2006. Linguistic
Data Consortium, Philadelphia.

[5] B. Caprile and P. Tonella. Nomen est omen: analyzing the language
of function identifiers. InWorking Conference on Reverse Engineer-
ing, Altanta, Georgia, USA, October 1999.

[6] B. Caprile and P. Tonella. Restructuring program identifier names.
In ICSM, 2000.

[7] F. Deißenböck and M. Pizka. Concise and consistent naming. In
Proceedings of the 13th International Workshop on Program Com-
prehension (IWPC 2005), St. Louis, MO, USA, May 2005. IEEE
Computer Society.

[8] L. Etzkorn, L. Bowen, and C. Davis. An approach to programun-
derstanding by natural language understanding.Natural Language
Engineering, 5(5), 1999.

[9] H. Feild, D. Binkley, and D. Lawrie. An empirical comparison of
techniques for extracting concept abbreviations from identifiers. In
Proceedings of IASTED International Conference on Software Engi-
neering and Applications (SEA 2006), Dallas, TX, November 2006.

[10] F. Feng and W.B. Croft. Probabalistic techniques for phrase extrac-
tion. Information Process Management, 37(2), March 2001.

[11] D. Jones. Memory for a short sequence of assignment statements.C
Vu, 16(6), December 2004.

[12] S. Kawaguchi, P.K. Garg, M M. Matsushita, and K. Inoue. Automatic
categorization algorithm for evolvable software archive.In Proceed-
ings of International Workshop on Principles of Software Evolution,
Helsinki, Finland, September 2003.

[13] R. Krovetz. Viewing morphology as an inference process. In R. Ko-
rfhage et al., editor,Proceedings of the 16th ACM SIGIR Conference,
June 1993.

[14] L. Larkey, P. Ogilvie, M. Price, and B. Tamilio. Acrophile: An auto-
mated acronym extractor and server. InDigital Libraries, 200.

[15] D. Lawrie, D. Binkley, and H. Feild. Syntactic identifier concise-
ness and consistency. InProceedings of 2006 IEEE Workshop on
Source Code Analysis and Manipulation (SCAM’06), Phidelphia,
USA, September 2006.

[16] D. Lawrie, H. Feild, and D. Binkley. Leveraged quality assessment
using information retrieval techniques. In14th International Confer-
ence on Program Comprehension, 2006.

[17] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name?
a study of identifiers. In14th International Conference on Program
Comprehension, 2006.

[18] Y.S. Maarek, D.M. Berry, and G.E. Kaiser. An information retrieval
approach for automatically constructing software libraries. IEEE
Transactions on Software Engineering, 17(8), 1991.

[19] C. Manning and H. Schutze.Foundations of statistical natural lan-
guage processing. The MIT Press, 1999.

[20] A. Marcus and J. Maletic. Identification of high-level concept clones
in source code. InProceedings of Automated Software Engineering,
San Diego, CA, November 2001.

[21] A. Marcus and J. Maletic. Recovering documentation-to-source-code
traceability links using latent semantic indexing. InProceedings
of the 25

th IEEE/ACM International Conference on Software En-
gineering, Portland, OR, May 2003.

[22] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic. An information
retrieval approach to concept location in source code. InIEEE Work-
ing Conference on Reverse Engineering, Delft, The Netherlands,
November 2004.

[23] E. Merlo, I. McAdam, and R. De Mori. Source code informalin-
formation analysis using connectionnist models. InRuzena Bajcsy,
editor, IJCAI’93, International Joint Conference on Artificial Intelli-
gence, volume 2, Los Altos, Calif, 1993.

[24] S. Pakhomov. Semi-supervised maximum entropy based approach
to acronym and abbreviation normalization in medical texts. In Pro-
ceedings of the 40th Annual Meeting of the Association for Compu-
tational Linguistics, 2002.

[25] J. Rilling and T. Klemola. Identifying comprehension bottlenecks
using program slicing and cognitive complexity metrics. InProceed-
ings of the11th IEEE International Workshop on Program Compre-
hension, Portland, Oregon, USA, May 2003.

[26] H. Sneed. Object-oriented cobol recycling. In3rd Working Confer-
ence on Reverse Engineering. IEEE Computer Society., 1996.

[27] David A. Wheeler. SLOC count user’s guide, 2005.
http://www.dwheeler.com/sloccount/sloccount.html.

10


